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Abstract

Let F
Q

be the Farey sequence of order Q and let F
Q

(c, d) be the subset of those fractions
whose denominators are congruent to c (mod d). A fundamental property of F

Q
says

that the sum of denominators of any pair of neighbor fractions is always greater than
Q. It turns out that this property is no longer true for d ≥ 2. We show that the set
of normalized pairs (q′/Q, q′′/Q), where q′, q′′ are denominators of consecutive fractions
belonging to the subset of fractions with odd denominators becomes dense, as Q → ∞,
in the quadrangle with vertices (1, 0); (1, 1); (0, 1); (1/3, 1/3). We also find the local
densities of points in this set.

1. Introduction and Statement of Results

The distribution of Farey sequences has been studied, from various points of view, for
a long time. In some questions, such as for instance those related to the connection
between Farey fractions and Dirichlet L−functions, one is naturally lead to consider sub-
sequences of Farey fractions defined by congruence constraints. The distribution of such
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subsequences is not well understood at present. One reason why it is more difficult to
handle sequences of Farey fractions with congruence constraints is because these subse-
quences fail to have some of the nice, basic properties which the entire sequence of Farey
fractions has. For example, the well known fact that a′′q′ − a′q′′ = 1 for any two consec-
utive Farey fractions a′/q′ and a′′/q′′, fails for subsequences as above. This phenomenon
has been investigated for subsequences of Farey fractions with odd denominators in [2]
and [5]. In the present paper, we are concerned with another basic property of the Farey
sequence of any order Q, which says that the sum of denominators of any two consecu-
tive Farey fractions in this finite sequence is larger than Q. We shall see that, although
this property fails for subsequences of Farey fractions with odd denominators, there are
meaningful things that can be proved in this case too.

For c, d integers with d ≥ 1 and 0 ≤ c < d, let

F
Q

(c, d) =
{a
q

: 1 ≤ a ≤ q ≤ Q, gcd(a, q) = 1, q ≡ c (mod d)
}

be the set of Farey fractions of order Q with denominators congruent to c modulo d. In
what follows, we always assume that the elements of F

Q
(c, d) are arranged in increasing

order. In particular, for a given order Q, we denote by F
Q

= F
Q

(0, 1) the set of all Farey
fractions, and by F

Q,odd
= F

Q
(1, 2) the set of Farey fractions with odd denominators. We

call a Farey fraction odd if its denominator is odd and even if its denominator is even,
respectively.

It is well known that given the denominators of two consecutive fractions from F
Q

,
one can produce their numerators, then their neighbor fractions and afterwords, one can
generate recursively the whole set F

Q
. As was mentioned above, the classical inequality

q′ + q′′ > Q, which holds for any two consecutive Farey fractions a′/q′, a′′/q′′ ∈ F
Q

, is
no longer true if one replaces F

Q
by F

Q,odd
. A natural question would be to investigate

how often does this property fail as (a′/q′, a′′/q′′) runs over the set of pairs of consecutive
elements of F

Q,odd
. And, when the above inequality fails, does the pair of normalized ratios

(q′/Q, q′′/Q) have any preference to lie in any particular subregion of the unit square? In
order to find the answer to these, and similar questions, in the following we investigate,
the local density of points (q′/Q, q′′/Q), with q′, q′′ denominators of consecutive Farey
fractions in F

Q,odd
, which lie around any given point (u, v) in the unit square. We shall

see that this local density approaches a certain limiting local density g(u, v) as Q→∞,
and we shall provide an explicit formula for g(u, v), for any real numbers u, v with
0 < u, v < 1.

Let us denote

DQ(c, d) :=
{

(q′, q′′) : q′, q′′ denominators of consecutive fractions in F
Q

(c, d)
}
,

and consider the normalized set DQ(c, d)/Q and its limit D(c, d), as Q → ∞. Precisely,
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we have

D(c, d) :=

{
(x, y) ∈ (0, 1)2 :

there exists a sequence of pairs (q′n, q
′′
n) ∈ DQn(c, d),

such that lim
n→∞

(q′n/Qn, q
′′
n/Qn) = (x, y)

}
.

A significant geometric interpretation of Farey fractions follows by identifying each
pair (a′/q′, a′′/q′′) of consecutive fractions in F

Q
with the point of coordinates (q′, q′′) in

R2. In this way, one can view F
Q

as the set of lattice points with coprime coordinates
in the triangle TQ with vertices (0, Q); (Q, 0); (Q,Q). Downscaling by multiplying with
1/Q, we get T , the Farey triangle with vertices (0, 1); (1, 0); (1, 1). Then, it is not
difficult to see that in the case of all Farey fractions, the sets of interior points of D(0, 1)
and T coincide.

It is not as easy to find D(c, d) when d ≥ 2. This is mainly due to a couple of facts.
Firstly, two consecutive fractions in F

Q
(c, d) may be far away in F

Q
, since there may

exist many Farey fractions in F
Q

in between them. For example, 1/2 has in F
Q

a number

of
[
Q
4

]
+ a odd neighbors on each side, where a = 0, 1, 1, 2 for Q ≡ 0, 1, 2, 3 (mod 4),

respectively. Secondly, for a given n ≥ 3, the number of pairs of consecutive fractions in
F
Q

(c, d), which are the end points of an n-tuple of consecutive fractions in F
Q

, may have
a significant contribution, whence one can not neglect its influence on the local densities
or even on the shape of D(c, d). Both these facts are tractable, but the required analysis
may be quite complex.

Numerical calculations show that the closure of D(c, d) in R2 is often the same for
different values of c, but the local densities are different. Also, when d gets large, the
sets D(c, d) tend to occupy, besides T , the South-West corner of the unit square.

More relevant information about F
Q

(c, d) can be deduced if one knows the local
densities at points in D(c, d). At any (u, v) ∈ (0, 1)2, this local density is defined by

g(u, v) := lim
Area(∆)→0

lim
Q→∞

#
(

∆∩DQ(c,d)
)

#DQ(c,d)

Area(∆)
, (1)

in which ∆ ⊂ R2 are squares centered at (u, v). We shall address the problem of finding
g(u, v) in the case of odd Farey fractions. The next theorem shows that the local density
function on D(1, 2) exists, and its value is calculated explicitly.

For a set of conditions (equalities or inequalities in variables u and v), we use the
following notation for the characteristic function:

ϕ(conditions) =

{
1, if u, v satisfy all conditions

0, else
.
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Theorem 1. The local density in the unit square of the points (q′/Q, q′′/Q), where q′

and q′′ are denominators of neighbor fractions in F
Q,odd

, approaches a limiting density
g(u, v) as Q→∞. Moreover, for any real numbers u, v with 0 < u, v < 1,

g(u, v) =ϕ
(
1 < u+ 2v, 1 < 2u+ v

)
+

min
(
u+v
1−v ,

u+v
1−u

)∑
k=2

1

k

+
1

2
ϕ
(
2u+ v = 1, if 0 < u < 1/3

or u+ 2v = 1, if 1/3 < u < 1
)

+
1

2k
ϕ
(
k = u+v

1−v ≥ 2, if k
k+2

< u < 1,

or k = u+v
1−u ≥ 2, if k−1

k+1
< u < k

k+2

)
+

k + 2

4k(k + 1)
ϕ
(
u = v = k

k+2
, k ≥ 1

)
.

(Here k is a positive integer.)

We remark that the expression of g(u, v) above shows that the density is locally
constant on an open subset of measure 1 of the unit square. One should compare this
result with that obtained in the case of all Farey fractions. There, it is not difficult to see
that the local density on D(0, 1) = T is constant = 1 in the interior, and on the edges it
reduces to 1/2.

Additionally, we can find how often the native property of F
Q

, which says that the
sum of neighbor denominators is > Q, is preserved in F

Q,odd
. Proposition 1 below proves

that the proportion of pairs (q′, q′′) ∈ DQ(1, 2), which satisfy the condition q′ + q′′ > Q,
tends to 5/6, as Q→∞. The remaining points are situated on or under the line x+y = 1,
in the triangle (0, 1); (1, 0); (1/3, 1/3).

By definition, we know that D(1, 2) is closed in (0, 1)2, and from the proof of Theo-
rem 1 it follows that it has no isolated points. Moreover, D(1, 2) contains exactly those
points from (0, 1)2 where the density g(u, v) does not vanish.

Corollary 1. The set D(1, 2) coincides with the quadrangle bounded by the lines: y = 1,
x = 1, 2x+ y = 1, and 2y + x = 1.

Also, from Theorem 1, we see that the distribution of local densities is like a stairway
ascending as the sum of an harmonic series towards the point (1, 1), where it blows up.
This shows the preponderance of couples of neighbor denominators in F

Q,odd
that are

both large and almost equal in size. In Figure 2, there is a picture of D(1, 2), in which
heavier colors represent places with higher densities. More details on the limiting process
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that leads to D(1, 2) are given in Section 2, and in Section 3 we complete the proof of
Theorem 1.

2. Prerequisites and Geometric Aspects of Farey Fractions

We begin by stating some fundamental properties of Farey fractions, which will be used
in the sequel. For a proof of them, we refer to Hardy and Wright [4] and Hall [3]. The
first one says that if a′/q′ < a′′/q′′ are neighbor fractions in F

Q
, then

a′′q′ − a′q′′ = 1 . (2)

A second statement, called the mediant property, reveals the relation among three con-
secutive fractions of F

Q
. Thus, if a′/q′ < a′′/q′′ < a′′′/q′′′ are consecutive elements of F

Q

then

a′′

q′′
=
a′ + a′′′

q′ + q′′′
. (3)

This implies that the integer k that reduces the mediant fraction (called the index of the
Farey fraction a′/q′) satisfies the relations:

k =
a′ + a′′′

a′′
=
q′ + q′′′

q′′
= a′′q′ − a′q′′′ =

[
Q+ q′

q′′

]
. (4)

In the proof of (2)–(4) one needs the next lemma.

Lemma 1. The positive integers q′, q′′ are denominators of neighbor fractions in F
Q

if
and only if (q′, q′′) ∈ TQ and gcd(q′, q′′) = 1. Also, the pair (q′, q′′) appears exactly once
as a pair of denominators of consecutive Farey fractions.

By Lemma 1 and relation (4) it follows that any h-tuple (q′, q′′, q′′′, . . . , q(h)) of denom-
inators of neighbor fractions in F

Q
is uniquely determined by q′ and q′′. Also, one should

notice that although any pair (q′, q′′) with coprime components ≤ Q does appear exactly
once as a pair of neighbor denominators of Farey fractions, the components of longer tu-
ples must satisfy supplementary conditions in order to appear as neighbor denominators
of fractions in F

Q
.

For any positive integer k, we consider the convex polygon defined by

T
Q,k

:=
{

(x, y) : 0 < x, y ≤ Q, x+ y > Q, ky ≤ Q+ x < (k + 1)y
}
.

For k = 1, one can see that T
Q,1

is the triangle with vertices (0, Q),
(
Q
3
, 2Q

3

)
, (Q,Q), and

for any k ≥ 2, T
Q,k

is the quadrilateral with vertices
(
Q, 2Q

k

)
;
(
Q(k−1)
k+1

, 2Q
k+1

)
;
(
Qk
k+2

, 2Q
k+2

)
;
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(
Q, 2Q

k+1

)
. Downscaling by a factor of Q, for any k ≥ 1 we get Tk = T

Q,k
/Q, a polygon

which is independent of Q, and might be thought as the limiting domain as Q→∞. In
Figure 1, there is a representation of Tk, for k ≥ 1.

The polygons Tk play an important role because the index function, defined by
(x, y) 7→

[
1+x
y

]
is locally constant on each Tk. This result is summarized in the following

lemma, which characterizes the triplets of neighbor denominators of Farey fractions.

Lemma 2. The positive integers q′, q′′, q′′′ are denominators of consecutive fractions in
F
Q

and k = q′+q′′′

q′′ if and only if (q′, q′′) ∈ T
Q,k

and gcd(q′, q′′) = 1.

We remark that the sets Tk, with k ≥ 1, are disjoint and their union equals T , that
is, they form a partition of T .

Usually, finding the number of Farey fractions with a certain property can be done
by counting the number of lattice points in a certain domain. This may be achieved in
a general context, as is presented in Lemma 1 below, which is a variation of Lemma 2
from [1]. For any domain Ω ⊂ R2 we denote:

Nodd,odd := #
{

(x, y) ∈ Ω ∩ Z2 : x odd, y odd, gcd(x, y) = 1
}
,

Nodd,even := #
{

(x, y) ∈ Ω ∩ Z2 : x odd, y even, gcd(x, y) = 1
}
.

Lemma 3. [2, Corollary 3.2] Let R1, R2 > 0, and R ≥ min(R1, R2). Then, for any
region Ω ⊆ [0, R1]× [0, R2] with rectifiable boundary, we have:

Nodd,odd(Ω) = 2Area(Ω)/π2 +O(CR,Ω) ,

Nodd,even(Ω) = 2Area(Ω)/π2 +O(CR,Ω) ,

where CR,Ω = Area(Ω)/R +R + length(∂Ω) logR.

It is worthwhile to view F
Q,odd

as being produced through a sieving process that
removes from F

Q
the even fractions. Then we see that a pair (q′, q′′) of neighbor denomi-

nators in F
Q,odd

comes up in one of the following two ways: either q′, q′′ are denominators
of consecutive fractions in F

Q
or there exists an even positive integer q ≤ Q such that

q′, q, q′′ are denominators of consecutive fractions in F
Q

. We call them of Type I and
Type II , respectively.

We now turn to the problem of finding the set D(1, 2). Let us first remark that if
we cross out in TQ the points situated on the vertical and horizontal lines with even
abscissa and ordinate respectively, we are left with all the pairs of Type I . In the limit,
when Q→∞, these points produce a subset of D(1, 2) that is dense in T . We used here
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the fact that when n → ∞, the set of points m/n with 1 ≤ m < n and gcd(m,n) = 1
becomes dense in [0, 1].

Next, let us look at the triplets that produce the pairs of Type II . By (4), we know
that they have the form (q′, q′′, kq′′ − q′), with k =

[
Q+q′

q′′

]
and q′ odd, q′′ even. This

means that, for any fixed k ≥ 1, we need to retain the lattice points in the domain

VQ,k =
{

(q′, kq′′ − q′) : (q′, q′′) ∈ T
Q,k

}
with q′ odd, q′′ even, and gcd(q′, q′′) = 1. In the limit, when Q→∞, these points give a
subset of D(1, 2), which is dense in

Vk =
{

(x, ky − x) : (x, y) ∈ Tk
}
.

A straightforward calculation shows that V1 is the triangle with vertices (0, 1);
(

1
3
, 1

3

)
;

(1, 0), and for k ≥ 2 the set Vk is the quadrilateral with vertices
(
k−1
k+1

, 1
)

;
(

k
k+2

, k
k+2

)
;(

1, k−1
k+1

)
; (1, 1).

Putting together the above facts, we have shown that the closure of D(1, 2) in (0, 1)2,
which coincides with D(1, 2) (since by definition D(1, 2) is closed) is

D(1, 2) =

(
T ∪

∞⋃
k=1

Vk
)
∩ (0, 1)2 . (5)

Notice that V2 ⊃ V3 ⊃ V4 ⊃ . . . , whence D(1, 2) = (V1 ∪ T ) ∩ (0, 1)2 is the quadrilateral
with vertices (0, 1);

(
1
3
, 1

3

)
; (1, 0); (1, 1). In Figure 2, one can see a representation

of D(1, 2) covered by T , V1, V2, V3, . . . . In addition, the union from the right hand
side of (5) gives a first hint on the local densities on D(1, 2). Complete calculations are
postponed to Section 3.

Figure 1 Figure 2
The tessellation of the Farey The covering of D(0, 1) with T ,
triangle with the polygons Tk. V1, V2, V3,. . . , from light to dark.
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To conclude this section, we answer a question mentioned earlier, which asks to find
the probability that two consecutive fractions a′

q′ ,
a′′

q′′ ∈ F
Q,odd

satisfy the condition q′+q′′ >
Q, as neighbor denominators in F

Q
do. Firstly, the pairs (q′, q′′) of Type I satisfy the

condition q′ + q′′ > Q, and by Lemma 1 we know that when Q → ∞, the proportion of
such pairs is 1/2 of all the pairs of consecutive denominators of fractions in F

Q,odd
.

Secondly, the required pairs of Type II are “children” of triplets of neighbor denom-
inators in (q′, q′′, q′′′) from F

Q
of parity (odd, even, odd) and satisfying q′ + q′′′ > Q.

Using (4), this last condition can be written as q′ +
[
Q+q′

q′′

]
q′′ − q′ > Q, or q′′ > Q

k
for

any (q′, q′′) ∈ Tk and k ≥ 1. One can easily see that this condition is satisfied by all pairs
(q′, q′′) ∈ Tk when k ≥ 2. Letting Q→∞, we get the region T \T1 whose area counts the
required proportions of pairs of Type II . This proportion is Area(T \ T1) = 1/3. (Notice
that we have ignored the parity and the coprimality conditions, but they do not influence
the final result, as follows from Lemma 1.)

Superimposing both contributions, we get the probability that the sum of denomina-
tors of two consecutive fractions from F

Q,odd
is larger than Q. This equals 1/2+1/3 = 5/6.

Proposition 1. The probability that the sum of neighbor denominators of fractions from
F
Q,odd

is > Q equals 5/6 as Q→∞.

3. Proof of Theorem 1

Let a′/q′ and a′′/q′′ be two consecutive Farey fractions from F
Q,odd

. Then they are either
neighbor fractions in F

Q
or there is an even Farey fraction between them. In the language

introduced in Section 2, the pair (q′, q′′) is either of Type I or of Type II . In the following,
we shall also say that the scaled pairs (q′/Q, q′′/Q) are of Type I or of Type II , as the
pair (q′, q′′) is. Let g(x, y) be the function that gives the local densities of the points
(q′/Q, q′′/Q) in the unit square as Q→∞, and denote by g1(x, y) and g2(x, y) the local
densities in the unit square of the points (q′/Q, q′′/Q) of Type I and Type II , respectively,
as Q→∞. These objects are defined as limits similar to that in (1). Then

g(u, v) = g1(u, v) + g2(u, v) , (6)

provided we show that both local densities g1(u, v) and g2(u, v) exist.

3.1. The density g1(u, v)

Let (x0, y0) be a fixed point in the unit square (0, 1)2. We first assume that x0+y0 > 1. In
this case, any neighborhood of (x0, y0) contains points (q′/Q, q′′/Q) of Type I if Q is large
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enough. This is due to the fact that points of Type I satisfy the property q′ + q′′ > Q.
We choose η > 0 such that (x0 − η) + (y0 − η) ≥ 1, and denote by AQ the set of the
points (q′/Q, q′′/Q) of Type I that fall in the square (x0 − η, x0 + η) × (y0 − η, y0 + η),
that is,

AQ =

(q′, q′′) ∈ N2 :
1 ≤ q′, q′′ ≤ Q, q′ + q′′ > Q, gcd(q′, q′′) = 1, q′, q′′ odd;
q′

Q
∈ (x0 − η, x0 + η),

q′′

Q
∈ (y0 − η, y0 + η)

 .

Then the cardinality of AQ is Nodd,odd(ΩQ), where ΩQ = ΩQ(x0, y0, η) is given by

ΩQ =

{
(x, y) ∈ R2 :

1 ≤ x, y ≤ Q, x+ y > Q,
Q(x0 − η) < x < Q(x0 + η), Q(y0 − η) < y < Q(y0 + η)

}
.

By Lemma 1, we get:
#AQ = 8Q2η2/π2 +O(Q logQ).

On the other hand, it is well known that #F
Q,odd

= 2Q2/π2 + O(Q logQ), and because
the number of points (q′/Q, q′′/Q) from (0, 1)2, where q′ and q′′ are the denominators of
two consecutive elements from F

Q,odd
is #F

Q,odd
− 1, we have:

x0+η∫
x0−η

y0+η∫
y0−η

g1(x, y) dxdy = lim
Q→∞

#AQ
#F

Q,odd
− 1

= 4η2 .

By the Lesbegue differentiation theorem, we obtain:

g1(x0, y0) = lim
η→0

x0+η∫
x0−η

y0+η∫
y0−η

g1(x, y) dxdy

4η2
= 1 ,

in other words, the measure associated to the distribution of points of Type I from T
approaches the Lesbegue measure, as Q→∞.

In the case x0 + y0 < 1, we clearly have g1(x0, y0) = 0. Finally, on the boundary, that
is, when x0 + y0 = 1, we get g1(x0, y0) = 1/2, using the same argument as in the first
case, the only change being that now ΩQ is a right isosceles triangle of area 2η2. These
results can be written in closed form as

g1(u, v) = ϕ(u+ v > 1) +
1

2
ϕ(u+ v = 1) , for (u, v) ∈ (0, 1)2. (7)

3.2. The density g2(u, v)

Let (x0, y0) be a fixed point in the unit square (0, 1)2, and fix a small η > 0. We know
that any pair (q′, q′′′) of Type II has in F

Q
a “parent” (q′, q′′, q′′′) with q′, q′′′ odd, q′′ even,
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and q′ + q′′′ =
[
Q+q′

q′′

]
q′′. Next, we consider the set BQ of points (q′, q′′′) of Type II for

which (q′/Q, q′′′/Q) falls in the square (x0 − η, x0 + η)× (y0 − η, y0 + η), that is,

BQ =

(q′, q′′) ∈ N2 :
1 ≤ q′, q′′ ≤ Q, gcd(q′, q′′) = 1, q′ odd, q′′ even;
q′

Q
∈ (x0 − η, x0 + η),

[
Q+ q′

q′′

]
q′′

Q
− q′

Q
∈ (y0 − η, y0 + η)

 .

Then the cardinality of BQ is #BQ = Nodd,even(ΩQ), where ΩQ = ΩQ(x0, y0, η) is given by

ΩQ =

{
(x, y) ∈ R2 :

1 ≤ x, y ≤ Q, x+ y > Q, k =
[
Q+x
y

]
;

Q(x0 − η) < x < Q(x0 + η), Q(y0 − η) < ky − x < Q(y0 + η)

}
.

Downscaling by multiplication with 1/Q, we get the bounded set

Ω =

{
(x, y) ∈ (0, 1)2 :

x+ y > 1, k =
[

1+x
y

]
;

x0 − η < x < x0 + η, y0 − η < ky − x < y0 + η

}
.

and Q · Ω = ΩQ. By Lemma 1, it follows that

#BQ =
2Q2Area(Ω)

π2
+O(Q logQ) . (8)

In order to calculate its area, we split Ω using the angular domains

Uk :=

{
(x, y) ∈ (0, 1)2 : k =

[
1 + x

y

]}
, for k = 1, 2, 3 . . . .

Notice that Uk ∩ T = Tk, the polygons depicted in Figure 1. Then

Ω ∩ Uk = {(x, y) ∈ Tk : x0 − η < x < x0 + η, y0 − η < ky − x < y0 + η}
=Tk ∩ Pk ,

where Pk = Pk(x0, y0, η) is the parallelogram

Pk =
{

(x, y) ∈ R2 : x0 − η < x < x0 + η, y0 − η < ky − x < y0 + η
}

and

Area(Ω) =
∞∑
k=1

Area(Tk ∩ Pk) . (9)

The above series is convergent. In fact, one can easily see by a compactness argument
that only a finite number of terms in the sum are non-zero. In order to get a concrete
expression for the density, one requires an explicit form of the series in (9).

The center of Pk has coordinates Ck =
(
x0, (x0 + y0)/k

)
, the length of the vertical

edges is 2η/k and the height is 2η. Therefore

Area(Pk) = 2η · 2η/k = 4η2/k. (10)
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We need to find out under what conditions Pk intersects Tk. Since η can be chosen
as small as we please, and eventually it tends to 0, while x0, y0 are kept fixed, we only
need to see when Ck lies either in the interior or on the boundary of Tk. In the following,
we shall assume that η is small enough. We may also assume that k is bounded, since
all the parallelograms Pk are contained in the vertical strip given by the inequalities
x0 − η < x < x0 + η, and since only finitely many polygons Tk intersect this strip.

Fix now a positive integer k. Firstly, if Ck belongs to the interior
◦
Tk of Tk, it follows

that Pk ⊂ Tk for η small enough, so Area(Tk ∩ Pk) = Area(Pk).

Secondly, if Ck ∈ ∂Tk, but is not a vertex of Tk, using the fact that any line that
crosses a parallelogram through its center cuts the parallelogram into two pieces of equal
area, it follows that in this case Area(Tk ∩ Pk) = Area(Pk)/2.

Thirdly, we need to know when Ck coincides with a vertex of Tk. We use the fact
that, by definition, it follows that the edges of Tk have equations y = (x + 1)/k (top),
y = (x + 1)/(k + 1) (bottom), x + y = 1 (left), and x = 1 (right), for k ≥ 1, except for
k = 1, where the top edge is y = 1 and the other two edges have equations x + y = 1
(bottom left) and y = (x + 1)/2 (bottom right). Considering all the vertices of Tk and
using the hypothesis that (x0, y0) is in the open unit square, one finds that Ck may only
coincide with the South-West vertex of Tk, for any k ≥ 1. This gives

Ck vertex of Tk ⇐⇒ x0 =
k

k + 2
, y0 =

k

k + 2
, for k ≥ 1.

Suppose Ck coincides with such a corner of Tk, that is, x0 = y0 = k/(k + 2). Then, as η
is small, Pk ∩ Tk is a quadrilateral with edges x = x0 + η, x+ y = 1, y = (x+ 1)/(k + 1)
and y = (x+ y0 + η)/k and vertices

(
k
k+2

, 2
k+2

)
,
(

k
k+2

+ η, 2
k+2

+ η
k+1

)
,
(

k
k+2

+ η, 2
k+2

+ 2η
k

)
,

and
(

k
k+2
− η

k+1
, 2
k+2

+ η
k+1

)
. Its area is Area(Tk ∩ Pk) = η2(k + 2)/

(
k(k + 1)

)
.

Let V (Tk) be the set of vertices of the polygon Tk. Using the last remarks together
with (10) in (9), we obtain:

Area(Ω) = 4η2
∑
Ck∈

◦
Tk

1

k
+ 2η2

∑
Ck∈∂Tk\V (Tk)

1

k
+ η2

∑
Ck∈V (Tk)

k + 2

k(k + 1)
. (11)

To finish the proof of the theorem, we only need to translate the condition of sum-

mation in terms of x0 and y0. Suppose first that k ≥ 2. Then Ck ∈
◦
Tk if and only if the

following conditions hold simultaneously:
x0+1
k+1

< x0+y0

k
< x0+1

k
,

x0 + x0+y0

k
> 1,

x0 < 1.
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Here, the last condition is trivial, and writing jointly the first two, we get

Ck ∈
◦
Tk ⇐⇒ k < min

(
x0 + y0

1− y0

,
x0 + y0

1− x0

)
, for k ≥ 2. (12)

Proceeding similarly in the case k = 1, we have

C1 ∈
◦
T1 ⇐⇒ 1 < x0 + 2y0, x0 + y0 < 1, 1 < 2x0 + y0 . (13)

Next, we find necessary and sufficient conditions for Ck to be on the open edges of Tk.
Suppose k ≥ 2. Then the coordinates of Ck should satisfy one of the following conditions:

x0 + 1

k + 1
=
x0 + y0

k
, for

k

k + 2
< x0 < 1

or

x0 + 1

k
=
x0 + y0

k
, for

k − 1

k + 1
< x0 < 1

or

x0 +
x0 + y0

k
= 1, for

k − 1

k + 1
< x0 <

k

k + 2

or

x0 = 1.

The second and the last equality can not hold for any (x0, y0) in the open unit square.
It remains:

Ck ∈ ∂Tk \ V (Tk) ⇐⇒


k = x0+y0

1−y0
, for k

k+2
< x0 < 1,

or for k ≥ 2.

k = x0+y0

1−x0
, for k−1

k+1
< x0 <

k
k+2

,

(14)

For the three edges of T1, we get:

C1 ∈ ∂T1 \ V (T1) ⇐⇒



x0 + y0 = 1,

or

2x0 + y0 = 1, for 0 < x0 <
1
3
,

or

x0 + 2y0 = 1, for 1
3
< x0 < 1,

(15)

Finally, the last condition, that is, Ck ∈ V (Tk) translates into:

Ck ∈ V (Tk) ⇐⇒ x0 = y0 =
k

k + 2
, for k ≥ 1. (16)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3 (2003), #A07 13

We see, from (14) and (15), that the second sum on the right hand side of (11) consists
of at most one term. More precisely, this sum vanishes unless x0 + y0 = 1 or one of the
fractions (x0 + y0)/(1− x0) or (x0 + y0)/(1− y0) is an integer. Geometrically, this means
that the second sum on the right hand side of (11) has a non-zero contribution only if
our point (x0, y0) lies on one of the edges of one of the quadrilaterals from Figure 2, or
if it lies on the diagonal x + y = 1. Similarly, the last sum on the right hand side of
(11) consists of at most one term, and this happens if and only if (x0, y0) coincides with
a vertex of one of the quadrilaterals from Figure 2 that lies on the diagonal x = y. In
other words, the last sum on the right hand side of (11) has a non-zero contribution if
and only if (x0, y0) is one of the points

(
k
k+2

, k
k+2

)
, with k ≥ 1.

Replacing the condition of summation from the right-hand side of (11) by their equiv-
alents from (12) – (16), we get:

Area(Ω) =4η2ϕ
(
1 < x0 + 2y0, x0 + y0 < 1, 1 < 2x0 + y0

)
+ 4η2

min
(
x0+y0
1−y0

,
x0+y0
1−x0

)∑
k=2

1

k

+ 2η2ϕ
(
x0 + y0 = 1 or 2x0 + y0 = 1, if 0 < x0 < 1/3

or x0 + 2y0 = 1, if 1/3 < x0 < 1
)

+
2η2

k
ϕ
(
k = x0+y0

1−y0
≥ 2, if k

k+2
< x0 < 1,

or k = x0+y0

1−x0
≥ 2, if k−1

k+1
< x0 <

k
k+2

)
+
η2(k + 2)

k(k + 1)
ϕ
(
x0 = y0 = k

k+2
, k ≥ 1

)
.

(17)

Next we proceed as in the last part of Section 3.1 with the expression of #BQ, obtained
by replacing (17) in (8), instead of #AQ. This produces the formula for the density
corresponding to the points of Type II :

g2(u, v) =ϕ
(
1 < u+ 2v, u+ v < 1, 1 < 2u+ v

)
+

min
(
u+v
1−v ,

u+v
1−u

)∑
k=2

1

k

+
1

2
ϕ
(
u+ v = 1 or 2u+ v = 1, if 0 < u < 1/3

or u+ 2v = 1, if 1/3 < u < 1
)

+
1

2k
ϕ
(
k = u+v

1−v ≥ 2, if k
k+2

< u < 1,

or k = u+v
1−u ≥ 2, if k−1

k+1
< u < k

k+2

)
+

k + 2

4k(k + 1)
ϕ
(
u = v = k

k+2
, k ≥ 1

)
.

(18)

Now the theorem follows by replacing the expression of g1(u, v) and g2(u, v) from (7)
and (18) into (6).
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