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Abstract

We obtain the triple correlations for a truncated divisor sum related to primes. We
also obtain the mixed correlations for this divisor sum when it is summed over the primes,
and give some applications to primes in short intervals.

1. Introduction

This is the first in a series of papers concerned with the calculation of higher correlations
of short divisor sums that are approximations for the von Mangoldt function Λ(n), where
Λ(n) is defined to be log p if n = pm, p a prime, m a positive integer, and to be zero
otherwise. These higher correlations have applications to the theory of primes which is
our motivation for their study. In this first paper we will calculate the pair and triple
correlations for

ΛR(n) =
∑
d|n

d≤R

µ(d) log(R/d), for n ≥ 1, (1.1)

and ΛR(n) = 0 if n ≤ 0. In later papers in this series we will examine quadruple and
higher correlations, and also examine the more delicate divisor sum

λR(n) =
∑
r≤R

µ2(r)

φ(r)

∑
d|r
d|n

dµ(d), for n ≥ 1, (1.2)

1The first author was supported in part by an NSF Grant
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and λR(n) = 0 if n ≤ 0. The correlations we are interested in evaluating are

Sk(N, j, a) =
N∑

n=1

ΛR(n + j1)
a1ΛR(n + j2)

a2 · · ·ΛR(n + jr)
ar (1.3)

and

S̃k(N, j, a) =
N∑

n=1

ΛR(n + j1)
a1ΛR(n + j2)

a2 · · ·ΛR(n + jr−1)
ar−1Λ(n + jr) (1.4)

where j = (j1, j2, . . . , jr) and a = (a1, a2, . . . ar), the ji’s are distinct integers, ai ≥ 1 and∑r
i=1 ai = k. In (1.4) we assume that r ≥ 2 and take ar = 1. For later convenience we

define

S̃1(N, j, a) =
N∑

n=1

Λ(n + j1) ∼ N (1.5)

with |j1| ≤ N by the prime number theorem. For k = 1 and k = 2 these correlations
have been evaluated before [8] (and for λQ(n) they have been evaluated in [9]); the results
show that ΛR and λR mimic the behavior of Λ, and this is also the case in arithmetic
progressions, see [17], [18], [11].

When k ≥ 3 the procedure for evaluating these correlations is complicated, and it is
easy to make mistakes in the calculations. Therefore we have chosen to first treat the
triple correlations in detail. The main terms in the theorems can often be obtained in
an easier way by evaluating the multiple sums in a different order or with a different
decomposition of the initial summands; the method used here was chosen to control the
error terms and generalize to higher correlations. Recently we have found a somewhat
different method which is preferable for higher values of k. This method will be used in
the third paper in this series. We can not compute correlations which contain a factor
Λ(n)Λ(n+k), k 6= 0, without knowledge about prime twins. This limits our applications,
and further the mixed correlations (1.4) can only be calculated for shorter divisor sums
than the pure correlations (1.3) of ΛR(n), which degrades to some extent the results we
obtain. When we assume the Elliott-Halberstam conjecture we can eliminate this latter
problem and obtain stronger results.

One motivation for the study of the correlations of ΛR(n) or λR(n) is to provide
further information on the moments

Mk(N, h, ψ) =
N∑

n=1

(ψ(n + h)− ψ(n))k (1.6)

where ψ(x) =
∑

n≤x Λ(n). We always take N →∞, and let

h ∼ λ log N, (1.7)
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where we will usually be considering the case λ¿ 1. When h is larger we need to subtract
the expected value h in the moments above, which leads to more delicate questions which
we will not consider in this paper (see [23]). Gallagher [6] proved that the moments in
(1.6) may be computed from the Hardy-Littlewood prime r-tuple conjecture [14]. This
conjecture states that for j = (j1, j2, . . . , jr) with the ji’s distinct integers,

ψj(N) =
N∑

n=1

Λ(n + j1)Λ(n + j2) · · ·Λ(n + jr) ∼ S(j)N (1.8)

when S(j) 6= 0, where

S(j) =
∏

p

(
1− 1

p

)−r (
1− νp(j)

p

)
(1.9)

and νp(j) is the number of distinct residue classes modulo p that the ji’s occupy. If r = 1
we see S(j) = 1, and for |j1| ≤ N equation (1.8) reduces to (1.5), which is the only case
where (1.8) has been proved. To compute the moments in (1.6) we have

Mk(N, h, ψ) =
N∑

n=1

( ∑
1≤m≤h

Λ(n + m)

)k

=
∑

1≤mi≤h
1≤i≤k

N∑
n=1

Λ(n + m1)Λ(n + m2) · · ·Λ(n + mk).

Now suppose that the k numbers m1, m2, . . . , mk take on r distinct values j1, j2, . . . , jr

with ji having multiplicity ai, so that
∑

1≤i≤r ai = k. Grouping the terms above, we have
that

Mk(N, h, ψ) =
k∑

r=1

∑
a1,a2,... ,ar

ai≥1,
∑

ai=k

(
k

a1, a2, . . . , ar

) ∑
1≤j1<j2<···<jr≤h

ψk(N, j, a), (1.10)

where

ψk(N, j, a) =
N∑

n=1

Λ(n + j1)
a1Λ(n + j2)

a2 · · ·Λ(n + jr)
ar (1.11)

and the multinomial coefficient counts the number of different innermost sums that occur.
If n + ji is a prime then Λ(n + ji)

ai = Λ(n + ji)(log(n + ji))
ai−1, and we easily see that

ψk(N, j, a) = (1 + o(1))(log N)k−r

N∑
n=1

Λ(n + j1)Λ(n + j2) · · ·Λ(n + jr) + O(N
1
2
+ε)

= (1 + o(1))(log N)k−rψj(N) + O(N
1
2
+ε).

(1.12)
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Hence we may apply the conjecture (1.8) assuming it is valid uniformly for maxi |ji| ≤ h
and obtain

Mk(N, h, ψ) ∼ N

k∑
r=1

(log N)k−r
∑

a1,a2,... ,ar
ai≥1,

∑
ai=k

(
k

a1, a2, . . . , ar

) ∑
1≤j1<j2<···<jr≤h

S(j).

Gallagher [6] proved that, as h→∞,∑
1≤j1,j2,··· ,jr≤h

distinct

S(j) ∼ hr, (1.13)

and since this sum includes r! permutations of the specified vector j when the components
are ordered, we have

Mk(N, h, ψ) ∼ N(log N)k

k∑
r=1

1

r!
(

h

log N
)r

∑
a1,a2,... ,ar

ai≥1,
∑

ai=k

(
k

a1, a2, . . . , ar

)
.

Letting

{
k
r

}
denote the Stirling numbers of the second type, then it may be easily

verified (see [12]) that ∑
a1,a2,... ,ar

ai≥1,
∑

ai=k

(
k

a1, a2, . . . , ar

)
= r!

{
k
r

}
. (1.14)

We conclude that for h ∼ λ log N ,

Mk(N, h, ψ) ∼ N(log N)k

k∑
r=1

{
k
r

}
λr, (1.15)

which are the moments of a Poisson distribution with mean λ. The first 4 moments are,
for λ¿ 1,

M1(N, h, ψ) ∼ λN log N,

M2(N, h, ψ) ∼ (λ + λ2)N log2 N,

M3(N, h, ψ) ∼ (λ + 3λ2 + λ3)N log3 N,

M4(N, h, ψ) ∼ (λ + 7λ2 + 6λ3 + λ4)N log4 N.

The asymptotic formula for the first moment is known to be true as a simple consequence
of the prime number theorem. The other moment formulas have never been proved. It is
known that the asymptotic formula for the second moment follows from the assumption
of the Riemann Hypothesis and the pair correlation conjecture for zeros of the Riemann
zeta-function [10].
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Turning to our approximation ΛR(n), we define

ψR(x) =
∑
n≤x

ΛR(n) (1.16)

and first wish to examine the moments M(N, h, ψR) defined as in (1.6). The same
computation used for ψ to obtain (1.10) clearly applies and therefore we obtain

Mk(N, h, ψR) =
k∑

r=1

∑
a1,a2,... ,ar

ai≥1,
∑

ai=k

(
k

a1, a2, . . . , ar

) ∑
1≤j1<j2<···<jr≤h

Sk(N, j, a), (1.17)

where Sk(N, j, a) is the correlation given in (1.3). Since ΛR(n) is not supported on
the primes and prime powers as Λ(n) is, we can not use (1.12) to reduce the problem
to correlations without powers, and as we will see these powers sometimes effect the
correlations for ΛR(n). Our main result on these correlations is contained in the following
theorem.

Theorem 1.1 Given 1 ≤ k ≤ 3, let j = (j1, j2, . . . , jr) and a = (a1, a2, . . . ar), where
the ji’s are distinct integers, and ai ≥ 1 with

∑r
i=1 ai = k. Assume maxi |ji| ¿ Rε and

RÀ N ε. Then we have

Sk(N, j, a) =
(
Ck(a)S(j) + o(1)

)
N(log R)k−r + O(Rk), (1.18)

where Ck(a) has the values

C1(1) = 1,

C2(2) = 1, C2(1, 1) = 1,

C3(3) =
3

4
, C3(2, 1) = 1, C3(1, 1, 1) = 1.

Here we have used the notational convention of dropping extra parentheses, so for
example C2((1, 1)) = C2(1, 1). The method of proof used in this paper is not limited to
k ≤ 3, but it does become extremely complicated even for k = 4. Using the new method
mentioned before we will prove Theorem 1.1 holds for all k in the third paper in this
series. The computation of the constants Ck(a) as k gets larger becomes increasingly
difficult. We also believe the error term O(Rk) can be improved. This has been done in
the case k = 2 (unpublished) where the error term O(R2) may be replaced by O(R2−δ)
for a small constant δ. In the special case of S2(N, (0), (2)) Graham [13] has removed the
error term O(R2) entirely.

In proving Theorem 1.1 we will assume j1 = 0. This may be done without loss of
generality since we may shift the sum over n in Sk to m = n + j1 and then return to the
original summation range with an error O(N ε) since |j1| ¿ Rε and ΛR(n)¿ nε. Further
S(j) = S(j − j1) where j1 is a vector with j1 in every component, and so the singular
series are unaffected by this shift.
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We now apply Theorem 1.1 in (1.17), and obtain immediately using (1.13) that

Mk(N, h, ψR) = (1 + o(1))Pk(λ, R)N(log R)k + O(hkRk) (1.19)

where

Pk(λ, R) =
k∑

r=1

1

r!

(
h

log R

)r ∑
a1,a2,... ,ar

ai≥1,
∑

ai=k

(
k

a1, a2, . . . , ar

)
Ck(a). (1.20)

Using the values of the constants C(a) in Theorem 1.1 we obtain the following result on
moments of ψR.

Corollary 1.2 For h ∼ λ log N , λ¿ Rε, and R = N θk , where θk is fixed and 0 < θk < 1
k

for 1 ≤ k ≤ 3, we have

M1(N, h, ψR) ∼ λN log N,

M2(N, h, ψR) ∼ (θ2λ + λ2)N log2 N,

M3(N, h, ψR) ∼ (
3

4
θ3

2λ + 3θ3λ
2 + λ3)N log3 N.

We next consider the mixed moments

M̃k(N, h, ψR) =
N∑

n=1

(ψR(n + h)− ψR(n))k−1(ψ(n + h)− ψ(n)) (1.21)

for k ≥ 2, while if k = 1 we take

M̃1(N, h, ψR) = M1(N, h, ψ) ∼ λN log N (1.22)

for 1 ≤ R ≤ N by the prime number theorem. Now assume k ≥ 2. On multiplying out
and grouping as before for the terms involving ΛR we have

M̃k(N, h, ψR) =
k∑

r=2

∑
a1,a2,... ,ar−1

ai≥1,
∑

ai=k−1

1

(r − 1)!

(
k − 1

a1, a2, . . . , ar−1

) ∑
1≤j1,j2,··· ,jr−1≤h

distinct

Vr−1(N, j, a),

(1.23)

where

Vr−1(N, j, a) =
∑

1≤m≤h

N∑
n=1

ΛR(n + j1)
a1ΛR(n + j2)

a2 · · ·ΛR(n + jr−1)
ar−1Λ(n + m)

Since, provided n + j > R and n + j 6= pm for some m ≥ 2 and p < R, we have

ΛR(n + j)aΛ(n + j) = (log R)aΛ(n + j),
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we see

Vr−1(N, j, a)

=
r−1∑
i=1

(log R)ai

N∑
n=1

( ∏
1≤s≤r−1

s 6=i

ΛR(n + js)
as

)
Λ(n + ji)

+
∑

1≤jr≤h
jr 6=ji

1≤i≤r−1

N∑
n=1

ΛR(n + j1)
a1ΛR(n + j2)

a2 · · ·ΛR(n + jr−1)
ar−1Λ(n + jr) + O(RN ε)

=
r−1∑
i=1

(log R)aiS̃k−ai
(N, ji, ai) +

∑
1≤jl≤h
jl 6=ji

1≤i≤r−1

S̃k(N, j, a) + O(RN ε)

where

ji = (j1, j2, . . . , ji−1, ji+1, . . . , jr−1, ji), ai = (a1, a2, . . . , ai−1, ai+1, . . . , ar−1, 1).
(1.24)

We conclude for k ≥ 2

M̃k(N, h, ψR) =
k∑

r=2

∑
a1,a2,... ,ar−1

ai≥1,
∑

ai=k−1

1

(r − 1)!

(
k − 1

a1, a2, . . . , ar−1

)
Wr(N, j, a) + O(RN ε),

(1.25)

where

Wr(N, j, a) =
r−1∑
i=1

(log R)ai

∑
1≤j1,j2,··· ,jr−1≤h

distinct

S̃k−ai
(N, ji, ai) +

∑
1≤j1,j2,··· ,jr≤h

distinct

S̃k(N, j, a).

(1.26)

We have reduced the calculation of the mixed moments to mixed correlations. Our
method for evaluating the mixed correlations will prove as a by-product that the mixed
correlations are asymptotically equal to the corresponding pure correlations in a certain
range of R. Our results depend on the uniform distribution of primes in arithmetic
progressions. We let

ψ(x; q, a) =
∑
n≤x

n≡a(q)

Λ(n), (1.27)

and

Ea,b =

{
1, if (a, b) = 1,
0, if (a, b) > 1.

(1.28)
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On taking

E(x; q, a) = ψ(x; q, a)− Ea,q
x

φ(q)
, (1.29)

the estimate we need is, for some fixed 0 < ϑ ≤ 1,∑
1≤q≤xϑ−ε

max
a

(a,q)=1

|E(x; q, a)| ¿ x

logA x
, (1.30)

for any ε > 0, any A = A(ε) > 0, and x sufficiently large. This is a weakened form of
the Bombieri-Vinogradov theorem if ϑ = 1

2
, and therefore (1.30) holds unconditionally if

ϑ ≤ 1
2
. Elliott and Halberstam conjectured (1.30) is true with ϑ = 1. The range of R

where our results on mixed correlations hold depends on ϑ in (1.30). We first prove the
following general result.

Theorem 1.3 Given k ≥ 2, let j = (j1, j2, . . . , jr) and a = (a1, a2, . . . ar), where the
ji’s are distinct integers, ai ≥ 1, ar = 1, and

∑r
i=1 ai = k . Assume maxi |ji| ¿ R

1
k and

that N ε ¿ R¿ Nmin( ϑ
k−1

, 1
k
)−ε. Then we have, with A from (1.30),

S̃k(N, j, a) = Sk(N, j, a) + O(Rk) + O
( N

(log N)
A
2
−4k−3/2+2k−1−1

)
. (1.31)

The proof of Theorem 1.3 involves proving that both S̃k(N, j, a) and Sk(N, j, a) are
asymptotic to the same main term and therefore they are asymptotic to each other in
the range where both asymptotic formulas hold. Using Theorems 1.1 and 1.3 we can
now immediately evaluate the mixed moments. There is, however, an inefficiency in the

use of Theorem 1.3 which imposes the condition that R¿ Nmin( ϑ
k−1

, 1
k
)−ε. The restriction

R¿ N
1
k
−ε in this condition arises from applying Theorem 1.1, but by directly evaluating

the main term that arises in the proof of Theorem 1.3 we can remove this condition and
prove the following result.

Theorem 1.4 Given 2 ≤ k ≤ 3, let j = (j1, j2, . . . , jr) and a = (a1, a2, . . . ar), where
r ≥ 2, ar = 1, and where the ji’s are distinct integers, and ai ≥ 1 with

∑r
i=1 ai = k.

Assume maxi |ji| ¿ Rε. Then we have, for N ε ¿ R ¿ N
ϑ

k−1
−ε where (1.30) holds with

ϑ,

S̃k(N, j, a) =
(
S(j) + o(1)

)
N(log R)k−r. (1.32)

For larger k the constants C(a) will appear in this theorem as in Theorem 1.1, but for
k ≤ 3 all these constants for the mixed correlations are equal to 1.

Next, using (1.25) we are able to evaluate the first three mixed moments.
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Corollary 1.5 For h ∼ λ log N , λ ¿ Rε, and R = N θk , where θk is fixed, 0 < θ1 ≤ 1,
and 0 < θk < ϑ

k−1
for 2 ≤ k ≤ 3, we have,

M̃1(N, h, ψR) ∼ λN log N,

M̃2(N, h, ψR) ∼ (θ2λ + λ2)N log2 N,

M̃3(N, h, ψR) ∼ (θ3
2λ + 3θ3λ

2 + λ3)N log3 N.

The starting point of Bombieri and Davenport’s [1] work on small gaps between primes
is essentially equivalent to the inequality

2N∑
n=N+1

((
ψ(n + h)− ψ(n)

)
−

(
ψR(n + h)− ψR(n)

))2

≥ 0. (1.33)

Letting

M ′
k(N, h, ψ) = Mk(2N, h, ψ)−Mk(N, h, ψ), (1.34)

with the corresponding definition for M ′
k(N, h, ψR) and M̃ ′

k(N, h, ψR), we see that Corol-
lary 1.2 holds with Mk(N, h, ψR) replaced by M ′

k(N, h, ψR) and Corollary 1.5 holds with
M̃k(N, h, ψR) replaced with M̃ ′

k(N, h, ψR). On expanding (1.33) we have

M ′
2(N, h, ψ) ≥ 2M̃ ′

2(N, h, ψR)−M ′
2(N, h, ψR)

which implies on taking θ2 = 1/2− ε in Corollaries 1.2 and 1.5 that

M ′
2(N, h, ψ) ≥ (

1

2
λ + λ2 − ε)N log2 N. (1.35)

Let pj denote the j-th prime. If it is the case that pj+1 − pj > h = λ log N for all
N
2

< pj ≤ 2N , then each of the intervals (n, n + h] for N < n ≤ 2N contains at most one
prime. Hence, since the prime powers may be removed with a negligible error, we have
that M ′

2(N, h, ψ) ∼ (log N)M ′
1(N, h, ψ) ∼ λN log2 N so that (1.35) implies

λ ≥ 1

2
λ + λ2 − ε

which is false if λ > 1
2
. We conclude that

lim inf
n→∞

(
pn+1 − pn

log pn

)
≤ 1

2
. (1.36)

More generally, we define for r any positive integer

Ξr = lim inf
n→∞

(
pn+r − pn

log pn

)
(1.37)
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and see that if pn+r − pn > h = λ log N for N < pn ≤ 2N then

M ′
2(N, h, ψ) ≤ (r + ε)(log N)M ′

1(N, h, ψ) ≤ (r + ε)λN log2 N

which then implies that

rλ ≥ 1

2
λ + λ2 − ε

and hence

Ξr ≤ r − 1

2
. (1.38)

Bombieri and Davenport were also able to improve (1.36) by incorporating an earlier
method of Erdös into their argument. This method depends on the sieve upper bound
for primes differing by an even number k given by∑

n≤N

Λ(n)Λ(n + k) ≤ (B + ε)S(k)N (1.39)

where S(k) = S(j) with j = (0, k), and B is a constant. In [1] Bombieri and Davenport
proved that (1.39) holds with B = 4, and using this value they improved (1.36) and
obtained

Ξ1 ≤
2 +
√

3

8
= 0.46650 . . . . (1.40)

While (1.35) has never been improved, the refinements based on the Erdös method to-
gether with the choice of certain weights in a more general form of (1.35) has led to
further improvements. Huxley [20] [21] proved that, letting θr be the smallest positive
solution of

θr + sin θr =
π

Br
, sin θr < (π + θr) cos θr , (1.41)

then

Ξr ≤
2r − 1

4Br

{
Br + (Br − 1)

θr

sin θr

}
. (1.42)

With the value B = 4 this gives

Ξ1 ≤ 0.44254 . . . , Ξ2 ≤ 1.41051 . . . , Ξ3 ≤ 2.39912 . . . , Ξ4 ≤ 3.39326 . . . .

We note that the expression on the right-hand side of (1.42) is equal to

r − 1 + 1
B

2
+ O(

1

r
),

and thus for large r this bound approaches r − 5
8

with B = 4.
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The best result known for B which holds uniformly for all k is B = 3.9171 . . . due
to Chen [4]. However, in the application to obtain (1.42) one only needs (1.39) to hold
uniformly for a restricted range of k; the condition 0 < |k| ≤ log2 N is more than
sufficient. In this case there have been a string of improvements. For ease of comparison
with the value B = 4 used above, the value B = 3.5 obtained by Bombieri, Friedlander,
and Iwaniec [2] gives the values

Ξ1 ≤ 0.43493 . . . , Ξ2 ≤ 1.39833 . . . , Ξ3 ≤ 2.38519 . . . , Ξ4 ≤ 3.37842 . . . .

All of these results above actually hold for a positive percentage of gaps. Maier [22]
introduced a new method to prove that

lim inf
n→∞

(
pn+1 − pn

log pn

)
≤ e−γ = 0.56145 . . . . (1.43)

This method, which applies to special sets of sparse intervals, may be combined with the
earlier methods to include this factor of e−γ times the earlier results. The argument was
carried out with B = 4 in [22], which then gives in particular

Ξ1 ≤ 0.24846 . . . , Ξ2 ≤ 0.79194 . . . , Ξ3 ≤ 1.34700 . . . , Ξ4 ≤ 1.90518 . . . .

Our approach for examining gaps between primes is to consider the mixed third
moment

M̃ ′
3(N, h, ψR, C) =

2N∑
n=N+1

(
ψ(n + h)− ψ(n)

)(
ψR(n + h)− ψR(n)− C log N

)2
, (1.44)

Here C may be chosen as a function of h and R to optimize the argument. The idea
behind the use of M̃ ′

3(N, h, ψR, C) is that it will approximate and thus provide some of
the same information as the third moment M ′

3(N, h, ψ). If pn+r − pn > h = λ log N for
all N < pn ≤ 2N then, removing prime powers as before, we have

M̃ ′
3(N, h, ψR, C) ≤ (r + ε) log N

2N∑
n=N+1

(
ψR(n + h)− ψR(n)− C log N

)2
. (1.45)

Corollaries 1.2 and 1.5 allow us to evaluate both sides of (1.45), and on choosing C
appropriately we are able to prove the following result.

Theorem 1.6 For r ≥ 1, we have

Ξr ≤ r − 1

2

√
r. (1.46)

Further, assuming that for h¿ log N and R ≤ N
1
4

M4(N, h, ψR)¿ N log4 N, (1.47)
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then we have that, for h = λ log N and λ > r − 1
2

√
r,∑

N+1≤pn≤2N
pn+r−pn<h

1Àλ
N

log N
. (1.48)

Thus we have

Ξ1 ≤
1

2
, Ξ2 ≤ 1.29289 . . . , Ξ3 ≤ 2.13397 . . . , Ξ4 ≤ 3.

We see that our result improves on the results of Huxley when r ≥ 2, although Maier’s
results are still better. Our theorem corresponds to (1.38) in that it does not use the
Erdös method. It is possible to incorporate the Erdös method into our method too, but
this requires we first obtain an asymptotic formula for M4(N, h, ψR). One should also be
able to incorporate Maier’s method as well, which would then give better results than
are currently known for r ≥ 2.

The result in (1.48) shows that the small gaps produced in the theorem form a positive
proportion of all the gaps assuming that (1.47) holds. We will prove (1.47) in a later
paper in this series and thus show that (1.48) holds unconditionally.

We will actually prove

Ξr ≤ r −
√

ϑr

2
, (1.49)

where ϑ is the number in (1.30). Therefore, assuming the Elliott-Halberstam Conjecture
in the form that one may take ϑ = 1 in (1.30), we have

Ξr ≤ r −
√

r

2

which in particular gives

Ξ1 ≤ 0.29289 . . . , Ξ2 ≤ 1, Ξ3 ≤ 1.77525 . . . , Ξ4 ≤ 2.58578 . . . .

These results are in contrast to the method of Bombieri and Davenport where the Elliott-
Halberstam conjecture does not improve their results directly. (The Elliott-Halberstam
conjecture does allow one to take B = 2 in (1.39), and therefore leads to small improve-
ments in Huxley’s results, which for r ≥ 2 are weaker than the result in Theorem 1.6.)
We cannot extend these last results obtained assuming an Elliott-Halberstam conjecture
to a positive proportion of gaps because we can not prove (1.47) for θ > 1

4
. Our proof

gives that the number of gaps we produce in this case is À N log−B N for some positive
constant B > 1.
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Our method can also be used to examine larger than average gaps between primes.
In this case much more is known than for small gaps; the latest result being that [24]

max
pn≤N

pn+1 − pn

log pn

≥ (2eγ − o(1))
log log N log log log log N

(log log log N)2
. (1.50)

If one were to ask however for a positive proportion of gaps larger than the average,
then it is a remarkable fact that nothing non-trivial is known. 2 What can be proved
is that a positive proportion of the interval (N, 2N ] is contained between consecutive
primes whose difference is a little larger than average. To formalize this, we let Θr be
the supremum over all λ for which∑

N<pn≤2N
pn+r−pn≥λ log N

(pn+r − pn)Àλ N (1.51)

for all sufficiently large N . Then using the Erdös method one finds that [3]

Θ1 ≥ 1 +
1

2B (1.52)

where B is the number in (1.39).

To apply (1.44) to this problem, we assume that pj+r − pj < h = λ log N for all
N < pj ≤ 2N in which case the interval (n, n + h] always contains at least r primes,
and therefore (1.45) holds with the inequality reversed. On optimizing C we obtain the
following result.

Theorem 1.7 Assume that (1.47) holds. For r ≥ 1 we have that

Θr ≥ r +
1

2

√
r. (1.53)

As mentioned above, we will prove (1.47) in a later paper in this series, which will
show that Theorem 1.7 holds unconditionally.

The proof of Theorems 1.6 and 1.7 only require the asymptotic formula for the third
mixed moment in Corollary 1.5 and the second moment for ψR in Corollary 1.2. Thus
the results in sections 6–10 which are concerned with triple correlations of ψR may be
skipped by the reader who is only interested in our applications to primes.

Notation. In this paper N will always be a large integer, p denotes a prime number,
and sums will start at 1 if a lower limit is unspecified. When a sum is denoted with a
dash as

∑′ this always indicates we will sum over all variables expressed by inequalities
in the conditions of summation and these variables will all be pairwise relatively prime

2The first-named author of this paper learned of this from Carl Pomerance after a talk in which the
author had claimed to have such a result.
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with each other. We will always take the value of a void sum to be zero and the value
of a void product to be 1. The letter ε will denote a small positive number which may
change in each equation. We will also use the Iverson notation [12] that putting brackets
around a true-false statement will replace the statement by 1 if it is true, and 0 if it is
false:

[P (x)] =

{
1, if P (x) is true,
0, if P (x) is false.

(1.54)

As usual, (a, b) denotes the greatest common divisor of a and b and [a1, a2, · · · , an] denotes
the least common multiple of a1, a2, . . . , an.
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2. Lemmas

For j a non-negative integer, we define the arithmetic function φj(n) on the primes by

φj(p) = p− j, (2.1)

φj(1) = 1, and extend the definition to squarefree integers by multiplicativity. Thus for
n squarefree φ0(n) = n, and φ1(n) = φ(n). We will not need to extend the definition
beyond the squarefree integers here. Letting

p(j) =

{
j, if j is a prime,
1, otherwise,

(2.2)
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we next define

Hj(n) =
∏
p|n

p6=j−1, p6=j

(
1 +

1

p− j

)
=

∏
p|n

p6=j−1, p6=j

(
1 +

1

φj(p)

)
=

∑
d|n

(d,p(j−1)p(j))=1

µ2(d)

φj(d)
. (2.3)

We see that for n squarefree H0(n) = σ(n)/n, H1(n) = n/φ(n), and in general for j ≥ 1

Hj(n) =
∏
p|n

p6=j−1, p6=j

(
p− j + 1

p− j

)
=

φj−1(
n

(n,p(j−1)p(j))
)

φj(
n

(n,p(j−1)p(j))
)

, (µ2(n) 6= 0). (2.4)

Next, we define the singular series for j ≥ 1 and n 6= 0 by

Sj(n) =

{
CjGj(n)Hj(n), if p(j)|n,
0, otherwise.

(2.5)

where

Gj(n) =
∏
p|n

p=j−1 or p=j

(
p

p− 1

)
, (2.6)

and

Cj =
∏

p
p6=j−1, p6=j

(
1− j − 1

(p− 1)(p− j + 1)

)
. (2.7)

The case of j = 3 is special because it is the only case where p(j − 1) and p(j) are
both greater than one. We see that for j = 1 and n 6= 0

S1(n) =
∏
p|n

(
p

p− 1

)
=

n

φ(n)
(2.8)

and for j = 2 we have the familiar singular series for the Goldbach and prime twins
conjectures

S2(n) =


2C2

∏
p|n
p>2

(
p− 1

p− 2

)
, if n is even, n 6= 0;

0, if n is odd;

(2.9)

where

C2 =
∏
p>2

(
1− 1

(p− 1)2

)
. (2.10)
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Lemma 2.1 For R ≥ 1, j ≥ 0, p(j)|k, and 0 ≤ log |k| ¿ log R, we have∑
d≤R

(d,k)=1

µ(d)

φj(d)
log

R

d
= Sj+1(k) + rj(R, k), (2.11)

where

rj(R, k)¿j e−c1
√

log R, (2.12)

and c1 is an absolute positive constant. Also,∑
d≤R

(d,k)=1

µ(d)

φj(d)
¿j e−c1

√
log R. (2.13)

Special cases of Lemma 2.1 have been proved before. When j = 0 this was used by
Selberg [25], and also Graham [13], but we have made the error term stronger with regard
to k by an argument suggested in [5]. It is easy to make the j dependence explicit in the
error term, but in this paper we will assume j is fixed (actually we only use j ≤ 2.) We
will sometimes use Lemma 2.1 in the weaker form∑

d≤R
(d,k)=1

µ(d)

φj(d)
log

R

d
= Sj+1(k) + Oj(

1

(log 2R)A
)

for A any positive number, and assuming the same conditions as in Lemma 2.1. Further,
in handling error terms, we will need to remove the restriction 0 ≤ log |k| ¿ log R in
Lemma 2.1, in which case we have the error estimate

rj(R, k)¿j m(k)e−c1
√

log R, (2.14)

which holds uniformly for k ≥ 1 and R ≥ 1, where m(k) is defined below in equation
(2.18). This estimate also holds in (2.13).

The next lemma is a generalization of a result of Hildebrand [15].

Lemma 2.2 For R ≥ 1, j ≥ 1 and p(j)|k, we have

∑
d≤R

(d,k)=1

µ2(d)

φj(d)
=

{
1

Sj(k)
(log R + Dj + hj(k)) + O(m(k)√

R
) if p(j − 1)|k,

O(m(k)√
R

), if p(j − 1) 6 | k,
(2.15)

where

Dj = γ +
∑

p6=j−1

(2− j) log p

(p− j + 1)(p− 1)
, (2.16)
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hj(k) =
∑
p|k

log p

p− 1
−

∑
p|k

p6=j−1

(2− j) log p

(p− j + 1)(p− 1)

=
∑
p|k

p6=j−1

log p

(p− j + 1)
+ [(p(j − 1), k) > 1]

log(j − 1)

j − 2
,

(2.17)

and

m(k) =
∑
d|k

µ2(d)√
d

=
∏
p|k

(
1 +

1√
p

)
. (2.18)

The case j = 1 of this lemma is Hilfssatz 2 of [15]. The proof of this generalization
only requires minor modifications in Hildebrand’s proof which we sketch. In applying
this lemma we will sometimes use the simple estimates (see [11])

hj(k)¿j log log 3k, m(k)¿ exp

(
c
√

log k

log log 3k

)
. (2.19)

We will frequently use the estimate, for p(j)|k and log |k| ¿ log R,∑
d≤R

(d,k)=1

µ2(d)

φj(d)
¿ log 2R (2.20)

which follows immediately from Lemma 2.2 or may be seen directly. We also need the
following result that is obtained by partial summation in Lemma 2.2. For j ≥ 1 and
p(j)|k, we have∑

d≤R
(d,k)=1

µ2(d)

φj(d)
log

R

d

=

{
1

Sj(k)

(
1
2
log2 R + (Dj + hj(k)) log R + Ej(k)

)
+ O(m(k)√

R
) if p(j − 1)|k,

Ej(k) + O(m(k)√
R

), if p(j − 1) 6 | k,

(2.21)

where Ej(k) is given by

Ej(k) =

∫ ∞

1

( ∑
d≤u

(d,k)=1

µ2(d)

φj(d)
− 1

Sj(k)
(log u + Dj + hj(k))

) du

u
. (2.22)
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Lemma 2.3 For R ≥ 1, j ≥ 1, p(j)|k, and 0 ≤ log |k| ¿ log R, we have∑
d≤R

(d,k)=1

µ(d)

φj(d)
Sj+1(dk) log

R

d

= µ(p(j + 1))µ((k, p(j + 1)))Sj+1(kp(j + 1))
(
Sj+2(kp(j + 1)) (2.23)

+rj+1(
R(k, p(j + 1))

p(j + 1)
, kp(j + 1))

)
,

where rj(R, k) is the error term in Lemma 2.1.

Lemma 2.4 For R ≥ 1, j ≥ 1 and p(j)|k, we have∑
d≤R

(d,k)=1

µ2(d)

φj(d)
Sj+1(dk) = log

(
R(k, p(j + 1))

p(j + 1)

)
+ Dj+1 + hj+1(kp(j + 1))

+ O

Sj+1(kp(j + 1))m(kp(j + 1))√
R(k,p(j+1))

p(j+1)

 (2.24)

and ∑
d|r

(d,k)=1

µ2(d)

φj(d)
Sj+1(dk) = Sj+1(rk). (2.25)

Our final lemma relates the singular series given in (1.9) for r equal to two and three
to the singular series in (2.5).

Lemma 2.5 For k = (0, k), with k 6= 0, we have

S(k) = S2(k), (2.26)

and for k = (0, k1, k2), k1 6= k2 6= 0, κ = (k1, k2), and ∆ = k1k2(k2 − k1), we have

S(k) = S2(κ)S3(∆). (2.27)
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3. Proof of the Lemmas

Proof of Lemma 2.1. We assume p(j)|k. Let s = σ + it, σ > 0, and define

F (s) =
∞∑

n=1
(n,k)=1

µ(n)

φj(n)ns
=

∏
p6 |k

(
1− 1

(p− j)ps

)

=
1

ζ(s + 1)

∏
p|k

(
1− 1

ps+1

)−1 ∏
p6 |k

(
1− 1

(p− j)ps

) (
1− 1

ps+1

)−1

=
1

ζ(s + 1)

∏
p|k

(
1− 1

ps+1

)−1 ∏
p6 |k

(
1− j

(p− j)(ps+1 − 1)

)
=

1

ζ(s + 1)
gk(s)hk(s). (3.1)

We see the product for hk(s) converges absolutely for Re(s) > −1, and therefore F (s) is
an analytic function in this half-plane except possibly for poles at the zeros of ζ(s + 1).

We now apply the formula, for m ≥ 2 and b > 0,

(m− 1)!

2πi

∫ b+i∞

b−i∞

xs

sm
ds =

{
0, if 0 < x ≤ 1,
(log x)m−1, if x ≥ 1,

which, in the case m = 2, gives

∑
d≤R

(d,k)=1

µ(d)

φj(d)
log

R

d
=

1

2πi

∫ b+i∞

b−i∞
F (s)

Rs

s2
ds. (3.2)

By Theorem 3.8 and (3.11.8) of [26] there exists a small positive constant c such that
ζ(σ + it) 6= 0 in the region σ ≥ 1− c

log(|t|+2)
and all t, and further

1

ζ(σ + it)
¿ log(|t|+ 2) (3.3)

in this region. (There are stronger results but this suffices for our needs.) We now move
the contour to the left to the path L given by s = − c

log(|t|+2)
+it. When p(j+1) 6 | k, hk(s)

has a simple zero at s = 0 and hence F (s)/s2 is analytic at s = 0 and no contribution
occurs, but when p(j + 1)|k (including p(j + 1) = 1), F (s)/s2 has a simple pole at s = 0
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which gives a contribution from the residue of

gk(0)hk(0) =
∏
p|k

(
1− 1

p

)−1 ∏
p6 |k

(
1− j

(p− 1)(p− j)

)

=
∏
p|k

p=j or p=j+1

(
p

p− 1

) ∏
p|k

p6=j, p6=j+1

(
1− 1

p

)−1 (
1− j

(p− 1)(p− j)

)−1

∏
p

p6=j, p6=j+1

(
1− j

(p− 1)(p− j)

)

= Gj+1(k)
∏

p
p6=j,p6=j+1

(
1− j

(p− 1)(p− j)

) ∏
p|k

p6=j, p6=j+1

(
p− j

p− j − 1

)

= Cj+1Gj+1(k)Hj+1(k).

Hence we have∑
d≤R

(d,k)=1

µ(d)

φj(d)
log

R

d
= Sj+1(k) +

1

2πi

∫
L

F (s)
Rs

s2
ds = Sj+1(k) + rj(R, k). (3.4)

It remains to estimate the integral in (3.4). On L we have −1
4
≤ σ < 0, and therefore

|hk(s)| ¿
∏

p

(
1 + Oj(

1

p2+σ
)
)
¿j 1.

For gk(s), we see that g1(s) = 1 since the product defining g1(s) is void, and for k > 1

log |gk(s)| ≤ −
∑
p|k

log(1− 1

pσ+1
)

¿
∑
p|k

1

pσ+1

¿
∑

p<2 log 2k

1

pσ+1
¿ (log k)−σ

and hence

|gk(s)| ¿ e
4√log k, for k ≥ 1. (3.5)

Thus the integral in (3.4) is

¿j e
4√log k

∫ ∞

−∞
R−

c
log(|t|+2) log(|t|+ 2)

1(
c

log(|t|+2))

)2
+ t2

dt
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This last integral is, for any w ≥ 2,

¿
∫ w

0

R−
c

log(|t|+2) dt +

∫ ∞

w

log t

t2
dt¿ we

−c log R
log w +

log w

w

and hence, on choosing log w = 1
2

√
c log R we have, since log |k| ¿ log R, that the error

term is

¿j e
4√log k

(
e−
√

c log R +
√

c log Re−
1
2

√
c log R

)
¿j e−c1

√
log R,

which proves the first part of Lemma 1.

The bound in equation (2.14) follows from the previous argument when we replace
the estimate for gk(s) used above by the bound, for −1

4
< σ < 0,

|gk(s)| ¿
∏
p|k

(
1 +

1

p1+σ

)
¿ m(k),

which follows from

log |gk(s)| ≤ −
∑
p|k

log(1− 1

pσ+1
)

=
∑
p|k

(
log(1 +

1

pσ+1
) + O(

1

p2(σ+1)
)

)
=

∑
p|k

log(1 +
1

pσ+1
) + O(

∑
p

1

p
3
2

)

=
∑
p|k

log(1 +
1

pσ+1
) + O(1).

To prove (2.13), we apply Perron’s formula (see [26], Chapter 3) in the usual way to
obtain, with b = 1/ log R,

∑
d≤R

(d,k)=1

µ(d)

φj(d)
=

1

2πi

∫ b+iT

b−iT

F (s)
Rs

s
ds + Oj(

log2 R

T
).

Moving the contour to the left to L for −T ≤ t ≤ T we have no residue, and we may
estimate the integral along L and the upper and lower horizontal paths by

¿j e
4√log k

(
log2 Te−c log R

log T +
log T

T

)
.

Now log |k| ¿ log R, and taking T = e
√

log R shows the above error is ¿ e−c1
√

log R for a
sufficiently small constant c1. This completes the proof of Lemma 2.1.
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Proof of Lemma 2.2. We follow Hildebrand’s proof of the case j = 1, indicating only
the main steps. We assume p(j)|k, and j ≥ 1. Letting

fk(n) =

{
µ2(n)n
φj(n)

, if (n, k) = 1,

0, otherwise,
(3.6)

and defining gk(n) by

fk(n) =
∑
d|n

gk(d)

so that

gk(p
m) = fk(p

m)− fk(p
m−1) =


j

p−j
, m = 1, p 6 |k,

−1, m = 1, p|k,
−p
p−j

m = 2, p 6 |k,

0, m = 2 and p|k, or m > 2,

(3.7)

then we have∑
d≤R

(d,k)=1

µ2(d)

φj(d)
=

∑
n≤R

fk(n)

n

=
∑
n≤R

1

n

∑
d|n

gk(d)

=
∑
d≤R

gk(d)

d

∑
m≤R/d

1

m

=
∑
d≤R

gk(d)

d

(
log

R

d
+ γ + O(

d

R
)

)
=

∑
d≤R

gk(d)

d
log

R

d
+ γ

∑
d≤R

gk(d)

d
+ O(

1

R

∑
d≤R

|gk(d)|)

= S1 + γS2 + O(
1

R
S3). (3.8)

Using (3.7) and the multiplicativity of gk(n) we easily verify that

Mj(k) =
∞∑

d=1

gk(d)

d
=

{ 1
Sj(k)

, if p(j − 1)|k,

0, if p(j − 1) 6 |k.

As in [15] we find

S3 ¿j

√
Rm(k)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3 (2003), #A05 23

which by partial summation implies∑
d>R

gk(d)

d
¿ m(k)√

R
.

These results now imply

S2 = Mj(k) + O(
m(k)√

R
)

and

S1 = Mj(k) log R−
∞∑

d=1

gk(d) log d

d
+ O(

m(k)√
R

).

Finally, letting

Gk(s) =
∞∑

n=1

gk(n)

ns+1
,

we have

−
∞∑

d=1

gk(d) log d

d
= Gk

′(0)

which on using (2.16) and the Euler product for Gk(s) gives Gk
′(0) = Mj(k)(Dj +hj(k)−

γ) where hj(k) is given by (2.17).

Proof of Lemma 2.3. We have, assuming p(j)|k,∑
d≤R

(d,k)=1

µ(d)

φj(d)
Sj+1(dk) log

R

d

= Cj+1Gj+1(k)Hj+1(k)
∑
d≤R

(d,k)=1
p(j+1)|dk

µ(d)

φj(d)
Gj+1(d)Hj+1(d) log

R

d

= Cj+1Gj+1(k)Hj+1(k)
∑
d≤R

(d,k)=1
p(j+1)

(k,p(j+1))
|d

µ(d)

φj(d)
Gj+1(d)Hj+1(d) log

R

d

= µ(p(j + 1))µ((k, p(j + 1)))Cj+1Gj+1(kp(j + 1))Hj+1(k)∑
m≤R(k,p(j+1))

p(j+1)

(m,kp(j+1))=1

µ(m)

φj+1(m)
log

(R(k, p(j + 1))

mp(j + 1)

)

= µ(p(j + 1))µ((k, p(j + 1)))Sj+1(kp(j + 1))(
Sj+2(kp(j + 1)) + rj+1

(R(k, p(j + 1))

p(j + 1)
, kp(j + 1)

))
,
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by Lemma 2.1.

Proof of Lemma 2.4. The same argument used above to prove Lemma 2.3 shows
that the sum in (2.24) is equal to

Sj+1(kp(j + 1))
∑

m≤R(k,p(j+1))
p(j+1)

(m,kp(j+1))=1

µ2(m)

φj+1(m)
.

Since p(j)|k, equation (2.24) now follows from Lemma 2.2.

To prove (2.25), we proceed as before in the proof of Lemma 2.3 to obtain∑
d|r

(d,k)=1

µ2(d)

φj(d)
Sj+1(dk) = Cj+1Gj+1(k)Hj+1(k)

∑
d|r

(d,k)=1
p(j+1)|dk

µ2(d)

φj(d)
Gj+1(d)Hj+1(d). (3.9)

Suppose first that p(j + 1)|k. Then since p(j)|k also we have that Gj+1(d) = 1 in the
sum on the right, and hence our expression becomes

= Cj+1Gj+1(k)Hj+1(k)
∑
d|r

(d,k)=1

µ2(d)

φj(d)
Hj+1(d)

= Cj+1Gj+1(k)Hj+1(k)
∑
d|r

(d,k)=1

µ2(d)

φj+1(d)

= Cj+1Gj+1(k)Hj+1(k)
∏
p|r
p6 |k

(
1 +

1

p− j − 1

)

= Cj+1Gj+1(k)Hj+1(rk) = Sj+1(rk)

since here Gj+1(k) = Gj+1(p(j)p(j + 1)) = Gj+1(rk).

Now assume the alternative case that p(j + 1) 6 | k. Then the right-hand side of (3.9)
is

= Cj+1Gj+1(k)Hj+1(k)
∑

p(j+1)e|r
(e,kp(j+1))=1

µ2(e)

φj(e)
Gj+1(ep(j + 1))Hj+1(e).

If p(j + 1) 6 | r this sum has no terms and is zero which proves (2.25) in this case. If
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p(j + 1)|r our expression becomes

= Cj+1Gj+1(p(j)p(j + 1))Hj+1(k)
∑
e|r

(e,kp(j+1))=1

µ2(e)

φj+1(e)

= Cj+1Gj+1(p(j)p(j + 1))Hj+1(k)
∏
p|r

p6 |kp(j+1)

(
1 +

1

p− j − 1

)

= Sj+1(rk),

which completes the proof of Lemma 2.4.

Proof of Lemma 2.5. For the case k = (0, k) we have by (1.9) that

S(k) = 4

(
1− ν2(k)

2

) ∏
p>2

(
1− 1

p

)−2 (
1− νp(k)

p

)
.

Now νp(k) = 1 if p|k and νp(k) = 2 if p 6 | k, and hence

S(k) = 2[2|k]
∏
p|k
p>2

(
1− 1

p

)−1 ∏
p6 |k
p>2

(
1− 1

p

)−2 (
1− 2

p

)

= 2[2|k]
∏
p|k
p>2

(
1− 1

p

) (
1− 2

p

)−1 ∏
p>2

(
1− 1

p

)−2 (
1− 2

p

)

= 2[2|k]
∏
p|k
p>2

(
p− 1

p− 2

) ∏
p>2

(
1− 1

(p− 1)2

)
= S2(k).

Next, in general,

S(k) =
∏

p

(
1− 1

p

)−r (
1− νp(k)

p

)

=

(
1− 1

2

)−r(
1− 1

3

)−r(
1− ν2(k)

2

)(
1− ν3(k)

3

) ∏
p>3

(
p

p− 1

)r−1(
p− νp(k)

p− 1

)
.

With r = 3, k = (0, k1, k2), κ = (k1, k2), and ∆ = k1k2(k2 − k1) we have

ν2(k) =

{
1, if 2|κ ,
2, if 2 6 |κ,

and for p ≥ 3

νp(k) =


1, if p|κ,
2, if p|∆, p 6 |κ,
3, if p 6 |∆.
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We now see that S(k) = 0 if 2 6 | κ or 3 6 | ∆, which by (2.5) proves the lemma in these
cases. Thus we now assume that 2|κ and 3|∆, and have

S(k) =
9

ν3(k)

∏
p>3

(
p

p− 1

)2 (
p− νp(k)

p− 1

)

=
9

ν3(k)

∏
p>3

(
p

p− 1

)2 (
p− 3

p− 1

) ∏
p|κ
p>3

(
p− 1

p− 3

) ∏
p|∆
p6 |κ
p>3

(
p− 2

p− 3

)

=
9

ν3(k)

∏
p>3

(
1− 1

(p− 1)2

) (
1− 2

(p− 1)(p− 2)

) ∏
p|κ
p>3

(
p− 1

p− 2

) ∏
p|∆
p>3

(
p− 2

p− 3

)

= 6C2C3H2(κ)H3(∆)

= S2(κ)S3(∆),

which proves Lemma 2.5.

4. Proof of Theorem 1.3

We now prove that the mixed correlations can be reduced to the pure correlations through
an application of the Bombieri-Vinogradov theorem. For k ≥ 2 we consider the general
sum, for R ≤ P ≤ N ,

SP (N, j) =
N∑

n=1

ΛR(n + j1)ΛR(n + j2) · · ·ΛR(n + jk−1)ΛP (n) (4.1)

where the ji’s are not necessarily distinct, but satisfy

ji 6= 0, 1 ≤ i ≤ k − 1. (4.2)

Note that for 1 < n ≤ N , ΛN(n) = Λ(n). We prove Theorem 1.3 by proving the following
theorem which shows that both SR(N, j) and SN(N, j) in certain ranges are asymptotic
to the same main term. Let

WR(j) =
∑

d1,d2,... ,dk−1≤R
(di,ji)=1, 1≤i≤k−1

(dr,ds)|js−jr, 1≤r<s≤k−1

1

φ(Dk−1)

k−1∏
i=1

µ(di) log
R

di

, (4.3)

where

Dk−1 = [d1, d2, . . . , dk−1]. (4.4)
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Theorem 4.1 We have, for k ≥ 2, N ε ≤ R ≤ N
1
k , and maxi |ji| ¿ R

1
k ,

SR(N, j) = NWR(j) + O(Rk) + Ok

(
N(log4k−1+k−2 N)e

−c1

√
log R

max |ji|k−1
)
, (4.5)

and, for N ε ≤ R ≤ N
ϑ

k−1
−ε,

SN(N, j) = NWR(j) + Ok

( N

(log N)
A
2
−4k−3/2+2k−1−1

)
. (4.6)

We have

SP (N, j) =
∑

d1,d2,... ,dk−1≤R

( k−1∏
i=1

µ(di) log
R

di

)( N∑
n=1

di|n+ji, 1≤i≤k−1

ΛP (n)
)
. (4.7)

Let

TP (N, j) =
N∑

n=1
di|n+ji, 1≤i≤k−1

ΛP (n). (4.8)

The k−1 congruence relations n ≡ −ji(mod di) will have no solutions unless (dr, ds)|js−
jr for all 1 ≤ r < s ≤ k − 1. If these divisibility conditions hold, then by the
Chinese remainder theorem there exists a unique solution to these congruences n ≡
a(mod [d1, d2, . . . , dk−1]) for some a = a(d, j). Here a satisfies the original congruences
a ≡ −ji(mod di) for 1 ≤ i ≤ k − 1. Thus we have

TP (N, j) = [(dr, ds)|js − jr, 1 ≤ r < s ≤ k − 1]
( ∑

1≤n≤N
n≡a(mod Dk−1)

ΛP (n)
)

= [(dr, ds)|js − jr, 1 ≤ r < s ≤ k − 1]ψP (N ; Dk−1, a). (4.9)

We next have that

ψP (N ; Dk−1, a) =
∑
d≤P

µ(d) log
P

d

∑
1≤n≤N

n≡a(mod Dk−1)
n≡0(mod d)

1.

The two congruences in this sum are solvable provided (d, Dk−1)|a, in which case we have
that n runs through a residue class modulo [Dk−1, d]. Hence

ψP (N ; Dk−1, a) = N
∑
d≤P

(d,Dk−1)|a

µ(d)

[Dk−1, d]
log

P

d
+ O(P ).
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We now write d = gd′, where g = (d, Dk−1). Hence [d, Dk−1] = Dk−1d
′, and by Lemma

2.1

ψP (N ; Dk−1, a) =
N

Dk−1

∑
g|Dk−1, g|a

g≤P

µ(g)
∑
d′≤P

g

(d′,Dk−1)=1

µ(d′)

d′
log

P

gd′
+ O(P )

=
N

φ(Dk−1)

∑
g|Dk−1, g|a

g≤P

µ(g)

+O
( N

Dk−1

∑
g|Dk−1, g|a

g≤P

µ2(g)e−c1
√

log(P/g)
)

+ O(P ).

Since a ≡ −ji(mod di) for 1 ≤ i ≤ k − 1 and g|a we see that (g, di)|ji for 1 ≤ i ≤ k − 1,
and conversely since g|Dk−1 these divisibility conditions imply that g|a. Hence

ψP (N ; Dk−1, a) =
N

φ(Dk−1)

∑
g|Dk−1
g≤P

(g,di)|ji, 1≤i≤k−1

µ(g)

+O
( N

Dk−1

∑
g|Dk−1
g≤P

(g,di)|ji, 1≤i≤k−1

µ2(g)e−c1
√

log(P/g)
)

+ O(P ). (4.10)

The truncated Möbius function sum complicates the calculations of our pure correlations
when one or more of the ji = 0, but when all the ji 6= 0 the truncation problem disappears.
Thus, we see in this sum that g ≤

∏k−1
i=1 |ji| ≤ max |ji|k−1, and hence provided

max
1≤i≤k−1

|ji| ≤ P
1

k−1 (4.11)

we have∑
g|Dk−1
g≤P

(g,di)|ji, 1≤i≤k−1

µ(g) =
∑

g|Dk−1

(g,di)|ji, 1≤i≤k−1

µ(g) =

{
1, if (di, ji) = 1, 1 ≤ i ≤ k − 1,
0, otherwise.

We conclude that subject to (4.11),

ψP (N ; Dk−1, a) = [(di, ji) = 1, 1 ≤ i ≤ k − 1]
N

φ(Dk−1)

+ O
( N

Dk−1

d(Dk−1)e
−c1
√

log(P/ max |ji|k−1)
)

+ O(P ).

(4.12)

Hence by (4.3), (4.7), (4.8), (4.9), and (4.12), we obtain

SP (N, j) =NWR(j) + O(PRk−1)

+ O
(
N logk−1 Ne

−c1

√
log P

max |ji|k−1
∑

d1,d2,... ,dk−1≤R

d(Dk−1)

Dk−1

)
.

(4.13)
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We now estimate the sum in the second error term sufficiently well for our needs. Letting

DR(n) =
∑
e|n

e≤R

d(e),

then ∑
n≤N

DR(n)m =
∑
n≤N

∑
e1,e2,... ,em≤R
ei|n, 1≤i≤m

d(e1)d(e2) . . . d(em)

=
∑

e1,e2,... ,em≤R

d(e1)d(e2) . . . d(em)
∑
n≤N

ei|n,1≤i≤m

1

= N
∑

e1,e2,... ,em≤R

d(e1)d(e2) . . . d(em)

[e1, e2, . . . , em]
+ O

(( ∑
e≤R

d(e)
)m

)
.

The last error term is O(Rm logm R), and DR(n) ≤
∑

e|n d(n) = d2(n). Hence, using the
estimate [19] ∑

m≤N

d(m)k ¿k N log2k−1 N, (4.14)

we have ∑
n≤N

DR(n)m ≤
∑
n≤N

d(n)2m ¿m N log4m−1 N.

Thus ∑
d1,d2,... ,dm≤R

d(Dm)

Dm

≤
∑

e1,e2,... ,em≤R

d(e1)d(e2) . . . d(em)

[e1, e2, . . . , em]

¿m log4m−1 N +
Rm logm R

N
.

Hence we conclude

SP (N, j) =NWR(j) + O(PRk−1)

+ Ok

((
N log4k−1+k−2 N + Rk−1 log2k−2 N

)
e
−c1

√
log P

max |ji|k−1

)
.

(4.15)

Taking P = R proves the first part of Theorem 4.1. Equation (4.15) may also be useful
when P is not too large but larger than R.

We next turn to the case P = N . In this case ψP (N ; q, a) = ψ(N ; q, a) + O(log N),
the error term coming from ΛN(1). We apply (1.29) and have

ψ(N ; Dk−1, a) = [(Dk−1, a) = 1]
N

φ(Dk−1)
+ E(N ; Dk−1, a).
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The condition that (Dk−1, a) = 1 is equivalent to having (di, a) = 1 for 1 ≤ i ≤ k−1, and
since a ≡ −ji(mod di) these conditions are equivalent to (di, ji) = 1 for 1 ≤ i ≤ k − 1.
We conclude that

ψ(N ; Dk−1, a) = [(di, ji) = 1, 1 ≤ i ≤ k − 1]
N

φ(Dk−1)
+ E(N ; Dk−1, a). (4.16)

By (4.9) we thus obtain in place of (4.13)

SN(N, j) = NWR(j) + O
(

logk−1 N
∑

d1,d2,... ,dk−1≤R

µ2(Dk−1)|E(N ; Dk−1, a)|
)

+ O(log N logk−1 R

k−1∏
i=1

d(1 + ji)),

(4.17)

the last error term coming from the n = 1 term. This last error will be negligible since
it is ¿ (log N(maxi |ji|)ε)k ¿k N ε since maxi |ji| ¿ R

1
k . For the sum in the error term,

we have ∑
d1,d2,... ,dk−1≤R

µ2(Dk−1)|E(N ; Dk−1, a)|

=
∑

m≤Rk−1

µ2(m) max
a(mod m)

|E(N ; m, a)|
∑

m=Dk−1
d1,d2,... ,dk−1≤R

1

≤
∑

m≤Rk−1

µ2(m) max
a(mod m)

|E(N ; m, a)|dl(m),

where l = 2k−1− 1. The factor of dl(m) arises since, given m, the number of solutions of
m = Dr is bounded by d2r−1(m), since the least common multiple of r squarefree numbers
can always be expressed uniquely as the product of up to 2r−1 numbers which are pairwise
relatively prime, determined by exactly which of the original numbers d1, d2, · · · , dr each
factor divides. (We will use this decomposition in later sections.) Applying Cauchy’s
inequality we see the previous expression is

¿
√√√√ ∑

m≤Rk−1

dl(m)2

m

√ ∑
m≤Rk−1

m max
a(mod m)

|E(N ; m, a)|2.

We now use the generalization of (4.14)∑
m≤N

dr(m)k ¿k N logrk−1 N, (4.18)

and the trivial estimate |E(N ; m, a)| ¿ N log N
m

to see the error term above is

¿l

√
(log R)l2N log N

∑
m≤Rk−1

max
a(mod m)

|E(N ; m, a)|.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3 (2003), #A05 31

We now apply (1.30) to conclude this error is, for Rk−1 ≤ Nϑ−ε,

¿k
N

(log N)
A
2
−4k−3/2+2k−1−1

,

which finishes the proof of Theorem 4.1.

5. Pair Correlation of ΛR(n)

We first prove the case k = 1 of Theorem 1.1. We have

S1(N, j, (1)) =
∑
n≤N

ΛR(n + j) =
∑
d≤R

µ(d) log
R

d

∑
1≤n≤N
d|n+j

1

= N
∑
d≤R

µ(d)

d
log

R

d
+ O(R)

= N + O(
N

(log R)A
) + O(R) (5.1)

by Lemma 2.1. This proves Theorem 1.1 in this case.

We now examine the case k = 2 of Theorem 1.1. These results have been proved
before in [8]. The proof we give here models the procedure we will use for higher correla-
tions without any of the truncation complications which will arise there. In view of the
comment following Theorem 1.1, we need to consider

S2(k) =
N∑

n=1

ΛR(n)ΛR(n + k), (5.2)

In our earlier notation, we have S2(k) = S2(N, (0, k), (1, 1)) if k 6= 0, and S2(0) =
S2(N, (0), (2)).

Theorem 5.1 We have

S2(0) = N log R + O(N) + O(R2), (5.3)

and for 0 < |k| ≤ R and any A > 0, we have

S2(k) = S2(k)N + O(
k

φ(k)

N

(log 2R/k)A
) + O(R2). (5.4)

Graham [13] has proved (5.3) for 1 ≤ R ≤ N with the error term O(R2) removed. By
Theorem 5.1 we see that Theorem 1.1 is true for k = 2, with C(2) = 1 and C(1, 1) = 1.
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Proof of Theorem 5.1. Applying the definition of ΛR(n), we have

S2(k) =
∑

d,e≤R

µ(d) log(R/d)µ(e) log(R/e)
∑
n≤N

d|n,e|n+k

1.

In the inner sum the two divisibility conditions imply that n will run through a residue
class modulo [d, e] provided (d, e)|k, and there will be no solution for n otherwise. There-
fore we have

S2(k) = N
∑

d,e≤R
(d,e)|k

µ(d) log(R/d)µ(e) log(R/e)

[d, e]
+ O

( ∑
d,e≤R

log(R/d) log(R/e)
)

= NT2(k) + O(R2).

(5.5)

To evaluate T2(k) we break the sum into relatively prime summands in order to handle
[d, e]. We let d = a1b12 and e = a2b12 where b12 = (d, e) so that a1, a2, and b12 are
pairwise relatively prime. For higher correlations this decomposition notation will be
used as well. Hence we have

T2(k) =
∑′

a1b12≤R
a2b12≤R

b12|k

µ2(b12)

b12

µ(a1)

a1

µ(a2)

a2

log
R

a1b12

log
R

a2b12

=
∑′

a2b12≤R
b12|k

µ2(b12)

b12

µ(a2)

a2

log
R

a2b12

∑
a1≤R/b12

(a1,a2b12)=1

µ(a1)

a1

log
R/b12

a1

,

where the prime on the summation indicates that all the summands are relatively prime
to each other. We now apply Lemma 2.1 with j = 0 to obtain for any B > 0

T2(k) =
∑′

a2b12≤R
b12|k

µ2(b12)

φ(b12)

µ(a2)

φ(a2)
log

R

a2b12

+ O

( ∑′

a2b12≤R
b12|k

µ2(b12)µ
2(a2) log R/b12

a2

b12a2 logB(2R/b12)

)
.

For the main term above we sum over a2 and apply Lemma 2.1 again with j = 1 to see
this term is equal to∑

b12≤R
b12|k

µ2(b12)

φ(b12)
S2(b12) + O

( ∑
b12≤R
b12|k

µ2(b12)

φ(b12) logB(2R/b12)

)
.

Summing over a2 in the error term in the formula for T2(k) above, we conclude

T2(k) =
∑

b12≤R
b12|k

µ2(b12)

φ(b12)
S2(b12) + O

( ∑
b12≤R
b12|k

µ2(b12)

φ(b12) logB−2(2R/b12)

)
. (5.6)
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We now consider two cases. If k = 0 the main term is∑
b12≤R

µ2(b12)

φ(b12)
S2(b12) = log R + O(1)

by Lemma 2.4 with j = 1, and the error term in (5.6) is also O(1). This proves (5.3). If
0 < |k| ≤ R the main term is ∑

b12|k

µ2(b12)

φ(b12)
S2(b12) = S2(k)

by the second part of Lemma 2.4, and the error term is

¿ 1

(log 2R/k)B−2

∑
b12|k

µ2(b12)

φ(b12)
=

k

φ(k)(log 2R/k)B−2
,

which proves (5.4).

It is worth noting that we can also give a very short proof of (5.4) using Theorem 4.1
from the last section. With j = (0, k), we have

WR(j) =
∑
d1≤R

(d1,k)=1

µ(d1)

φ(d1)
log(R/d1)

= S2(k) + O(e−c1
√

log R) (5.7)

by Lemma 2.1. By Theorem 4.1 this proves (5.4) and also evaluates the mixed second
correlation as well.

6. Triple correlation for ΛR(n)

To prove Theorem 1.1 when k = 3 we need to evaluate the sums

S3(k) =
N∑

n=1

ΛR
2(n)ΛR(n + k), (6.1)

and, for non-zero k1 6= k2,

S3(k1, k2) =
N∑

n=1

ΛR(n)ΛR(n + k1)ΛR(n + k2) (6.2)

In the notation of Theorem 1.1 we have S3(0)=S3(N, (0), (3)), S3(k)=S3(N, (0, k), (2, 1))
if k 6= 0, and S3(k1, k2) = S3(N, (0, k1, k2), (1, 1, 1)) for non-zero k1 6= k2. We will obtain
the following results on these correlations.
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Theorem 6.1 We have

S3(0) =
3

4
N log2 R + O(N log N(log log R)18) + O(R3), (6.3)

and, for k 6= 0, |k| ≤ R
1
2
−ε,

S3(k) = S2(k)N log R + O(N(log log R)13) + O(R3), (6.4)

and letting k = (0, k1, k2), k1 6= k2 6= 0, if (k∗)2 < R/2, where k∗ = max(|k1|, |k2|), then

S3(k1, k2) = S(k)N + O

(
Ne
−c1

√
log

(
R

2(k∗)2

)
log8 R

)
+ O(R3). (6.5)

We consider the general situation and specialize later. Let

S3(k1, k2, k3) =
N∑

n=1

ΛR(n + k1)ΛR(n + k2)ΛR(n + k3) (6.6)

Expanding, we have

S3(k1, k2, k3) =
∑

d1,d2,d3≤R

µ(d1) log(R/d1)µ(d2) log(R/d2)µ(d3) log(R/d3)
∑
n≤N

d1|n+k1

d2|n+k2

d3|n+k3

1.

The sum over n is zero unless (d1, d2)|k2 − k1, (d1, d3)|k3 − k1, and (d2, d3)|k3 − k2, in
which case the sum runs through a residue class modulo [d1, d2, d3], and we have∑

n≤N
d1|n+k1

d2|n+k2

d3|n+k3

1 =
N

[d1, d2, d3]
+ O(1).

We conclude

S3(k1, k2, k3) = N
∑

d1,d2,d3≤R
(d1,d2)|k2−k1

(d1,d3)|k3−k1

(d2,d3)|k3−k2

µ(d1) log(R/d1)µ(d2) log(R/d2)µ(d3) log(R/d3)

[d1, d2, d3]
+ O(R3)

= NT3(k1, k2, k3) + O(R3).

(6.7)
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We now decompose d1, d2, and d3 into relatively prime factors

d1 = a1b12b13a123

d2 = a2b12b23a123

d3 = a3b13b23a123

where aχ or bχ is a divisor of the di’s where i occurs in χ. Since the di’s are squarefree,
these new variables are pairwise relatively prime. The letters a and b reflect the parity
of the number of di’s that the new variable divides. We will let D denote the set of aχ’s
and bχ’s which satisfy the conditions

a1b12b13a123 ≤ R

a2b12b23a123 ≤ R (6.8)

a3b13b23a123 ≤ R

b12a123|k2 − k1, b13a123|k3 − k1, b23a123|k3 − k2. (6.9)

Letting

Li(R) = log
R

di

,

we have

T3(k1, k2, k3) =
∑′

D

µ(a1)µ(a2)µ(a3)µ
2(b12)µ

2(b13)µ
2(b23)µ(a123)

a1a2a3b12b13b23a123

L1(R)L2(R)L3(R)

=
∑′

D
fR(d1, d2, d3).

(6.10)

We now will sum over a1, a2, and a3 using Lemma 2.1 and Lemma 2.3. In order to apply
these lemmas we need each ai to range over a long enough interval, and therefore we
need to restrict the ranges of some of the other variables. The excluded ranges will later
be shown to make a lower order contribution. If D is a product of some of the variables
in D, we let D(D) denote the subset of D where the variables not occuring in D are
eliminated from the inequalities in (6.8) and divisibility conditions in (6.9). Thus, letting
D1 = a2a3b12b13b23a123, we have that D(D1) no longer includes the variable a1 and we
take a1 = 1 in (6.8). We now obtain on summing over a1 using Lemma 2.1 and taking
R1 < R,

T3(k1, k2, k3) =
∑′

D
b12b13a123≤R1

fR(d1, d2, d3) +
∑′

D
R1<b12b13a123≤R

fR(d1, d2, d3)

=
∑′

D(D1)
b12b13a123≤R1

µ(a2)µ(a3)µ(a123)µ
2(D1)

φ(D1)
L2(R)L3(R) + E1(R)

+
∑′

D
R1<b12b13a123≤R

fR(d1, d2, d3)

= U3(k1, k2, k3) + E1(R) + Ef (D), (6.11)
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where

E1(R) =
∑′

D
b12b13a123≤R1

µ(a2)µ(a3)µ(a123)µ
2(D1)

D1

L2(R)L3(R)r0(
R

b12b13a123

, D1)

¿ e−c1
√

log(R/R1) log8 R.

Hence

T3(k1, k2, k3) = U3(k1, k2, k3) + O(e−c1
√

log(R/R1) log8 R) + Ef (D). (6.12)

Denote the summand for U3(k1, k2, k3) by gR(d1, d2, d3), which does not depend on a1.
Because of the symmetry in our original variables in (6.10), we could equally well have
summed over a2 or a3 above and obtained the same expression for gR(d1, d2, d3) with the
appropriate change in variables and renumbering of the k′is. We will later make use of this
fact for some of our error terms, and will let the summation conditions D(D) determine
which variables appear in gR and subsequent summands. Returning to (6.11), we obtain
on summing over a2 using Lemma 2.1 that, with D2 = a3b12b13b23a123 and R2 < R,

U3(k1, k2, k3) =
∑′

D(D1)
b12b13a123≤R1
b12b23a123≤R2

gR(d1, d2, d3) +
∑′

D(D1)
b12b13a123≤R1

R2<b12b23a123≤R

gR(d1, d2, d3)

=
∑′

D(D2)
b12b13a123≤R1
b12b23a123≤R2

µ(a3)µ(a123)µ
2(D2)

φ(D2)
L3(R)S2(D2)

+ O(e−c1
√

log(R/R2) log6 R) +
∑′

D(D1)
b12b13a123≤R1

R2<b12b23a123≤R

gR(d1, d2, d3)

= V3(k1, k2, k3) + O(e−c1
√

log(R/R2) log6 R) + Eg(D(D1)). (6.13)
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Finally, we denote the summand in V3(k1, k2, k3) by hR(d1, d2, d3) and we let D3 =
b12b13b23a123 and R3 < R. Then by Lemma 2.3 with j = 1 we obtain

V3(k1, k2, k3) =
∑′

D(D2)
b12b13a123≤R1
b12b23a123≤R2
b13b23a123≤R3

hR(d1, d2, d3) +
∑′

D(D2)
b12b13a123≤R1
b12b23a123≤R2

R3<b13b23a123≤R

hR(d1, d2, d3)

= −
∑′

D(D3)
b12b13a123≤R1
b12b23a123≤R2
b13b23a123≤R3

µ2(D3)µ(a123)µ((D3, 2))

φ(D3)
S2(2D3)S3(2D3)

+ O(e−c1
√

log(R/R3) log4 R) +
∑′

D(D2)
b12b13a123≤R1
b12b23a123<R2

R3<b13b23a123<R

hR(d1, d2, d3)

= W3(k1, k2, k3) + O(e−c1
√

log(R/R3) log4 R) + Eh(D(D2)). (6.14)

We now prove Theorem 6.1 by considering each case separately. We first prove (6.5)
which is the case where the error terms are the easiest to handle.

7. Evaluation of S3(k1, k2)

We consider S3(k1, k2) by taking k1 6= k2 6= 0 and k3 = 0 in (6.9) which therefore becomes

b12a123|k2 − k1, b13a123|k1, b23a123|k2. (7.1)

These conditions imply, letting k∗ = max(|k1|, |k2|), that

b12b13a123 < 2(k∗)2, b12b23a123 < 2(k∗)2, b13b23a123 < 2(k∗)2. (7.2)

Hence, taking R1 = R2 = R3 = 2(k∗)2 < R, we see that the error terms Ef , Eg, and Eh in
(6.11), (6.13), and (6.14) are identically zero, and therefore

T3(k1, k2) = W3(k1, k2) + O(e
−c1

√
log

(
R

2(k∗)2

)
log8 R). (7.3)

Now that the variables a1, a2, and a3 have been eliminated, the bounds on the variables
in D are automatically satisfied from (7.2), and, provided (k∗)2 < R/2, we have

W3(k1, k2) = −
∑′

b13a123|k1

b23a123|k2

b12a123|k2−k1

µ2(D3)µ(a123)µ((D3, 2))

φ(D3)
S2(2D3)S3(2D3). (7.4)
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This sum is over square-free divisors, and therefore we let

k1 = s1K1, k2 = s2K2, (7.5)

where K1 and K2 are the largest square-free divisors of k1 and k2, and let

κ = (k1, k2), K12 = (K1, K2). (7.6)

Then we may rewrite W3 as

W3(k1, k2) = −
∑′

b13a123|K1

b23a123|K2

b12a123|k2−k1

µ2(D3)µ(a123)µ((D3, 2))

φ(D3)
S2(2D3)S3(2D3). (7.7)

The proof of (6.5) will follow from (6.7), (7.3) and Lemma 2.5 once we prove that

W3(k1, k2) = S2(K12)S3(∆) = S2(κ)S3(∆) = S(k). (7.8)

We now let

K1 = K12j1, K2 = K12j2, k2 − k1 = K12(s2j2 − s1j1) (7.9)

where K12, j1, and j2 are square-free and pairwise relatively prime (s2j2 − s1j1 may not
be square-free or relatively prime with K12.) Next, let

b13 = c13d13, b23 = c23d23 (7.10)

where c13, c23|K12, d13|j1, d23|j2, and c13, d13, c23, d23, b12, a123 are thus all pairwise
relatively prime. We also see that a123|K12. Thus, with D3 = b12c13c23d13d23a123,

W3(k1, k2) = −
∑′

c13c23a123|K12

µ(a123)
∑′

b12|k2−k1

d13|j1
d23|j2

µ2(D3)µ((D3, 2))

φ(D3)
S2(2D3)S3(2D3). (7.11)

We first sum over d13 in the inner sum. To do this, we take D4 = b12c13c23d23a123 and
have ∑

d13|j1
(d13,D4)=1

µ2(D3)µ((D3, 2))

φ(D3)
S2(2D3)S3(2D3)

= 2C2
µ2(D4)

φ(D4)

∑
d13|j1

(d13,D4)=1

µ2(d13)

φ(d13)
µ((d13D4, 2))H2(2d13D4)S3(2d13D4).

We now break the sum on the right into two sums according to whether d13 is even or
odd, in the former case we let d13 = 2d, and on using Lemma 2.4 we obtain that the
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right-hand side is

=
2C2µ

2(D4)H2(D4)

φ(D4)

{
− [(D4, 2) = 1]

∑
2d|j1

(d,2D4)=1

µ2(d)

φ2(d)
S3(2dD4)

+µ((D4, 2))
∑
d13|j1

(d13,2D4)=1

µ2(d13)

φ2(d13)
S3(2d13D4)

}

=
2C2µ

2(D4)H2(D4)

φ(D4)

(
− [(D4, 2) = 1][2|j1] + µ((D4, 2))

)
S3(2D4j1).

We will denote

B(d) =
2C2µ

2(d)H2(d)

φ(d)
. (7.12)

Now substituting into (7.11), and letting D5 = b12c13c23a123, the sum over d23 is equal to

B(D5)
∑
d23|j2

(d23,D5)=1

µ2(d23)H2(d23)

φ(d23)

(
− [(d23D5, 2) = 1][2|j1] + µ((d23D5, 2))

)
S3(2d23D5j1).

Since (j1, j2) = 1, and d23|j2, we may replace the condition (d23, D5) = 1 in the sum by
(d23, j1D5) and divide the sum into two sums with even or odd terms as above to see
that this expression is

= −B(D5)[(D5, 2) = 1][2|j2]
∑
2d|j2

(d,2j1D5)=1

µ2(d)

φ2(d)
S3(2dD5j1)

+B(D5)
(
− [(D5, 2) = 1][2|j1] + µ((D5, 2))

) ∑
d23|j2

(d23,2j1D5)=1

µ2(d23)

φ2(d23)
S3(2d23D5j1)

= B(D5)
(
− [(D5, 2) = 1]

(
[2|j1] + [2|j2]

)
+ µ((D5, 2))

)
S3(2D5j1j2).

Now let

∆ = k1k2(k2 − k1) = s1s2K12
2j1j2(k2 − k1) = s1s2K12

3j1j2(s2j2 − s1j1). (7.13)

We substitute the last result into (7.11) and sum over b12. Let D6 = c13c23a123. We claim
that the relatively prime condition (b12, D6) = 1 may be replaced by (b12, D6j1j2) = 1. To
see this, note that j1, j2, and K12 are pairwise relatively prime, and further (s1, j2) = 1
and (s2, j1) = 1. Thus

(k2 − k1, j1) = (K12(s2j2 − s1j1), j1) = (s2, j1) = 1
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and similarly (k2 − k1, j2) = 1. Hence, since b12|k2 − k1, we have (b12, j1j2) = 1. Now
summing over b12 our sum is

= B(D6)
∑

b12|k2−k1

(b12,D6j1j2)=1

(
− [(b12D6, 2) = 1]

(
[2|j1] + [2|j2]

)
+ µ((b12D6, 2))

)

× µ2(b12)H2(b12)

φ(b12)
S3(2b12D6j1j2)

= B(D6)
∑

2b|k2−k1

(b,2D6j1j2)=1

µ2(b)

φ2(b)

(
− [2|k2 − k1][(D6, 2) = 1]

)
S3(2bD6j1j2)

+B(D6)
∑

b12|k2−k1

(b12,2D6j1j2)=1

µ2(b12)

φ2(b12)

(
− [(D6, 2) = 1]

(
[2|j1] + [2|j2]

)
+ µ((D6, 2))

)
S3(2b12D6j1j2)

= B(D6)
(
− [(D6, 2) = 1]

(
[2|j1]+[2|j2]+[2|k2 − k1]

)
+µ((D6, 2))

)
S3(2D6j1j2(k2 − k1)).

Now D6|K12|∆, and hence

S3(2D6j1j2(k2 − k1)) = S3(2D6∆) = S3(∆).

We conclude that

W3(k1, k2)= −S3(∆)
∑′

D6|K12

µ(a123)B(D6)
(
−[(D6, 2)=1]

(
[2|j1]+[2|j2]+[2|k2 − k1]

)
+µ((D6, 2))

)
.

(7.14)

If K12 is odd, then exactly one of the variables j1, j2, and k2 − k1 is even and the
other two are odd. If K12 is even, then j1 and j2 are odd and k2 − k1 is even. Hence in
either case

[2|j1] + [2|j2] + [2|k2 − k1] = 1,

and therefore

W3(k1, k2) = −S3(∆)
∑′

D6|K12

µ(a123)B(D6)
(
− [(D6, 2) = 1] + µ((D6, 2))

)
. (7.15)

When K12 is odd the expression in parentheses is zero, and hence

W3(k1, k2) = 0, if K12 is odd.

If K12 is even, then the expression in parentheses in (7.15) is zero if D6 is odd, and is
equal to −1 when D6 is even. Hence, we conclude

W3(k1, k2) = [2|K12]S3(∆)
∑′

D6|K12

2|D6

µ(a123)B(D6). (7.16)
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We could now evaluate this sum as before by summing over each variable in turn, but
there is an easier approach, based on the observation that if a square-free number is
a product of some factors, then necessarily those factors must be relatively prime with
each other. Let z = vwy, and A be a set of natural numbers. Then for any arithmetic
function a(z) we have∑′

z∈A
µ2(z)a(z)µ(y) =

∑
z∈A

µ2(z)a(z)
∑
w|z

∑
y| z

w

µ(y)

=
∑
z∈A

µ2(z)a(z)
∑
w|z
w=z

1

=
∑
z∈A

µ2(z)a(z).

(7.17)

The sum in (7.16) is of this form, and therefore we have

W3(k1, k2) = [2|K12]S3(∆)
∑
z|K12

2|z

B(z)

= 2C2[2|K12]S3(∆)
∑

2z′|K12

(z′,2)=1

µ2(z′)

φ2(z′)

= 2C2[2|K12]S3(∆)H2(K12),

where we used (2.3) in the last line. We conclude by (2.5) that

W3(k1, k2) = S2(K12)S3(∆) = S2(κ)S3(∆), (7.18)

which completes the proof of (7.8).

8. Evaluation of S3(k), k 6= 0

We now take k1 = k 6= 0, k2 = k3 = 0 so that the divisibility conditions in (6.9) become

b12a123|k, b13a123|k,

and since our variables are relatively prime

b12b13a123|k. (8.1)

Taking R1 = k < R we see that Ef in (6.12) is identically zero. We will take R2 = R3 ≥ k2

to be chosen later as a function of R, and conclude from (6.12), (6.13), and (6.14) that

T3(k) = W3(k) + Eg(D(D1)) + Eh(D(D2)) + O(e−c1
√

log(R/R2) log8 R). (8.2)
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Now, summing over a3 using Lemma 2.1, we have

Eg(D(D1)) =
∑′

D(D1)
b12b13a123≤R1

R2<b12b23a123≤R
b13b23a123≤R3

gR(d1, d2, d3) +
∑′

D(D1)
b12b13a123≤R1

R2<b12b23a123≤R
R3<b13b23a123≤R

gR(d1, d2, d3)

=
∑′

D(a2D3)
b12b13a123≤R1

R2<b12b23a123≤R
b13b23a123≤R3

hR(d1, d2, d3) + O(e−c1
√

log(R/R3) log6 R)

+
∑′

D(D1)
b12b13a123≤R1

R2<b12b23a123≤R
R3<b13b23a123≤R

gR(d1, d2, d3). (8.3)

The first sum above is the same as Eh(D(D2)) with the appropriate relabeling of variables,
and the estimate we now obtain applies to both expressions. We see in this sum that
a2 ≤ R

b12b23a123
≤ R

R2
, and hence the sum is

¿ log(R/R2)
∑

b12b13a123|k

∑
R2

b12a123
<b23≤ R

b12a123

µ2(D3)

φ(D3)

∑
a2≤ R

R2
(a2,D3)=1

µ2(a2)

φ(a2)
S2(a2D3)

¿ log2(R/R2) log log R
∑

b12b13a123|k

∑
R2

b12a123
<b23≤ R

b12a123

µ2(D3)

φ(D3)

¿ log3(R/R2) log log R

∑
b|k

µ2(b)

φ(b)

3

¿ log3(R/R2) log log R(
k

φ(k)
)3,

by Lemma 2.4, and hence, since k
φ(k)
¿ log log 3k,

Eh(D(D2))¿ log3(R/R2)(log log R)4. (8.4)

Similarly, for the second sum in (8.3) both a2 ≤ R
R2

and a3 ≤ R
R2

, so that the sum is

¿ log5(R/R2)(log log 3k)3

and hence

Eg(D(D1))¿ log5(R/R2)(log log R)3 + e−c1
√

log(R/R2) log6 R. (8.5)

We take

R2 = R3 = Re−c2(log log R)2 (8.6)
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where c2 is a sufficiently large constant, and conclude by (8.2), (8.4), and (8.5) that, for

|k| ≤ R
1
2
−ε,

T3(k) = W3(k) + O
(
(log log R)13

)
, (8.7)

where

W3(k) = −
∑′

b12b23a123≤R2
b13b23a123≤R2
b12b13a123|k

µ2(D3)µ(a123)µ((D3, 2))

φ(D3)
S2(2D3)S3(2D3), (8.8)

and as before D3 = b12b13b23a123. Since b23 is the only variable not constrained by the
divisibility condition, we have on letting

R4 =
R2

a123

min(
1

b12

,
1

b13

), (8.9)

and E = b12b13a123, that

W3(k) = −
∑′

E|k

µ2(E)

φ(E)
µ(a123)

∑
b23≤R4

(b23,E)=1

µ2(b23)

φ(b23)
µ((b23E, 2))S2(2b23E)S3(2b23E).

We break the inner sum into two subsums according to whether b23 is even or odd, the
former case forcing (E, 2) = 1. We thus obtain, on taking b23 = 2b in the first subsum
and applying (2.4)

W3(k) =
∑′

E|k
(E,2)=1

µ2(E)S2(2E)

φ(E)
µ(a123)

∑
b≤R4

2
(b,2E)=1

µ2(b)

φ2(b)
S3(2bE)

−
∑′

E|k

µ2(E)S2(2E)

φ(E)
µ((E, 2))µ(a123)

∑
b23≤R4

(b23,2E)=1

µ2(b23)

φ2(b23)
S3(2b23E).

The inner sums in both sums above are by Lemma 2.4 and the estimate (2.19)

= log R4 + O(log log 3k) + O(
exp

(
c
√

log k
log log 3k

)
√

R4

).
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Substituting we now see that the main term from the first sum is canceled by the part
of the main term in the second sum when (E, 2) = 1, and hence we obtain

W3(k)

=
∑′

E|k

µ2(E)S2(2E)

φ(E)

(
µ(a123)[2|E] log R4 + +O(log log 3k) + O(

exp
(

c
√

log k
log log 3k

)
√

R4

)
)

= log R2

∑′

E|k
2|E

µ2(E)S2(2E)

φ(E)
µ(a123)

+ O

 ∑′

E|k

µ2(E)S2(2E)

φ(E)

(
log E + log log 3k +

exp
(

c
√

log k
log log 3k

)
√

R2

E


= Y3(k) log R2 + O

( ∑
b|k

µ2(b) log b

φ(b)

)3
log log 3k


+ O

exp
(

c
√

log k
log log 3k

)
√

R2

( ∑
b|k

µ2(b)
√

b

φ(b)

)3

 ,

where we used the estimate S2(k) ¿ log log 3k in the last two error terms. By Lemma
5 of [11], the sum in the first error term is

=
kh1(k)

φ(k)
¿ (log log 3k)2

where h1(k) is given by (2.17). The sum in the second error term is

¿ exp

(
c

∑
n<log k

µ2(n)
√

n

φ(n)

)
¿ ec

√
log k

and hence we conclude that

W3(k) = Y3(k) log R2 + O((log log R)7). (8.10)

We complete the evaluation of W3(k) by proving

Y3(k) = S2(k). (8.11)
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We note first that if 2 6 | k then the sum defining Y3(k) is empty and therefore Y3(k) = 0,
in agreement with S2(k). Therefore by (7.17)

Y3(k) = [2|k]
∑
E|k
2|E

µ2(E)S2(2E)

φ(E)

= 2C2[2|k]
∑
2E′|k

(E′,2)=1

µ2(E ′)

φ2(E ′)

= 2C2[2|k]H2(k) = S2(k),

which proves (8.11).

9. Evaluation of S3(0): Main Term

We now consider k1 = k2 = k3 = 0. On applying equations (6.12), (6.13), and (6.14) and
taking

S = R1 = R2 = R3

we have that

T3(0) = W3(0) + O(e−c1
√

log(R/S) log8 R) + Ef (D) + Eg(D(D1)) + Eh(D(D2)), (9.1)

where we relabel variables for simplicity and have

W3(0) = −
∑′

uvy≤S
uwy≤S
vwy≤S

µ(y)µ2(D)µ((D, 2))

φ(D)
S2(2D)S3(2D), (9.2)

and D = uvwy. We will prove in this section that

W3(0) =
3

4
log2 S + O(log S). (9.3)

In the next section we will prove that Ef (D), Eg(D(D1)), and Eh(D(D2)) all satisfy the
bound

¿ log9(
R

S
) log R (9.4)

from which we conclude from (9.1) and (9.3) on taking

S = Re−c2(log log R)2
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that

T3(0) =
3

4
log2 R + O(log R(log log R)18) (9.5)

and therefore by (6.7) we obtain (6.3).

The first step in evaluating W3(0) is to sum over u in (9.2) by separating into sums
according to whether u is even or odd, and apply Lemma 2.4. We let z = vwy, and have∑

u≤min( S
vy

, S
wy

)

(u,z)=1

µ2(u)

φ(u)
µ((uz, 2))S2(2uz)S3(2uz)

= 2C2H2(2z)
∑

u≤S
z

min(v,w)

(u,z)=1

µ2(u)

φ(u)
µ((uz, 2))H2(2u)S3(2uz)

= 2C2H2(2z)

(
− [(z, 2) = 1]

∑
2u′≤S

z
min(v,w)

(u′,2z)=1

µ2(u′)

φ2(u′)
S3(2u

′z)

+ µ((z, 2))
∑

u≤S
z

min(v,w)

(u,2z)=1

µ2(u)

φ2(u)
S3(2uz).

)

= 2C2H2(2z)

(
− [(z, 2) = 2]

(
log

(S(z, 3)

3z
min(v, w)

)
+ D3

+ h3(6z)

)
+ [(z, 2) = 1] log 2 + O

( m(6z)√
S
z

min(v, w)

))
.

Substituting this result into (9.2) we obtain

W3(0) =2C2

∑′

z≤S
2|z

µ2(z)µ(y)

φ(z)
H2(2z)

(
log

(
S(z, 3)

3z
min(v, w)

)
+ D3 + h3(6z)

)

− 2C2 log 2
∑′

z≤S
(z,2)=1

µ2(z)µ(y)

φ(z)
H2(2z) + O

( ∑′

z≤S

µ2(z)m(6z)

φ(z)
√

S
z

min(v, w)
H2(2z)

)
.

(9.6)

Except for the factor of log min(v, w), the sums above are of the form considered in (7.17).
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Hence we have

2C2

∑′

z≤S
2|z

µ2(z)µ(y)

φ(z)
H2(2z) log

S

z
= 2C2

∑
z≤S
2|z

µ2(z)

φ(z)
H2(2z) log

S

z

= 2C2

∑
2z′≤S

(z′,2)=1

µ2(z′)

φ2(z′)
log

S

2z′

=
1

2
log2 S + O(log S), (9.7)

where we used (2.21). Similarly we have, by Lemma 2.2

2C2

∑′

z≤S
2|z

µ2(z)µ(y)

φ(z)
H2(2z) = log S + O(1). (9.8)

We also see that the condition 2|z in (9.8) may be replaced by (z, 2) = 1 and (9.8) will
still hold. Similarly it is clear that

2C2

∑′

z≤S
2|z

µ2(z)µ(y)

φ(z)
H2(2z) log((z, 3))¿ log S, (9.9)

and also that

2C2

∑′

z≤S
2|z

µ2(z)µ(y)

φ(z)
H2(2z)h3(6z)

¿
∑
z≤S
2|z

µ2(z)

φ(z)
H2(2z)h3(6z)

¿
∑
p≤S

log p

p

∑
z≤S
p|z

µ2(z)

φ(z)
H2(2z)

¿
∑

3≤p≤S

log p

pφ2(p)

∑
m≤S

p

(m,p)=1

µ2(m)

φ(m)
H2(2m)

¿ log S.

(9.10)

We conclude that

W3(0) =
1

2
log2 S + O(log S) + 2C2

∑′

z≤S
2|z

µ2(z)µ(y)

φ(z)
H2(2z) log(min(v, w))

+ O
( ∑′

z≤S

µ2(z)m(6z)

φ(z)
√

S
z

min(v, w)
H2(2z)

)
.

(9.11)
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We now evaluate the first sum in (9.11), and show that

2C2

∑′

z≤S
2|z

µ2(z)µ(y)

φ(z)
H2(2z) log(min(v, w)) =

1

4
log2 S + O(log S). (9.12)

By the symmetry in the variables v and w we have that the sum above is

= 4C2

∑′

vwy≤S
2|vwy
v<w

µ2(v)µ2(w)µ(y)

φ(vwy)
H2(2vwy) log v, (9.13)

since the condition (v, w) = 1 implies that the only term with v = w is when v = w = 1,
and this term is zero. We will sum over w and apply Lemma 2.2 according to the parity
of w, which gives∑

v<w≤ S
vy

2|vwy
(w,vy)=1

µ2(w)

φ(w)
H2(w) = [(vy, 2) = 1]

∑
v<2w′≤ S

vy

(w′,2vy)=1

µ2(w′)

φ2(w′)
+ [2|vy]

∑
v<w≤ S

vy

(w,2vy)=1

µ2(w)

φ2(w)

=
(
[(vy, 2) = 1] + [2|vy]

) (
1

S2(2vy)
log

S

v2y

)
+ O(

m(2vy)√
v

)

=
1

S2(2vy)
log

S

v2y
+ O(

m(2vy)√
v

).

Substituting this result into (9.13) we find that this sum is

=4C2

∑
v≤
√

S

µ2(v)

φ(v)
H2(v) log v

∑
y≤ S

v2

(y,v)=1

µ(y)

φ(y)
H2(y)

(
1

S2(2vy)
log

S

v2y
+ O(

m(2vy)√
v

)

)

=2
∑

v≤
√

S

µ2(v)

φ(v)
log v

∑
y≤ S

v2

(y,v)=1

µ(y)

φ(y)
log

S

v2y

+ O
( ∑

v≤
√

S

µ2(v)H2(v)√
vφ(v)

m(v) log v
∑
y≤ S

v2

µ2(y)H2(y)

φ(y)
m(y)

)
.

The inner sum in the error term here is

¿
∑
y≤S

µ2(y)H2(y)

φ(y)

∑
d|y

µ2(d)√
d

=
∑
d≤S

µ2(d)H2(d)√
dφ(d)

∑
m≤S/d
(m,d)=1

µ2(m)H2(m)

φ(m)

¿ log S,
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and by (2.19) the sum over v in the error term converges; hence the error term is O(log S).
Thus by Lemma 2.1 and partial summation in Lemma 2.4 the above expression is

= 2
∑

v≤
√

S

µ2(v)

φ(v)
S2(v) log v + O(

∑
v≤
√

S

(
µ2(v)

φ(v)
log v

)
e
−c1

√
log( S

v2 )
) + O(log S)

= log2
√

S + O(log S),

which proves (9.12).

It remains to deal with the error term in (9.11). By symmetry we may assume that
v ≤ w, and thus the error term is

¿ 1√
S

∑′

vwy≤S
(vwy,2)=1

µ2(vwy)
√

wy

φ2(vwy)
m(vwy)

¿ 1√
S

∑
w≤S

µ2(w)
√

w

φ2(w)
m(w)

∑′

v≤ S
w

(v,2)=1

µ2(v)

φ2(v)
m(v)

∑′

y≤ S
vw

(y,2)=1

µ2(y)
√

y

φ2(y)
m(y).

The inner sum over y is

¿
∑

y≤ S
vw

(y,2)=1

µ2(y)
√

y

φ2(y)

∑
d|y

µ2(d)√
d

¿
∑

d≤ S
vw

(d,2)=1

µ2(d)

φ2(d)

∑
m≤ S

dvw
(m,2)=1

µ2(m)
√

m

φ2(m)

¿
√

S

vw

∑
d≤ S

vw
(d,2)=1

µ2(d)

φ2(d)
√

d

¿
√

S

vw
.

Substituting we see the sum over v now converges, and on summing over w and treating
m(w) as in the previous estimate we see the error is O(log S). This completes the proof
of (9.3).

10. Evaluation of S3(0): Error Terms

We now treat the error terms Ef (D), Eg(D(D1)), and Eh(D(D2)). We proceed as we
did before in (8.3); in Ef (D) we break the sum into two sums according to whether
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b12b23a123 ≤ R1 or R1 < b12b23a123 ≤ R, in the former sum we sum over a2 using Lemma
2.1 and obtain a sum of the same form as Eg(D(D1)) and an error term

¿ e−c1
√

log(R/R1) log8 R. (10.1)

In the second sum where R1 < b12b23a123 we have a2 ≤ R
R1

and we do not sum over a2. We
continue this process with regard to a3, and likewise deal with the error term Eg(D(D1)).
The result of this process is that we are left with errors bounded by (10.1) and three
types of sums of the forms

E1 =
∑

a≤R/R1

µ(a)

φ(a)

∑′

uvy≤R1
uwy≤R1

R1<vwy≤R/a

µ(y)µ2(D)

φ(D)
S2(aD) log

R

avwy
, (10.2)

E2 =
∑′

a,b≤R/R1

µ(ab)

φ(ab)

∑′

uvy≤R1
R1<uwy≤R/a
R1<vwy≤R/b

µ(y)µ2(D)

φ(D)
log

R

auwy
log

R

bvwy
, (10.3)

and

E3 =
∑′

a,b,c≤R/R1

µ(abc)

abc

∑′

R1<uvy≤R/a
R1<uwy≤R/b
R1<vwy≤R/c

µ(y)µ2(D)

D
log

R

auvy
log

R

buwy
log

R

cvwy
, (10.4)

where D = uvwy.

We can handle E3 immediately. Estimating trivially, we have

E3 ¿ (log R/R1)
6

∑
R1<uvy≤R
R1<uwy≤R
R1<vwy≤R

1

uvwy
.

The top two inequalities in the summation conditions imply(
R1

u

)2

< vwy2 ≤
(

R

u

)2

and hence (
R1

u

)2
1

vwy
< y ≤

(
R

u

)2
1

vwy

Thus the bottom inequality in the summation conditions implies(
R1

u

)2
1

R
< y ≤

(
R

u

)2
1

R1

,
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and therefore the sum above is

¿
∑
u≤R

1

u

∑
(R1

u )
2 1

R
<y≤(R

u )
2 1

R1

1

y

∑
R1
uy

<w≤ R
uy

1

w

∑
R1
uy

<v≤ R
uy

1

v

¿ log R(log R/R1)
3.

Thus

E3 ¿ log R(log R/R1)
9. (10.5)

Consider next E2. The trivial estimate used for E3 would give the bound
¿ log2 R(log R/R1)

6, and therefore we need to save a factor of log R, which will occur
when we sum over y. We first note that the conditions on the summation variables for
the sum in (10.3) imply that u, v ≤ w. Next, we extend the summation range uvy ≤ R1

to uvy ≤ R, which may be done with an error ¿ log R(log R/R1)
7 in the same way that

(10.5) was obtained. Finally, the terms with R1 < wy also contribute this same error,
since this condition implies with the other summation conditions that u, v ≤ R

R1
and

R1

uy
< w < R

uy
, so that only y has a full summation range. Hence we have

E2 =
∑′

a,b≤R/R1

µ(ab)

φ(ab)

∑′

u,v≤w
wy≤R1

R1<uwy≤R/a
R1<vwy≤R/b

µ(y)µ2(D)

φ(D)
log

R

auwy
log

R

bvwy
+ O

(
log R(log(R/R1))

7
)
.

(10.6)

We now sum over u, which satisfies

R1

wy
< u ≤ min(

R

awy
, w).

If min( R
awy

, w) = w then w2 ≤ R
ay

and there will only be terms when R1

y
< w2. We

conclude in this case that √
R1

y
< w ≤

√
R

ay
.

Hence, as in the estimate to obtain (10.5), these terms contribute at most
¿ log R(log(R/R1))

7 since only the variable y runs through a full summation range. We
conclude, with z = vwy,

E2 =
∑′

a,b≤R/R1

µ(ab)

φ(ab)

∑′

v≤w
wy≤R1

R1<z≤R/b

µ(y)µ2(z)

φ(z)
log

R

bz

∑
R1
wy

<u≤ R
awy

(u,abz)=1

µ2(u)

φ(u)
log

R

auwy

+ O
(
log R(log(R/R1))

7
)
.

(10.7)
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To evaluate the inner sum, we use the relation, for 1 ≤ S ≤ R, p(j)|k,∑
R
S

<d≤R

(d,k)=1

µ2(d)

φj(d)
log

R

d
=

1

2Sj(k)
log2 S + O(

m(k)√
R
S

log S). (10.8)

This result follows immediately on writing the sum on the left-hand side above as

=
∑
d≤R

(d,k)=1

µ2(d)

φj(d)
log

R

d
−

∑
d≤R

S
(d,k)=1

µ2(d)

φj(d)

(
log

R

Sd
+ log S

)

and applying (2.21) and Lemma 2.2. Thus we have∑
R1
wy

<u≤ R
awy

(u,abz)=1

µ2(u)

φ(u)
log

R

auwy
=

φ(abz)

2abz
log2 R

aR1

+ O(
m(abz)√

R1

wy

log
R

aR1

). (10.9)

Substituting this expression into (10.7) we obtain

E2 =
1

2

∑′

a,b≤R/R1

µ(ab)

ab
log2 R

aR1

∑′

v≤w
wy≤R1

R1<z≤R/b

µ(y)µ2(z)

z
log

R

bz
+ O

(
log R(log(R/R1))

7
)
,

(10.10)

once we show that the contribution

¿
log2 R

R1√
R1

∑′

a,b≤R/R1

µ2(ab)m(ab)

φ(ab)

∑′

v≤w
wy≤R1

R1<z≤R/b

µ2(z)
√

wym(z)

φ(z)

from the error term in (10.9) is covered by the error term in (10.10). This expression
is of the same form as the error term in (9.11) estimated at the end of the last section,
except it is over a more restricted summation range. The factors m(ab) and m(z) are
handled as in that argument, and make no contribution, so we may ignore them. Hence
the expression above is, by Lemma 2.2,

¿
log4 R

R1√
R1

∑
v≤w

wy≤R1
R1<vwy≤R

µ2(vwy)
√

wy

φ(vwy)

¿
log4 R

R1√
R1

∑
w≤R1

√
w

φ(w)

∑
y≤R1

w

√
y

φ(y)

∑
R1
wy

<v≤ R
wy

µ2(v)

φ(v)

¿ log R1 log5 R

R1

,
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which is acceptable. Thus we have established (10.10).

We now treat the sum in (10.10) and show it is also bounded by the error term, from
which we conclude that

E2 ¿ log R(log R/R1)
7. (10.11)

To see this, consider the sum over y in equation (10.10)∑
R1
vw

<y≤min(
R1
w

, R
bvw

)

(y,abvw)=1

µ(y)

y
log

R

bvwy
.

For the terms with min
(

R1

w
, R

bvw

)
= R1

w
, we have v ≤ R

bR1
, and the sum in (10.10) is

¿ log5 R

R1

∑
v≤ R

R1

µ2(v)

v

∑
w≤R1

µ2(w)

w

∑
R1
vw

<y≤R1
w

µ2(y)

y

¿ log5 R

R1

∑
v≤ R

R1

µ2(v)

v

∑
w≤R1

µ2(w)

w

(
[vw ≤ R1] log v + [vw > R1] log

R1

w

)

¿ log R log5 R

R1

 ∑
v≤ R

R1

µ2(v) log v

v
+

∑
v≤ R

R1

µ2(v)

v

∑
R1
v

<w≤R1

µ2(w)

w


¿ log R log7 R

R1

,

which is acceptable. For the remaining terms when min
(

R1

w
, R

bvw

)
= R

bvw
, we have R

bR1
< v,

and by Lemma 2.1 with the error term estimate (2.14) the sum over y is

=
∑

y≤ R
bvw

(y,abvw)=1

µ(y)

y
log

R

bvwy
− [vw ≤ R1]

∑
y≤R1

vw
(y,abvw)=1

µ(y)

y

(
log

R1

vwy
+ log

R

bR1

)

= (1− [vw ≤ R1])S1(abvw) + O(m(abvw)e−c1
√

log( R
bvw

))

+ [vw ≤ R1]O(m(abvw)e−c1

√
log(

R1
vw

) log
R

R1

).

Hence the sum in (10.10) is in this case

¿ log5(R/R1)
∑

vw≤R1

m(vw)

vw
e−c1

√
log

R1
vw

+ log4(R/R1)
∑

R1<vw≤R

1

vw
(S1(vw) + m(vw))

¿ log R(log(R/R1))
5,

where as before the factors of m(vw) and S(vw) make no contribution to the error when
they are summed. This finishes the proof of (10.11).
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Finally consider E1. The inner sum in (10.2) is, with E = uwy,∑′

uvy≤R1
uwy≤R1

R1<vwy≤R/a
(D,a)=1

µ(y)µ2(D)

φ(D)
S2(aD) log

R

avwy
= 2C2

∑′

E≤R1
(E,a)=1

µ(y)µ2(E)

φ(E)
H2(aE)SR(E),

where

SR(E) =
∑

R1
wy

<v≤min( R
awy

,
R1
uy

)

(v,aE)=1

χ(aE, v)
µ2(v)H2(v)

φ(v)
log

R

avwy

and

χ(aE, v) = [2|v][(aE, 2) = 1] + [(v, 2) = 1][2|aE].

We apply (10.8) and Lemma 2.2 to evaluate SR(E). When min( R
awy

, R1

uy
) = R

awy
then in

(10.8) S = R
aR1

, and

SR(E) =
1

2S2(2aE)
log2 R

aR1

+ O(
m(2aE) log R

aR1√
R1

wy

);

while if min( R
awy

, R1

uy
) = R1

uy
then 1 < S = w

u
≤ R

aR1
, whence u < w ≤ R

aR1
u, and thus we

obtain

SR(E) =
1

2S2(2aE)
log

w

u
log

((
R

aR1

)2
u

w

)
+ O(

m(2aE) log R
aR1√

R1

wy

).

On substituting, the inner sum in (10.2) becomes

=
1

2
log2 R

aR1

∑′

uw≤R1
R

aR1
≤w

u

(uw,a)=1

µ2(uw)

φ(uw)

∑
y≤R1

uw
(y,auw)=1

µ(y)

φ(y)

+
1

2

∑′

uw≤R1

1< w
u

< R
aR1

(uw,a)=1

µ2(uw)

φ(uw)
log

w

u
log

(( R

aR1

)2 u

w

) ∑
y≤R1

uw
(y,auw)=1

µ(y)

φ(y)

+ O

( ∑′

uw≤R1
(uw,a)=1

µ2(uw)

φ(uw)

( ∑
y≤R1

uw
(y,auw)=1

µ2(y)H2(2auwy)

φ(y)

m(2auwy) log R
aR1√

R1

wy

))
.
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As before, in estimating the contribution of the error term above to (10.2) the factor
m(2auwy) may be ignored, and therefore this contribution is

¿
log2 R

R1√
R1

∑
uwy≤R1

(uwy,2)=1

µ2(uwy)
√

wy

φ2(uwy)

¿
log2 R

R1√
R1

∑
u≤R1

(u,2)=1

µ2(u)

φ2(u)

∑
w≤R1

u
(w,2)=1

µ2(w)
√

w

φ2(w)

∑
y≤R1

uw
(y,2)=1

µ2(y)
√

y

φ2(y)

¿ log2 R

R1

∑
u≤R1

(u,2)=1

µ2(u)√
uφ2(u)

∑
w≤R1

u
(w,2)=1

µ2(w)

φ2(w)

¿ log R1 log2 R

R1

.

Next, for the main terms above the sum over y is ¿ m(auw)e−c2

√
log

R1
uw by Lemma 2.1

with the error term in (2.14), and hence both sums contribute to (10.2)

¿ log3 R

R1

∑
u≤R1

µ2(u)m(u)

φ(u)

∑
w≤R1/u

µ2(w)m(w)

φ(w)
e−c1

√
log

R1
uw

¿ log R log3 R

R1

.

We conclude

E1 ¿ log R(log R/R1)
3. (10.12)

By (10.1),(10.5),(10.11), and (10.12) we have proved (9.4) and thus completed the proof
of (5.3).

11. Mixed Triple Correlations

The case k = 2 of Theorem 1.4 has already been handled by (1.5) and (5.7). In this
section we evaluate WR(k) from Section 4 in the case k = 3. This will not only prove
Theorem 1.4 but will also give an alternative and simpler proof of the second two parts
of Theorem 6.1.

We let k = (k1, k2, 0) and

WR(k) =
∑

d1,d2≤R
(d1,k1)=1, (d2,k2)=1

(d1,d2)|k2−k1

µ(d1)µ(d2)

φ([d1, d2])
log

R

d1

log
R

d2

. (11.1)

The results we obtain are contained in the following theorem. Recall Hj(m) is defined
in (2.3), hj(m) is defined in (2.17), and Hj(m), hj(m)¿j log log 3m.
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Theorem 11.1 If k = (k, k, 0), k 6= 0, and log |k| ¿ log R, we have

WR(k) = S(k) log R + O(H2(k)h3(6k)), (11.2)

and if k = (k1, k2, 0) and k1 6= k2 6= 0, letting ∆ = k1k2(k2−k1), and assuming ∆ < R/2,
we have

WR(k) = S(k) + O(
k1

φ(k1)
H2(∆)e−c1

√
log R/2∆). (11.3)

We decompose into relatively prime variables by letting d1 = a1b12 and d2 = a2b12

where (d1, d2) = b12 and thus a1, a2, and b12 are pairwise relatively prime. Then we have

WR(k) =
∑′

a1b12≤R
a2b12≤R

(a1b12,k1)=1, (a2b12,k2)=1
b12|k2−k1

µ(a1)µ(a2)µ
2(b12)

φ(a1a2b12)
log

R

a1b12

log
R

a2b12

. (11.4)

We first sum over a1 and apply Lemma 2.1 to see that∑
a1≤R/b12

(a1,a2b12k1)=1

µ(a1)

φ(a1)
log

R

a1b12

= S2(a2b12k1) + r1(
R

b12

, a2b12k1), (11.5)

and hence we have

WR(k) =
∑′

a2b12≤R
(b12,k1)=1, (a2b12,k2)=1

b12|k2−k1

µ(a2)µ
2(b12)S2(a2b12k1)

φ(a2b12)
log

R

a2b12

+ E1(R)

= VR(k) + E1(R),

(11.6)

where

E1(R) =
∑′

a2b12≤R
(b12,k1)=1, (a2b12,k2)=1

b12|k2−k1

µ(a2)µ
2(b12)r1(

R
b12

, a2b12k1)

φ(a2b12)
log

R

a2b12

¿
∑

b12≤R
b12|k2−k1

µ2(b12)

φ(b12)
e−c1
√

log(R/b12)
∑

a2≤R/b12

µ2(a2)

φ(a2)
log

R

a2b12

¿
∑

b12≤R
b12|k2−k1

µ2(b12)

φ(b12)
e−c2
√

log(R/b12). (11.7)

We first consider the case when k1 = k2 = k. Then from (11.7) we see that

E1(R)¿ 1. (11.8)
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By Lemma 2.3 we have

VR(k) =
∑′

a2b12≤R
(a2b12,k)=1

µ(a2)µ
2(b12)S2(a2b12k)

φ(a2b12)
log

R

a2b12

=
∑

b12≤R
(b12,k)=1

µ2(b12)

φ(b12)

∑
a2≤R/b12

(a2,b12k)=1

µ(a2)S2(a2b12k)

φ(a2)
log

R

a2b12

= −
∑

b12≤R
(b12,k)=1

µ2(b12)µ((b12k, 2))

φ(b12)
S2(2b12k)S3(2b12k)

+ O

( ∑
b12≤R

µ2(b12)H2(b12)

φ(b12) logA(2R/b12)

)
= YR(k) + O(1). (11.9)

To evaluate YR(k) we divide into even terms and odd terms and apply Lemma 2.4. Thus

VR(k) = [(k, 2) = 1]
∑
2b≤R

(b,2k)=1

µ2(b)

φ(b)
S2(2bk)S3(2bk)

−µ((k, 2))
∑

b12≤R
(b12,2k)=1

µ2(b12)

φ(b12)
S2(2b12k)S3(2b12k)

= 2C2H2(k)

(
[(k, 2) = 1]

∑
b≤R/2

(b,2k)=1

µ2(b)

φ2(b)
S3(2bk)

−µ((k, 2))
∑

b12≤R
(b12,2k)=1

µ2(b12)

φ2(b12)
S3(2b12k)

)

= 2C2H2(k)

((
[(k, 2) = 1]− µ((k, 2))

)
log R + O(h3(6k)) + O

(S3(6k)m(k)√
R

)
)

)
= 2C2[2|k]H2(k) log R + O(H2(k)h3(6k))

= S2(k) log R + O(H2(k)h3(6k)).

On combining these results we have proved the first part of Theorem 11.1.

We now turn to the case that k2 6= k1. As in Lemma 2.5 we let κ = (k1, k2) and
∆ = k1k2(k2−k1). As before let k∗ = max(|k1|, |k2|). In this case we see from (11.7) that

E1(R)¿ H1(k2 − k1)e
−c2
√

log(R/2k∗). (11.10)

We now let k1 = s1K1, k2 = s2K2, where K1 and K2 are the largest squarefree divisors
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of k1 and k2 respectively. Let K12 = (K1, K2). Then we have

VR(k) =
∑′

a2b12≤R
(b12,K1)=1, (a2b12,K2)=1

b12|k2−k1

µ(a2)µ
2(b12)S2(a2b12K1)

φ(a2b12)
log

R

a2b12

Next let a2 = c2d2 where c2|K1 and (d2, K1) = 1 so that (a2, K1) = c2, from which we see

VR(k) =
∑′

c2d2b12≤R
(d2b12,K1)=1, (c2d2b12,K2)=1

b12|k2−k1, c2|K1

µ(c2)µ(d2)µ
2(b12)S2(d2b12K1)

φ(c2d2b12)
log

R

c2d2b12

On summing over d2 by dividing the sum according to whether d2 is even or odd, we see
on applying Lemma 2.1 that∑

d2≤R/c2b12
(d2,b12K1K2)=1

µ(d2)S2(d2b12K1)

φ(d2)
log

R

c2d2b12

= 2C2H2(b12K1)
∑

d2≤R/c2b12
(d2,b12K1K2)=1

2|d2b12K1

µ(d2)

φ(d2)
H2(d2) log

R

c2d2b12

= 2C2H2(b12K1)

(
− [(K1K2b12, 2) = 1]

∑
2d≤R/c2b12

(d,2b12K1K2)=1

µ(d)

φ2(d)
log

R

2c2db12

+ [2|b12K1]
∑

d2≤R/c2b12
(d2,2b12K1K2)=1

µ(d2)

φ2(d2)
log

R

c2d2b12

)

= 2C2H2(b12K1)χ(b12)S3(2b12K1K2) + O(H2(b12K1)e
−c1
√

log(R/2c2b12)),

where

χ(b12) = −[(K1K2b12, 2) = 1] + [2|b12K1].

Since c2b12|K1(k2 − k1), we see that the condition |∆| < R/2 implies c2b12 ≤ R/2 is
automatically satisfied. Therefore we have

VR(k) = 2C2

∑
b12|k2−k1, c2|K1

(b12,K1K2)=1, (c2,K2)=1

µ(c2)µ
2(b12)H2(b12K1)χ(b12)S3(2b12K1K2)

φ(c2)φ(b12)
+ E2(R)

= YR(k) + E2(R),

(11.11)
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where

E2(R)¿ k1

φ(k1)
H2(∆)e−c1

√
log R/2∆.

Since ∑
c2|K1

(c2,K2)=1

µ(c2)

φ(c2)
=

∏
p| K1

K12

(
1− 1

p− 1

)
= [(K1/K12, 2) = 1]

H2(K12)

H2(K1)
,

we have

YR(k) = 2C2[(K1/K12, 2) = 1]
H2(K12)

H2(K1)

∑
b12|k2−k1

(b12,K1K2)=1

µ2(b12)H2(b12K1)χ(b12)S3(2b12K1K2)

φ(b12)
.

(11.12)

We divide the sum in the equation above according to the parity of b12 and apply Lemma
2.4 to see that the sum is

= [(K1K2, 2) = 1]
∑

2b|k2−k1

(b,2K1K2)=1

µ2(b)H2(bK1)χ(2b)S3(2bK1K2)

φ(b)

+
∑

b12|k2−k1

(b12,2K1K2)=1

µ2(b12)H2(b12K1)χ(b12)S3(2b12K1K2)

φ(b12)

= η(K1, K2)H2(K1)
∑

b|k2−k1

(b,2K1K2)=1

µ2(b)S3(2bK1K2)

φ2(b)

= η(K1, K2)H2(K1)S3(2K1K2(k2 − k1)),

where

η(K1, K2) = [(K1K2, 2) = 1][2|k2 − k1]− [(K1K2, 2) = 1] + [2|K1]

On substituting we have that

YR(k) = 2C2[(K1/K12, 2) = 1]η(K1, K2)H2(K12)S3(2K1K2(k2 − k1)).

Now [(K1/K12, 2) = 1] = 0 if K1 is even and K2 is odd, and η(K1, K2) = 0 if both K1

and K2 are odd or K1 is odd and K2 is even. Hence YR(k) is zero unless K12 is even,
and therefore

YR(k) = [2|K12]2C2H2(K12)S3

(
2K1K2(k2 − k1)

)
= S2(κ)S3(∆) = S(k),

by Lemma 2.5. This completes the proof of Theorem 11.1
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12. Application to primes

The use of correlations of short divisor sums to study primes goes back at least to Selberg’s
work on the sieve. Our mixed correlation result that, for R ≤ N

1
4
−ε,

S̃3(N, k) =
N∑

n=1

ΛR
2(n)Λ(n + k) = S2(k)N log R + o(N log N) (12.1)

provides the upper bound for prime pairs in (1.39) with B = 4, since for n ≥ R

µ2(n)Λ(n) ≤ log n

log2 R
Λ2

R(n),

and the prime powers make a contribution ¿ N1/2+ε. The Selberg sieve provides the
same information, and λR(n) in (1.2) gives the optimal majorant in the Selberg sieve for
this problem when the appropriate normalization is used.

To study primes in short intervals, we consider the modified moments

M ′
k(N, h, ψR, C) =

2N∑
n=N+1

(
ψR(n + h)− ψR(n)− C log N

)k
, (12.2)

and

M̃ ′
k(N, h, ψR, C) =

2N∑
n=N+1

(
ψ(n + h)− ψ(n)

)(
ψR(n + h)− ψR(n)− C log N

)k−1
, (12.3)

where C is a function of h and R that will be chosen to optimize our applications. If
we take C = 0 these moments reduce to the moments considered in Section 1. We will
assume in this section that h = λ log N , λ¿ 1, and thus

h¿ log N, (12.4)

which we will make free use of in our estimates. We now consider, for ρ ≥ 0,

M(h, ρ) = M̃ ′
3(N, h, ψR, C)− ρ log NM ′

2(N, h, ψR, C)

=
2N∑

n=N+1

(
ψ(n + h)− ψ(n)− ρ log N

)(
ψR(n + h)− ψR(n)− C log N

)2
.

(12.5)

To evaluateM(h, ρ) we see first that

M̃ ′
3(N, h, ψR, C) = M̃ ′

3(N, h, ψR)− 2C log NM̃ ′
2(N, h, ψR) + C2 log2 NM̃ ′

1(N, h, ψR).

We apply Corollary 1.5 (which as mentioned in Section 1 applies immediately to M̃ ′
k as

well as M̃k), with R = N θ and 0 < θ < ϑ
2
,

M̃ ′
3(N, h, ψR, C) ∼

(
(θ2λ + 3θλ2 + λ3)− 2C(θλ + λ2) + C2λ

)
N log3 N
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and by Corollary 1.2, for 0 < θ ≤ 1
2
,

M ′
2(N, h, ψR, C) ∼

(
θλ + λ2 − 2Cλ + C2

)
N log2 N.

We therefore see thatM(h, ρ) is quadratic in C when λ 6= ρ, and therefore on completing
the square we find that, for λ 6= ρ, and 0 < θ < ϑ

2
,

M(h, ρ) ∼
(
(λ− ρ)

(
C − λ(λ− ρ + θ)

λ− ρ

)2

+
λθ

λ− ρ

(
(λ− ρ)2 − θρ

))
N log3 N.

By choosing

C =
λ(λ− ρ + θ)

λ− ρ
= λ

(
1 +

θ

λ− ρ

)
(12.6)

we maximize M(h, ρ) if λ < ρ and minimize it if λ > ρ. We conclude that with this
choice of C, and 0 < θ < ϑ

2
,

M(h, ρ) ∼ λθ

λ− ρ

(
(λ− ρ)2 − θρ

)
N log3 N. (12.7)

We see thatM(h, ρ) is positive (andÀ N log3 N ) when λ is a fixed number in the range
ρ−
√

θρ < λ < ρ but is negative when ρ < λ < ρ +
√

θρ.

We now let Pr(N, h) denote the number of integers N < n ≤ 2N for which the interval
(n, n + h] contains exactly r primes. Thus

Pr(N, h) =
2N∑

n=N+1
π(n+h)−π(n)=r

1. (12.8)

The Poisson model for primes in short intervals (see [6]) is equivalent to the conjecture
that

Pr(N, h) ∼ λre−λ

r!
N. (12.9)

We let

Q−r (N, h) =
r∑

m=0

Pm(N, h) =
2N∑

n=N+1
π(n+h)−π(n)≤r

1 (12.10)

and

Q+
r (N, h) =

∞∑
m=r+1

Pm(N, h) =
2N∑

n=N+1
π(n+h)−π(n)>r

1. (12.11)
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Thus we have

Q−r (N, h) + Q+
r (N, h) = N. (12.12)

We let pj0 = pj0(N) and pj1 = pj1(N) denote respectively the smallest and the largest
primes in the interval [N + 1, 2N ]. For smaller than average gaps between primes, we
use the relation, for r ≥ 1,

Q+
r (N, h) =

∑
N+1≤n<pj0

π(n+h)−π(n)>r

1 +

j1∑
j=j0

∑
pj≤n<pj+1

pj+r+1≤n+h

1−
∑

2N<n<pj1+1

π(n+h)−π(n)>r

1.

The first and third sums are O(Ne−c1
√

log N) by the prime number theorem with error
term, and hence

Q+
r (N, h) =

∑
N+1≤pj≤2N

∑
pj≤n<pj+1

pj+r+1≤n+h

1 + O(Ne−c1
√

log N)

=
∑

N+1≤pj≤2N
pj+r+1−pj+1<h

(
pj+1 −max(pj, pj+r+1 − bhc)

)
+ O(Ne−c1

√
log N)

≤ h
∑

N+1≤pj≤2N
pj+r+1−pj+1<h

1 + O(Ne−c1
√

log N). (12.13)

For larger than average gaps between primes a similar argument shows, for r ≥ 0,

Q−r (N, h) =
∑

N+1≤pj≤2N

∑
pj≤n<pj+1

pj+r+1>n+h

1 + O(Ne−c1
√

log N)

=
∑

N+1≤pj≤2N
pj+r+1−pj>h

(
min(pj+1, pj+r+1 − bhc)− pj

)
+ O(Ne−c1

√
log N)

≤
∑

N+1≤pj≤2N
pj+r+1−pj>h

(pj+r+1 − pj) + O(Ne−c1
√

log N). (12.14)

Next, we have

Q+
r (N, h) =

2N∑
n=N+1

ψ(n+h)−ψ(n)≥ρ log N

1 + O(N
1
2 ), (12.15)

where ρ can be taken to be any number in the range r < ρ < r + 1, since the prime
powers may be discarded with an error ¿ N

1
2 . Also

Q−r (N, h) =
2N∑

n=N+1
ψ(n+h)−ψ(n)≤ρ log N

1 + O(N
1
2 ), (12.16)
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where again ρ can be taken to be any number in the range r < ρ < r + 1. Returning to
(12.5), we see on applying Cauchy’s inequality twice and using (12.15) that

M(h, ρ) ≤
2N∑

n=N+1
ψ(n+h)−ψ(n)≥ρ log N

(
ψ(n + h)− ψ(n)

)(
ψR(n + h)− ψR(n)− C log N

)2

≤

 2N∑
n=N+1

ψ(n+h)−ψ(n)≥ρ log N

1


1
4 (

2N∑
n=N+1

(ψ(n + h)− ψ(n))4

) 1
4

(
2N∑

n=N+1

(ψR(n + h)− ψR(n)− C log N)4

) 1
2

=
(
Q+

r (N, h) + O(N
1
2 )

) 1
4 M ′

4(N, h, ψ)
1
4 M ′

4(N, h, ψR, C)
1
2 .

(12.17)

The same argument also shows that

−M(h, ρ) ≤ ρ log N
(
Q−r (N, h) + O(N

1
2 )

) 1
2 M ′

4(N, h, ψR, C)
1
2 , (12.18)

and therefore we conclude that for any r < ρ < r + 1

−
(
Q−r (N, h) + O(N

1
2 )

) 1
2 ≤ M(h, ρ)

ρ log NM ′
4(N, h, ψR, C)

1
2

≤
(
Q+

r (N, h) + O(N
1
2 )

) 1
4

(
M ′

4(N, h, ψ)
1
4

ρ log N

) (12.19)

To prove the first part of Theorem 1.6 we estimate the moments M ′
4(N, h, ψ) and

M ′
4(N, h, ψR, C) trivially when hÀ 1 using the inequality

|abcd| ≤ 1

4
(a4 + b4 + c4 + d4)

and the equation above (1.10) to see that

M ′
4(N, h, ψ) =

∑
1≤mi≤h
1≤i≤4

2N∑
n=N+1

Λ(n + m1)Λ(n + m2)Λ(n + m3)Λ(n + m4)

¿ h4
∑

n≤3N

Λ(n)4

¿ h4N log3 N,
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and similarly

M ′
4(N, h, ψR, C) ¿ M ′

4(N, h, ψR) + N log4 N

¿ h4
∑

n≤3N

ΛR(n)4 + N log4 N

¿ h4 log4 R
∑

n≤3N

d(n)4

¿ h4N log19 N

by (4.14). Hence, subject to (12.4), we see by (12.7), (12.13), and (12.19) that, for r ≥ 1,
and some positive constant C, ∑

N+1≤pj≤2N
pj+r+1−pj+1<h

1À N

logC N
(12.20)

provided ρ−
√

θρ < λ < ρ, r < ρ < r + 1, and 0 < θ < ϑ
2
. Since ρ can be taken as close

to r as we wish, we conclude that

Ξr ≤ r −
√

θr,

where unconditionally we may take any 0 < θ < 1/4. This proves the first part of
Theorem 1.6. If we assume ϑ = 1 we can take 0 < θ < 1

2
. The corresponding result for

larger than average gaps between primes is proved in the same way.

In order to obtain positive proportion results, we need to use the generalization of
the sieve upper bound (1.39) for prime k-tuples. This result states that for the function
ψj(N) defined in (1.8) where j = (j1, j2, . . . , jr) with the ji’s distinct and S(j) 6= 0

ψj(N) ≤ (2rr! + ε)S(j)N, (12.21)

see Theorem 5.7 of [16]. On applying this bound to the formulas leading to (1.15) we see
that, subject to (12.4),

Mk(N, h, ψ)¿ N(log N)k, (12.22)

which implies the same estimate holds for M ′
k(N, h, ψ). Next, as above

M ′
4(N, h, ψR, C)¿M ′

4(N, h, ψR) + N log4 N,

and therefore assuming (1.47) we have, for 0 < θ < 1
4
,

M ′
4(N, h, ψR, C)¿ N log4 N. (12.23)

Using these estimates in (12.19) we obtain∑
N+1≤pj≤2N

pj+r+1−pj+1<h

1À N

log N
(12.24)
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under the same conditions as (12.20) and 0 < θ < 1
4
. This proves the remaining part of

Theorem 1.6.

In an identical fashion we see that ifM(h, ρ) < 0 then assuming (1.47) we have∑
N+1≤pj≤2N
pj+r+1−pj>h

(pj+r+1 − pj)À N, (12.25)

where r ≥ 0, r < ρ < r + 1, ρ < λ < ρ +
√

θρ, and 0 < θ < 1
4
. Since ρ can be taken as

close to r + 1 and θ as close to 1
4

as we wish, this completes the proof of Theorem 1.7.
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[11] D. A. Goldston and C. Y. Yıldırım, On the second moment for primes in an arithmetic progression,
Acta Arithmetica C.1 (2001), 85–104.

[12] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. A foundation for computer
science, Second Edition. Addison-Wesley Publishing Company, Reading, MA, 1994.

[13] S. Graham, An asymptotic estimate related to Selberg’s sieve, J. Number Theory 10 (1978), 83–94.

[14] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio Numerorum’: III On the expression
of a number as a sum of primes, Acta Math. 44 (1923), 1–70.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3 (2003), #A05 66
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