JENSEN PROOF OF A CURIOUS BINOMIAL IDENTITY
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Abstract

By means of the Jensen formulae on binomial convolutions, a new proof is presented for
a curious identity due to Z.-W. Sun.

Based on double recurrence relations, Sun [6] discovered the following binomial identity

Sy = (z+m+1) é (”Hytl) (yt%) —i(—él)i(::i) = (a:—m)(?i).

=0

Recently, three alternative proofs have been provided by Panholzer and Prodinger [5]
via the generating function method, by Merlini and Sprugnoli [4] through Riordan arrays,
and by Ekhad and Mohammed [2] based on the “WZ” method. Combining Jensen’s
identity and Chu-Vandermonde convolution formulae on binomial coefficients, we present
yet another proof for this result which provides a shortcut.

By means of the Jensen formulae (cf. [1, Eq 8] for example) on binomial convolutions
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the first binomial sum displayed in .S,, can be reformulated as
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For a complex x and a natural number n, denote the shifted factorial of x of order n
by

(x)o=1 and (z),=z(z+1)---(x+n—-1) for n=1,2,---

In accordance with the parity of k, writing k := §+2k" with § := 0, 1 and then performing
the replacement j := i — 0 — k', we can derive the following binomial coefficient identity:
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where the Chu-Vandermonde convolution formulae has been applied.

This binomial identity allows us to express the second sum displayed in S, as
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Therefore the linear combination of the two binomial sums in S,,, results in
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where the two sums with respect to k in the last line have been telescoped. This completes
the proof of the identity originally due to Sun.
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