JENSEN PROOF OF A CURIOUS BINOMIAL IDENTITY

Wenchang Chu
Dipartimento di Matematica, Università degli Studi di Lecce, Lecce-Arnesano, P. O. Box 193, 73100
Lecce, Italia
chu. wenchang@unile.it
Leontina Veliana Di Claudio
Dipartimento di Matematica, Università degli Studi di Lecce, Lecce-Arnesano, P. O. Box 193, 73100 Lecce, Italia
leontina@email.it

Received: 5/22/03, Revised: 12/25/03, Accepted: 12/26/03, Published: 12/30/03

Abstract

By means of the Jensen formulae on binomial convolutions, a new proof is presented for a curious identity due to Z.-W. Sun.

Based on double recurrence relations, Sun [6] discovered the following binomial identity $$
S_{m}:=(x+m+1) \sum_{i=0}^{m}(-1)^{i}\binom{x+y+i}{m-i}\binom{y+2 i}{i}-\sum_{i=0}^{m}(-4)^{i}\binom{x+i}{m-i}=(x-m)\binom{x}{m} .
$$

Recently, three alternative proofs have been provided by Panholzer and Prodinger [5] via the generating function method, by Merlini and Sprugnoli [4] through Riordan arrays, and by Ekhad and Mohammed [2] based on the "WZ" method. Combining Jensen's identity and Chu-Vandermonde convolution formulae on binomial coefficients, we present yet another proof for this result which provides a shortcut.

By means of the Jensen formulae (cf. [1, Eq 8] for example) on binomial convolutions

$$
\sum_{i=0}^{m}\binom{a+b i}{i}\binom{c-b i}{m-i}=\sum_{k=0}^{m}\binom{a+c-k}{m-k} b^{k}
$$

the first binomial sum displayed in S_{m} can be reformulated as

$$
\begin{aligned}
\sum_{i=0}^{m}(-1)^{i}\binom{x+y+i}{m-i}\binom{y+2 i}{i} & =(-1)^{m} \sum_{i=0}^{m}\binom{y+2 i}{i}\binom{-1-x-y+m-2 i}{m-i} \\
& =(-1)^{m} \sum_{k=0}^{m}\binom{-1-x+m-k}{m-k} 2^{k}=\sum_{k=0}^{m}\binom{x}{m-k}(-2)^{k} .
\end{aligned}
$$

For a complex x and a natural number n, denote the shifted factorial of x of order n by

$$
(x)_{0}=1 \quad \text { and } \quad(x)_{n}=x(x+1) \cdots(x+n-1) \quad \text { for } \quad n=1,2, \cdots .
$$

In accordance with the parity of k, writing $k:=\delta+2 k^{\prime}$ with $\delta:=0,1$ and then performing the replacement $j:=i-\delta-k^{\prime}$, we can derive the following binomial coefficient identity:

$$
\begin{aligned}
\sum_{\frac{k}{2} \leq i \leq k}\binom{i}{k-i}(-4)^{i} & =(-4)^{\delta+k^{\prime}} \sum_{j=0}^{k^{\prime}}\binom{\delta+k^{\prime}+j}{k^{\prime}-j}(-4)^{j} \\
& =(-4)^{\delta+k^{\prime}} \sum_{j=0}^{k^{\prime}} \frac{(-1)^{j}\left(\delta+k^{\prime}+j\right)!}{j!\left(k^{\prime}-j\right)!(1 / 2+\delta)_{j}} \\
& =(-4)^{\delta+k^{\prime}} \frac{(1+\delta)_{k^{\prime}}}{(1 / 2+\delta)_{k^{\prime}}} \sum_{j=0}^{k^{\prime}}\binom{-1-\delta-k^{\prime}}{j}\binom{\delta-1 / 2+k^{\prime}}{k^{\prime}-j} \\
& =(-4)^{\delta+k^{\prime}} \frac{(1+\delta)_{k^{\prime}}}{(1 / 2+\delta)_{k^{\prime}}}\binom{-3 / 2}{k^{\prime}}=(-1)^{k} 2^{k}(1+k)
\end{aligned}
$$

where the Chu-Vandermonde convolution formulae has been applied.
This binomial identity allows us to express the second sum displayed in S_{m} as

$$
\begin{aligned}
\sum_{i=0}^{m}\binom{x+i}{m-i}(-4)^{i} & =\sum_{i=0}^{m}(-4)^{i} \sum_{k=i}^{m}\binom{x}{m-k}\binom{i}{k-i} \\
& =\sum_{k=0}^{m}\binom{x}{m-k} \sum_{\frac{k}{2} \leq i \leq k}\binom{i}{k-i}(-4)^{i} \\
& =\sum_{k=0}^{m}\binom{x}{m-k}(-2)^{k}(k+1) .
\end{aligned}
$$

Therefore the linear combination of the two binomial sums in S_{m} results in

$$
\begin{aligned}
S_{m} & =\sum_{k=0}^{m}(x+m-k)\binom{x}{m-k}(-2)^{k}=\sum_{k=0}^{m}\{(x-m+k)+2(m-k)\}\binom{x}{m-k}(-2)^{k} \\
& =\sum_{k=0}^{m}(1+m-k)\binom{x}{1+m-k}(-2)^{k}-\sum_{k=0}^{m}(m-k)\binom{x}{m-k}(-2)^{k+1} \\
& =(m+1)\binom{x}{m+1}
\end{aligned}
$$

where the two sums with respect to k in the last line have been telescoped. This completes the proof of the identity originally due to Sun.

REFERENCES

[1] W. Chu, On an extension of a partition identity and its Abel analog, J. Math. Research \& Exposition 6:4 (1986), 37-39; MR89b:05021.
[2] S. B. Ekhad and M. Mohammed, A WZ proof of a "curious" identity, Integers: The Eletronic Journal of Combinatorial Number Theory 3 (2003), A6: 2pp.
[3] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley Publ. Company, Reading, Massachusetts, 1989.
[4] D. Merlini and R. Sprugnoli, A Riordan array proof of a curious identity, Integers: The Eletronic Journal of Combinatorial Number Theory 2 (2002), A8: 3pp.
[5] A. Panholzer and H. Prodinger, A generating functions proof of a curious identity, Integers: The Eletronic Journal of Combinatorial Number Theory 2 (2002), A6: 3pp.
[6] Z.-W. Sun, A curious identity involving binomial coefficients, Integers: The Eletronic Journal of Combinatorial Number Theory 2 (2002), A4: 8pp.

