EXTENDING A RECENT RESULT OF SANTOS ON PARTITIONS INTO ODD PARTS

James A. Sellers
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
sellersj@math.psu.edu

Received:8/27/02, Accepted: 4/7/03, Published: 4/9/03

Abstract

In a recent note, Santos proved that the number of partitions of n using only odd parts equals the number of partitions of n of the form $p_{1}+p_{2}+p_{3}+p_{4}+\ldots$ such that $p_{1} \geq p_{2} \geq p_{3} \geq p_{4} \geq \cdots \geq 0$ and $p_{1} \geq 2 p_{2}+p_{3}+p_{4}+\ldots$. Via partition analysis, we extend this result by replacing the last inequality with $p_{1} \geq k_{2} p_{2}+k_{3} p_{3}+k_{4} p_{4}+\ldots$, where $k_{2}, k_{3}, k_{4}, \ldots$ are nonnegative integers. Several applications of this result are mentioned in closing.

1 Background

One of the most celebrated identities in the theory of partitions is attributed to Leonhard Euler and reads as follows:

Theorem 1.1. Let $d(n)$ be the number of partitions of n into distinct parts and let o(n) be the number of partitions of n into odd parts. Then, for all $n \geq 0, d(n)=o(n)$.

In a recent paper, Santos [12] proved via a bijection that $o(n)$ also equals the number of partitions of n of the form $p_{1}+p_{2}+p_{3}+p_{4}+\ldots$ such that $p_{1} \geq p_{2} \geq p_{3} \geq p_{4} \geq \cdots \geq 0$ and $p_{1} \geq 2 p_{2}+p_{3}+p_{4}+\ldots$.

Our goal in this note is to prove Santos' result via generating functions. Actually, we will prove a much more general result using the technique of partitions analysis, introduced by Percy MacMahon [11, Vol. II, Section VIII] and heavily utilized recently by G. Andrews, P. Paule, A. Riese and others $[1,2,3,4,5,6,7,8,9]$.

Our main theorem is as follows:
Theorem 1.2. Let $K=\left(k_{2}, k_{3}, k_{4}, \ldots\right)$ be an infinite vector of nonnegative integers. Define $p(n ; K)$ as the number of partitions of n of the form $p_{1}+p_{2}+p_{3}+p_{4}+\ldots$ with $p_{1} \geq p_{2} \geq p_{3} \geq p_{4} \cdots \geq 0$ and $p_{1} \geq k_{2} p_{2}+k_{3} p_{3}+k_{4} p_{4}+\ldots$. Then, for all $n \geq 0$,
$p(n ; K)$ equals the number of partitions of n whose parts must be 1's or of the form $\left(\sum_{i=2}^{m} k_{i}\right)+(m-1)$ for some integer $m \geq 2$.

Before turning to the proof of Theorem 1.2, we briefly mention a few key items from partition analysis. First, we define the Omega operator $\underset{\geqq}{\Omega}$.

Definition 1.3. The operator $\underset{\geqq}{\Omega}$ is given by

$$
\underset{\geqq}{\Omega} \sum_{s_{1}=-\infty}^{\infty} \cdots \sum_{s_{j}=-\infty}^{\infty} A_{s_{1}, \ldots, s_{j}} \lambda_{1}^{s_{1}} \ldots \lambda_{j}^{s_{j}}:=\sum_{s_{1}=0}^{\infty} \cdots \sum_{s_{j}=0}^{\infty} A_{s_{1}, \ldots, s_{j}},
$$

where the domain of the $A_{s_{1}, \ldots, s_{j}}$ is the field of rational functions over \mathbb{C} in several complex variables and the λ_{i} are restricted to annuli of the form $1-\varepsilon<\left|\lambda_{i}\right|<1+\varepsilon$.

In the work below, we will also use the symbol μ as a parameter like λ_{j} for some j. Finally, we need the following lemma involving the Omega operator.

Lemma 1.4.

$$
\underset{\geqq}{\Omega} \frac{1}{(1-\lambda x)\left(1-\frac{y}{\lambda}\right)}=\frac{1}{(1-x)(1-x y)} .
$$

A proof of this result can be found in [3, Lemma 1.1].

2 Main Result

Now we are in position to prove Theorem 1.2 via generating function manipulations.

Proof. Note that

$$
\begin{aligned}
\sum_{n=0}^{\infty} p(n ; K) q^{n} & =\sum_{\substack{p_{1} \geq p_{2} \geq p_{3} \geq \cdots \geq 0 \\
p_{1} \geq k_{2} p_{2}+k_{3} p_{3}+\ldots}} q^{p_{1}+p_{2}+p_{3}+\ldots} \\
& =\sum_{\geqq}^{\Omega} \sum_{p_{1}, p_{2}, p_{3}, \cdots \geq 0} q^{p_{1}+p_{2}+p_{3}+\ldots}\left(\lambda_{1}^{p_{1}-p_{2}} \lambda_{2}^{p_{2}-p_{3}} \lambda_{3}^{p_{3}-p_{4}} \ldots\right) \mu^{p_{1}-k_{2} p_{2}-k_{3} p_{3}-\ldots}
\end{aligned}
$$

by the definition of the Omega operator. Hence, after rewriting the above and applying

Lemma 1.4 multiple times, we find that

$$
\begin{aligned}
\sum_{n=0}^{\infty} p(n ; K) q^{n} & =\underset{\geqq}{\geqq} \frac{1}{\geqq\left(1-q \lambda_{1} \mu\right)\left(1-\frac{q \lambda_{2}}{\lambda_{1} \mu^{k_{2}}}\right)\left(1-\frac{q \lambda_{3}}{\lambda_{2} \mu^{k_{3}}}\right) \ldots} \\
& =\underset{\geqq}{\Omega} \frac{1}{\geqq(1-q \mu)\left(1-\frac{q^{2} \lambda_{2}}{\mu^{k_{2}-1}}\right)\left(1-\frac{q \lambda_{3}}{\lambda_{2} \mu^{k_{3}}}\right) \ldots} \\
& =\underset{\geqq}{\Omega} \frac{1}{\geqq(1-q \mu)\left(1-\frac{q^{2}}{\mu^{k_{2}-1}}\right)\left(1-\frac{q^{3} \lambda_{3}}{\mu^{k_{3}+k_{2}-1}}\right) \ldots}
\end{aligned}
$$

We continue to apply Lemma 1.4 to eliminate all parameters λ_{j} to obtain

$$
\sum_{n=0}^{\infty} p(n ; K) q^{n}=\underset{\geqq}{\Omega}\left(\frac{1}{1-q \mu}\right)\left(\frac{1}{1-\frac{q^{2}}{\mu^{k_{2}-1}}}\right)\left(\frac{1}{1-\frac{q^{3}}{\mu^{k_{2}+k_{3}-1}}}\right) \cdots
$$

At this point, the only parameter to eliminate is μ. We now rewrite the generating function above in terms of geometric series and annilihate μ based on the definition of the Omega operator. Thus,

$$
\begin{aligned}
\sum_{n=0}^{\infty} p(n ; K) q^{n} & =\underset{\geqq}{\Omega} \sum_{a_{1} \geq 0}(q \mu)^{a_{1}} \sum_{a_{2} \geq 0}\left(q^{2} \mu^{-k_{2}+1}\right)^{a_{2}} \sum_{a_{3} \geq 0}\left(q^{3} \mu^{-k_{3}-k_{2}+1}\right)^{a_{3}} \cdots \\
& =\sum_{\geqq}^{\Omega} \sum_{a_{1}, a_{2}, a_{3}, \cdots \geq 0} q^{a_{1}+2 a_{2}+3 a_{3}+\ldots} \mu^{a_{1}+\left(-k_{2}+1\right) a_{2}+\left(-k_{3}-k_{2}+1\right) a_{3}+\ldots} \\
& =\sum_{\geqq}^{\Omega} \sum_{\substack{a_{2}, a_{3}, \ldots \geq 0 \\
a_{1} \geq\left(k_{2}-1\right) a_{2}+\left(k_{3}+k_{2}-1\right) a_{3}+\ldots}} q^{a_{1}+2 a_{2}+3 a_{3}+\ldots} \mu^{a_{1}-\left[\left(k_{2}-1\right) a_{2}+\left(k_{3}+k_{2}-1\right) a_{3}+\ldots\right]} \\
& =\sum_{a_{2} \geq 0} q^{2 a_{2}} \times \sum_{a_{3} \geq 0} q^{3 a_{3}} \times \cdots \times \sum_{a_{1} \geq\left(k_{2}-1\right) a_{2}+\left(k_{3}+k_{2}-1\right) a_{3}+\ldots} q^{a_{1}} \\
& =\sum_{a_{2} \geq 0} q^{2 a_{2}} \times \sum_{a_{3} \geq 0} q^{3 a_{3}} \times \cdots \times \frac{q^{\left(k_{2}-1\right) a_{2}+\left(k_{3}+k_{2}-1\right) a_{3}+\ldots}}{1-q} \\
& =\frac{1}{(1-q)\left(1-q^{k_{2}+1}\right)\left(1-q^{k_{3}+k_{2}+2}\right)\left(1-q^{k_{4}+k_{3}+k_{2}+3}\right) \cdots}
\end{aligned}
$$

The result follows.

3 Applications

We close with several comments related to Theorem 1.2. First off, Santos' result is clearly proven via Theorem 1.2 using the vector $K=(2,1,1,1, \ldots)$. Next, note that the vector
$K=(1,0,0,0, \ldots)$ also yields an obvious result. Namely, the number of partitions of n of the form $p_{1}+p_{2}+p_{3}+\ldots$ with $p_{1} \geq p_{2} \geq p_{3} \geq \cdots \geq 0$ and $p_{1} \geq p_{2}$ is simply $p(n)$, whose generating function is

$$
\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots}
$$

which is what we obtain in Theorem 1.2 with $K=(1,0,0,0, \ldots)$.
A third example of Theorem 1.2 arises in connection with the vector $K=(1,1,1,1, \ldots)$. From Theorem 1.2 we find that the number of partitions of n with $p_{1} \geq p_{2}+p_{3}+p_{4}+\ldots$ equals the number of partitions of n using 1's and even integers as parts. This means

$$
\sum_{n=0}^{\infty} p(n ;(1,1,1,1, \ldots)) q^{n}=\frac{1}{(1-q)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{6}\right) \ldots}
$$

Note that, by generating function dissection, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p(2 n ;(1,1,1,1, \ldots)) q^{2 n} \\
= & \frac{1}{2}\left[\sum_{n=0}^{\infty} p(n ;(1,1,1,1, \ldots)) q^{n}+\sum_{n=0}^{\infty} p(n ;(1,1,1,1, \ldots))(-q)^{n}\right] \\
= & \frac{1}{2}\left(\frac{1}{\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{6}\right) \ldots}\right)\left(\frac{1}{1-q}+\frac{1}{1+q}\right) \\
= & \frac{1}{2}\left(\frac{1}{\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{6}\right) \ldots}\right)\left(\frac{2}{(1-q)(1+q)}\right) \\
= & \frac{1}{\left(1-q^{2}\right)^{2}\left(1-q^{4}\right)\left(1-q^{6}\right) \ldots} .
\end{aligned}
$$

Thus,

$$
\sum_{n=0}^{\infty} p(2 n ;(1,1,1,1, \ldots)) q^{n}=\frac{1}{(1-q)^{2}\left(1-q^{2}\right)\left(1-q^{3}\right) \ldots}
$$

Similar analysis shows that $p(2 n+1 ;(1,1,1,1, \ldots))$ has the same generating function. A variant of this generating function recently arose in the context of graphical forest partitions [10]. Namely, let $g f(2 k)$ be the number of partitions of $2 k$ such that each partition, when viewed as the degree sequence of a graph, has a graphical representation which is a tree or union of trees (forest). Since the generating function for $g f(2 n)$, as shown in [10], is

$$
\frac{q}{(1-q)^{2}\left(1-q^{2}\right)\left(1-q^{3}\right) \ldots},
$$

we now know that

$$
p(2 n-2 ;(1,1,1,1, \ldots))=g f(2 n)
$$

for all $n \geq 1$.

We close with one last well-known partition function which is related to the RogersRamanujan identities. Namely, let $p_{5}^{*}(n)$ be the number of partitions of n into parts congruent to $\pm 1(\bmod 5)$. Then it is clear that $p_{5}^{*}(n)=p(n ;(3,1,2,1,2,1,2, \ldots))$ for all n. By way of generalization, let $p_{m}^{*}(n)$ be the number of partitions of n into parts congruent to $\pm 1(\bmod m)($ for $m \geq 3)$. Then, for all $n \geq 0$,

$$
p_{m}^{*}(n)=p(n ;(m-2,1, m-3,1, m-3,1, m-3, \ldots)) .
$$

Of course, the case $m=4$ returns us to Santos' result, the original motivation for this note.

References

[1] G. Andrews, MacMahon's partition analysis: I. The lecture hall partition theorem, in Mathematical Essays in Honor of Gian-Carlo Rota, B.E. Sagan and R.P. Stanley, eds, pp. 1-22. Boston, Birkhuser, 1998.
[2] G. Andrews, MacMahon's partition analysis: II. Basic theorems, Ann. Comb. 4 (2000), 327-338.
[3] G. Andrews, P. Paule and A. Riese, MacMahon's partition analysis: The omega package, Europ J. Combinatorics 22, no. 7 (2001), 887-904.
[4] G. Andrews and P. Paule, MacMahon's partition analysis IV: Hypergeometric multisums, Paper B42i, Issue 42, Séminaire Lotharingien de Combinatoire (electronic journal).
[5] G. Andrews, P. Paule, A. Riese and V. Strehl, MacMahon's partition analysis V: Bijections, recursions and magic squares, Algebraic Combinatorics and Applications, proccedings of Euroconference Alcoma99, September 12-19, 1999, Goessweistein, Germany, A. Betten, A. Kohnert, R. Laue and A. Wassermann, eds., pp. 1-39. Berlin, Springer, 2001.
[6] G. Andrews, P. Paule and A. Riese, MacMahon's partition analysis VI: A new reduction algorithm, Ann. Comb. 5, no. 3-4 (2001), 251-270.
[7] G. Andrews, P. Paule and A. Riese, MacMahon's partition analysis VII: Constrained compositions, AMS Contemporary Mathematics 291 (2001), 11-27.
[8] G. Andrews, P. Paule and A. Riese, MacMahon's partition analysis VIII: Plane partition diamonds, Advances in Appl. Math. 27 (2001), 231-242.
[9] G. Andrews, P. Paule and A. Riese, MacMahon's partition analysis IX: k-gon partitions, Bull. Austral. Math. Soc. 64 (2001), 321-329.
[10] D. Frank, C. Savage and J. Sellers, On the number of graphical forest partitions, to appear in Ars Comb.
[11] P. MacMahon, Combinatory Analysis, 2 Volumes, Cambridge University Press, Cambridge, 19151916 (Reprinted: Chelsea, New York, 1960).
[12] J. P. De O. Santos, On a new combinatorial interpretation for a theorem of Euler, Adv. Stud. Contemp. Math. (Pusan) 3, no. 2 (2001), 31-38.

