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Abstract

We call a subset A of the (additive) abelian group G t-independent if for all non-negative
integers h and k with h + k ≤ t, the sum of h (not necessarily distinct) elements of A
does not equal the sum of k (not necessarily distinct) elements of A unless h = k and the
two sums contain the same terms in some order. A weakly t-independent set satisfies this
property for sums of distinct terms. We give some exact values and asymptotic bounds
for the size of a largest t-independent set and weakly t-independent set in abelian groups,
particularly in the cyclic group Zn.

1. Introduction

Our motivation for studying the independence number of subsets of an abelian group
comes from spherical combinatorics. It was shown by the first author in [4] that if the
set of integers A = {a1, a2, . . . , am} forms a 3-independent set in the cyclic group Zn (as
defined below), then the set of n points X = {x1, x2, . . . , xn} with

xi =
1√
m
·
(

cos(
2πia1

n
), sin(

2πia1

n
), . . . , cos(

2πiam
n

), sin(
2πiam
n

)

)
( i = 1, 2, . . . , n) forms a spherical 3-design on the unit sphere S2m−1 (the case of S2m can
be reduced to this case). We believe that the concept of t-independence in Zn and other
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abelian groups, extending some of the most well known concepts from additive number
theory such as sum-free sets, Sidon sets, and Bh-sequences, is of independent interest;
here we intend to provide the framework for a general discussion.

Throughout this paper G denotes a finite abelian group with order |G| = n ≥ 2,
written in additive notation, and A is a subset of G of size m ≥ 1. For a positive integer
h, we use the notation

h · A = A+ A+ · · ·+ A︸ ︷︷ ︸
h

= {a1 + a2 + · · ·+ ah|a1, a2, . . . , ah ∈ A}.

We introduce the following measure for the degree of independence of A ⊆ G.

Definition 1 Let t be a non-negative integer and A = {a1, a2, . . . , am}. We say that A
is a t-independent set in G, if whenever

λ1a1 + λ2a2 + · · ·+ λmam = 0

for some integers λ1, λ2, . . . , λm with

|λ1|+ |λ2|+ · · ·+ |λm| ≤ t,

we have λ1 = λ2 = · · · = λm = 0. We call the largest t for which A is t-independent the
independence number of A in G, and denote it by ind(A).

Equivalently, A is a t-independent set in G, if for all non-negative integers h and k
with h+ k ≤ t, the sum of h (not necessarily distinct) elements of A can only equal the
sum of k (not necessarily distinct) elements of A in a trivial way, that is, h = k and
the two sums contain the same terms in some order. We can break up our definition of
t-independence into the following three requirements:

0 6∈ h · A for 1 ≤ h ≤ t; (1)

(h · A) ∩ (k · A) = ∅ for 1 ≤ h < k ≤ t− h; (2)

and

|h · A| =
(
m+ h− 1

h

)
for 1 ≤ h ≤

⌊
t
2

⌋
. (3)

It is enough, in fact, to require these conditions for equations containing a total of
t or t − 1 terms; therefore the total number of equations considered can be reduced to
2 + (t− 2) + 1 = t+ 1.
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These conditions and their variations have been studied very vigorously for a long
time; it might be worthwhile to briefly review some of the related classic and recent
literature here.

Sets satisfying condition (1) (or its versions where there is no limit on the number of
terms and/or the terms need to be distinct – see weak independence in Section 5) are
called zero-sum-free sets. For example, Erdős and Heilbronn ([14], see also C15 in [18])
asked for the largest number of distinct elements in the cyclic group Zn so that no subset
has sum zero. Related results can be found in the papers of Alon and Dubiner [1], Caro
[11], Gao and Hamidoune [16], Harcos and Ruzsa [20], and their references.

Sets satisfying the condition (h · A) ∩ (k · A) = ∅ are called (h, k)-sum-free sets.
The first of these, (1, 2)-sum-free sets, are simply called sum-free sets, and have a vast
literature. It is well known and not hard to see that, if sf(G) denotes the maximum size
of a sum-free set in G, then

2

7
n ≤ sf(G) ≤ 1

2
n, (4)

where both inequalities are sharp as sf(Z7) = 2 and sf(Z2) = 1. A comprehensive
survey on sum-free sets in abelian groups can be found in Street’s article [30]; see also
the works of Erdős [12], Alon and Kleitman [2], and Cameron and Erdős [10]. Recently,
(h, k)-sum-free sets have been investigated in cyclic groups of odd prime order by Bier
and Chin [6]. Other recent work on (h, k)-sum-free sets (among the positive integers
rather than groups) includes a study of (1, k)-sum-free sets for k ≥ 3 by Calkin and
Taylor [9], (3, 4)-sum-free sets by Bilu [7], and (h, k)-sum-free sets by Schoen [28]. We
return to sum-free sets in Section 2 as we study 3-independent sets.

Sets satisfying the condition that h-term sums of elements of A be distinct up to
the rearrangement of terms, as in (3), are called Bh-sequences. They have been studied
very extensively among the positive integers, see the book of Halberstam and Roth [19],
sections C9 and C11 in Guy’s book [18], and the survey paper of Graham [17]. The case
h = 2 is worth special mentioning; a B2-sequence is called a Sidon-sequence after Sidon
who introduced them to study Fourier series [29]. An excellent extensive survey of Sidon-
sequences was written (in Hungarian) by Erdős and Freud [13]. We review Sidon-sets
and Bh-sequences as we study t-independence for t ≥ 4 in Section 3.

There have recently been attempts to combine some of these conditions. For example,
Nathanson [25] investigated sum-free Sidon sets in Zn; large Sidon sets were also used
to construct small sum-free sets by Baltz, Schoen, and Srivastav [5]. The present paper
provides a more general setting for a discussion of these conditions.

Zero-sum-free sets, (h, k)-sum-free sets, and Bh-sequences are only three of the many
interesting families of linear equations among the integers or in an abelian group. For a
survey of general results and other known cases, see the papers of Ruzsa [26] and [27],
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as well as sections C8 through C16, E12, E28, and E32 of Guy’s wonderful book [18].

We note that some, but not all, of the methods that we describe below can easily be
modified to treat t-independence in non-abelian groups. Sum-free (i.e. product-free) sets
and Sidon sets in non-abelian groups were discussed by Babai and Sós [3]; see also the
recent results of Kedlaya in [21] and [22].

Our objective in this paper is to study the size of a largest t-independent set in an
abelian group G, which we denote by s(G, t) (if G has no t-independent subsets, we set
s(G, t) = 0).

Since 0 ≤ ind(A) ≤ n− 1 holds for every subset A of G (so no subset is “completely”
independent), we see that s(G, 0) = n and s(G, n) = 0. It is also clear that ind(A) = 0
if and only if 0 ∈ A, hence s(G, 1) = n − 1. For the rest of the paper, we assume that
2 ≤ t ≤ n− 1.

First we derive an upper bound for s(G, t) using a simple counting argument, as
follows. Suppose that A is a t-independent set in G of size m. Define

〈A, bt/2c〉 =

bt/2c⋃
h=1

h · A.

Since A is t-independent, by conditions (2) and (3) we see that 〈A, bt/2c〉 has size exactly

bt/2c∑
h=1

(
m+ h− 1

h

)
=

(
m+ bt/2c
bt/2c

)
− 1.

Therefore, the set−〈A, bt/2c〉, consisting of the negatives of the elements of 〈A, bt/2c〉,
also has this size; furthermore, we have

〈A, bt/2c〉 ∩ −〈A, bt/2c〉 = ∅.

Additionally, by condition (1),

0 6∈ 〈A, bt/2c〉 ∪ −〈A, bt/2c〉,

so
n− 1 ≥ 2 · |〈A, bt/2c〉|,

and therefore

n ≥ 2 ·
(
m+ bt/2c
bt/2c

)
− 1.

Since for t ≥ 2,

2 ·
(
m+ bt/2c
bt/2c

)
− 1 > 2 · m

bt/2c

bt/2c! ,

we get the following result.
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Proposition 2 For every t ≥ 2 we have

s(G, t) <

(
1

2

⌊
t

2

⌋
!n

)1/bt/2c
.

In section 3 we show that Proposition 2 gives the correct magnitude of s(G, t) if G is
the cyclic group Zn, that is

s(Zn, t) = Θ(n1/bt/2c).

Namely, we prove

Theorem 3 For every ε > 0, t ≥ 2, and large enough n,

s(Zn, t) >
(

1− ε
t · b(t+ 1)/2c · n

)1/bt/2c
.

We have succeeded in finding the exact values of s(Zn, t) only for t ≤ 3. We have
already seen that s(Zn, 1) = n− 1, and we can easily verify that

s(Zn, 2) = b(n− 1)/2c (5)

(the set {1, 2, . . . , b(n− 1)/2c} is 2-independent and has maximum size as we must have
A ∩ −A = ∅). For t = 3, in Section 2 we prove

Theorem 4

s(Zn, 3) =


⌊
n
4

⌋
if n is even(

1 + 1
p

)
n
6

if n is odd, has prime divisors congruent to 5 (mod 6),

and p is the smallest such divisor⌊
n
6

⌋
otherwise

Note that these results imply that the coefficient of n in Theorem 3 cannot be im-
proved for t = 2 and t = 3.

Let us now turn to general abelian groups. First note that, according to Proposition
2 and Theorem 3, the exponent of n in the upper bound on s(G, t) given in Proposition
2 is sharp; for

S(t) = lim sup
s(G, t)1/bt/2c

n

we have
1

t · b(t+ 1)/2c ≤ S(t) ≤ 1

2

⌊
t

2

⌋
!.

These inequalities yield S(2) = 1/2, and we later prove that S(3) = 1/4. We do not
know the values of S(t) for t ≥ 4.
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As for lower bounds, it is clear that we cannot expect a lower bound for s(G, t) in
terms of n = |G| only; in fact, if the exponent κ of G is not more than t, then obviously
s(G, t) = 0.

We will use the following notations. For a positive integer h, let the “h-torsion”
subgroup of G be

Tor(G, h) = {x ∈ G|hx = 0}; (6)

then
Ord(G, h) = ∪th=1Tor(G, h) (7)

is the set of those elements of G which have order at most t. By condition (1), no element
of Ord(G, h) can be in a t-independent set of G.

We have already noted that s(G, 1) = n − 1, and we can now easily determine the
value of s(G, 2): to get a maximum 2-independent set in G, take exactly one of each
element or its negative in G \Ord(G, 2), hence we have

s(G, 2) =
n−Ord(G, 2)

2
. (8)

As a special case, for the cyclic group of order n we have (5).

Note that if Ord(G, 2) = G then s(G, 2) = 0; for n ≥ 2 this occurs only for the
elementary abelian 2-group. If Ord(G, 2) 6= G then, since Ord(G, 2) is a subgroup of G,
we have 1 ≤ |Ord(G, 2)| ≤ n/2, and therefore we get the following.

Proposition 5 If G is isomorphic to the elementary abelian 2-group, then s(G, 2) = 0.
Otherwise

1

4
n ≤ s(G, 2) ≤ 1

2
n.

Let us now consider t = 3. As noted before, if Ord(G, 3) = G, then s(G, 3) = 0;
this occurs if and only if G is isomorphic to the elementary abelian p-group for p = 2 or
p = 3. In Section 2 we determine some exact values and sharp upper and lower bounds
for s(G, 3) in terms of the exponent of G (see Theorem 12); in particular, we prove the
following.

Theorem 6 If G is isomorphic to the elementary abelian p-group for p = 2 or p = 3,
then s(G, 3) = 0. Otherwise

1

9
n ≤ s(G, 3) ≤ 1

4
n.

These bounds can be attained since s(Z9, 3) = 1 and s(Z4, 3) = 1.
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Studying t-independent sets in G for larger values of t seems considerably more diffi-
cult. As a case in point, let t ≥ 4, κ > t be fixed, and consider the sequence of groups

Gk = Zk2 × Zκ
(k = 1, 2, 3 . . .). Suppose that A is a t-independent set in Gk and that for some a1, a2 ∈ Zk2
and x ∈ Zκ, g1 = (a1, x) and g2 = (a2, x) are elements of A. Then g1 + g1 = g2 + g2 is
a non-trivial equation in Gk, thus we conclude that g1 = g2 and |A| ≤ κ. This implies
that, as k approaches infinity, we have s(Gk, t) = O(1).

Therefore, in order to have a lower bound on s(G, t) which tends to infinity with n,
we must have more than just Ord(G, t) 6= G (as was the case for t ≤ 3); although this
will be sufficient for elementary abelian groups (see Corollary 8 below). In general, we
require that |Ord(G, t)| be not too large compared to |G| = n; in Section 4, we make this
more precise by setting

σ(G, t) =
t∑

k=1

|Tor(G, k)| (9)

and proving the following theorem.

Theorem 7 With σ(G, t) as in (9) above we have

s(G, t) ≥
⌊(

n

2σ(G, t)

)1/t
⌋
.

Since obviously σ(G, t) ≤ t · |Ord(G, t)|, we get the corollary that

s(G, t) ≥
⌊(

n

2t · |Ord(G, t)|

)1/t
⌋
.

It is worth comparing the lower bounds of Theorems 3 and 7 for the cyclic group. In
Zn we have

σ(Zn, t) =
t∑

h=1

|Tor(Zn, h)| =
t∑

h=1

gcd(h, n) ≤ t(t+ 1)

2
.

Therefore both the exponent of n and the coefficient are approximately twice as large in
Theorem 3 as they are in Theorem 7.

Let us state a corollary of Theorem 7 for elementary abelian p-groups.

Corollary 8 Let G be an elementary abelian p-group for a prime p. If p ≤ t, then
s(G, t) = 0; otherwise

s(G, t) ≥
(

1

2
n

)1/t

.
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Finally, in Section 5, we examine weak t-independence: where for all non-negative
integers h and k with h+k ≤ t, sums of h distinct elements of a set do not equal sums of
k distinct elements in a non-trivial way. A comparison between sum-free and weak sum-
free, as well as Sidon and weak Sidon sets, and Bh sequences versus weak Bh sequences,
can be found in Ruzsa’s papers [26] and [27]; there it was shown that their maximum
sizes among the positive integers behave similarly. This certainly does not hold for t-
independence in abelian groups. Denoting the maximum size of a weakly t-independent
set in G by w(G, t), we find that for each fixed t, lim inf w(G, t) tends to infinity with
n = |G| (see Theorem 18), while obviously lim inf s(G, t) = 0 for each t ≥ 2. Moreover,
the weak independence number of each subset of G can be arbitrarily large, even infinity,
while its independence number cannot be more than n.

This paper provides a modest attempt to discuss independence and weak indepen-
dence in abelian groups. Numerous interesting questions remain open, warranting further
study.

2. 3-independent sets in abelian groups

In this section we develop upper and lower bounds for s(G, 3), and provide exact values
for some groups, including the cyclic group Zn.

Note that, by conditions (1), (2), and (3), a subset A of G is 3-independent, if and
only if 0 6∈ A, 0 6∈ A+ A, 0 6∈ A+ A+ A, and

(A+ A) ∩ A = ∅. (10)

Sets satisfying (10) are called sum-free, and have been studied extensively; see [30] for a
comprehensive survey.

It is not hard to determine bounds on the maximum size sf(G) of a sum-free set in
G. First, note that the set

{b(n+ 1)/3c, b(n+ 1)/3c+ 1, . . . , 2b(n+ 1)/3c − 1}

is a sum-free set in Zn; when n is even, the larger set

{1, 3, 5, . . . , n− 1}

is also sum-free. Since b(n + 1)/3c ≥ 2
7
n when n ≥ 3 is odd, we have sf(Zn) ≥ 2

7
n.

Clearly, if A is sum-free in Zn, then H × A is sum-free in H × Zn for any abelian group
H, so the bound sf(G) ≥ 2

7
n holds for any G (with n > 1). On the other hand, if A is

sum-free in G, then by (10) n ≥ |A+ A|+ |A| ≥ 2|A|, and we get the well known result
that

2

7
n ≤ sf(G) ≤ 1

2
n.
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Note that these bounds are sharp, as sf(Z7) = 2 and sf(Z2) = 1.

Our goal is to prove a similar result for 3-independent sets. Let us start with the
upper bound.

Proposition 9 Suppose that A is a 3-independent set in G of size m.

1. If none of the divisors of n are congruent to 2 (mod 3), then m ≤ 1
6
n.

2. Otherwise, let p be the smallest divisor of n which is congruent to 2 (mod 3).

Then we have m ≤ 1
6

(
1 + 1

p

)
n.

Proof. Let B = A ∪ (−A). Since A is 3-independent, we have A ∩ (−A) = ∅, thus
|B| = 2m. Furthermore, we have

B ∩ (B +B) = ∅.

We apply Kneser’s theorem [24] to the set B. It asserts that either we have

|B +B| ≥ 2|B|,

or there is a subgroup H and an integer k such that B is contained in k cosets of H, and
B +B is equal to the union of 2k − 1 cosets.

In the first case we have

n ≥ |B|+ |B +B| ≥ 3|B| = 6m

and we are done.

Assume that the second possibility holds. Write |H| = d and q = n
d
; we then have

2m = |B| ≤ dk =
n

q
k,

hence

m ≤ nk

2q
. (11)

Since B cannot intersect any of the 2k − 1 cosets contained in B +B, we have

k + (2k − 1) = 3k − 1 ≤ q;
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if strict inequality holds here, then by (11) we have

m ≤ nk

2(3k)
=

1

6
n,

and we are done again.

Otherwise, q = 3k − 1 ≡ 2 (mod 3), and from (11) we get

m ≤ n

2q

q + 1

3
=

1

6

(
1 +

1

q

)
n ≤ 1

6

(
1 +

1

p

)
n,

as claimed. 2

Note that when n is even, Proposition 9 yields s(G, 3) ≤ 1
4
n. This is clearly not sharp

when Ord(G, 2) is large; by (8) we must have s(G, 2) and therefore s(G, 3) small. More
precisely, we have the following upper bound.

Proposition 10 Let κ be the exponent of G and Ord(G, 2) be the set of elements of G
with order at most 2. If κ is congruent to 2 (mod 4), then s(G, 3) ≤ 1

4
(n−|Ord(G, 2)|).

Proof. When κ ≡ 2 (mod 4), we can write G = Zi
2 × G1, |G1| = n1 where n1 is odd.

The case n1 = 1 is obvious, so assume n1 ≥ 3. Let A be a 3-independent set in G and
write |A| = m. We want to show that m ≤ 2i−2(n1 − 1).

Following the proof (and the notations) of Proposition 9 above, we see that we either
have

m ≤ 1

6
n,

or there is a subgroup H of G of index q = 3k− 1, such that B = A∪ (−A) is contained
in k cosets of H, and B +B is equal to the union of 2k− 1 cosets; in this case from (11)
we have

m ≤ nk

6k − 2
.

Since n1 ≥ 3 implies
1

6
n ≤ 2i−2(n1 − 1),

we can assume that the second possibility holds. Furthermore, an easy computation
shows that if n1 ≥ 5 and k ≥ 2, then

nk

6k − 2
≤ 2i−2(n1 − 1),

so we only need to consider the cases of n1 = 3 or k = 1.

If n1 = 3, then G = Zi
2 × Z3. Let B0, B1, B2 be the parts of B in the three cosets of

Zi
2. We have B0 = ∅, B2 = −B1 and B1 ∩ (B2 +B2) = ∅. Now by an obvious pigeonhole

argument we have |B2| ≤ 2i−1, so m ≤ n/6 again. This concludes this case.
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Finally assume k = 1. Thus H is a subgroup of index 2, B is contained in the coset
G \H and B +B = H. Since Ord(G, 2) is a subgroup of G of order 2i and H has order
2i−1n1, we have |H ∩Ord(G, 2)| ≤ 2i−1, and therefore |B| ≤ n/2− 2i−1, from which our
claim follows. 2

Now we turn to the lower bound.

Proposition 11 Let κ be the exponent of G and Ord(G, 2) be the set of elements of G
with order at most 2.

1. If κ is divisible by 4, then G contains a 3-independent set of size 1
4
n.

2. If κ is congruent to 2 (mod 4), then G contains a 3-independent set of size 1
4
(n−

|Ord(G, 2)|).

3. Suppose that the odd positive integer d divides κ. Then G contains a 3-independent
set of size 1

d
bd+1

6
cn.

Proof. We construct the desired set explicitly as follows. Suppose that the positive
integer d divides κ, and choose a subgroup H and an element g of G so that G is the
union of the d distinct cosets H,H + g, . . . , H + (d− 1)g.

Consider first the set
A =

⋃
d
6
<j< d

3

(H + jg).

It is clear that A is 3-independent. To determine the size of A, note that there are exactly

f(d) =

⌊
d− 1

3

⌋
−
⌈
d+ 1

6

⌉
+ 1

integers strictly between d
6

and d
3
. When d is odd, f(d) = bd+1

6
c, proving the last part of

our Proposition. Also, f(4) = 1; so choosing d = 4 when κ is divisible by 4 proves the
first case of our Proposition.

Assume now that κ is even, but not divisible by 4, and set d = κ. Define

A =

bκ
4
c⋃

i=1

(H + (2i− 1)g).

It is easy to see that A is 3-independent (note that κ is even). For the size of A we have

|A| =
⌊κ

4

⌋
· |H| = κ− 2

4
· n
κ
.
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We add some elements to A as follows. Let H ′ be a 2-independent set in H of maximum
size, and define

A′ = {h′ + κ

2
g|h′ ∈ H ′}.

Since κ
2

is odd, it is easy to check that A ∪ A′ is 3-independent. Using (8), we get

|A′| = s(H, 2) =
n
κ
− |Ord(H, 2)|

2
.

But G ∼= H × Zκ, therefore |Ord(G, 2)| = 2 · |Ord(H, 2)|, and we get

|A ∪ A′| = κ− 2

4
· n
κ

+
n
κ
− |Ord(H, 2)|

2
=

1

4
(n− |Ord(G, 2)|),

as claimed. 2

We can now use Propositions 9, 10, and 11 to establish the following bounds and
exact values for s(G, 3).

Theorem 12 Let κ be the exponent of G.

1. If κ is divisible by 4, then

s(G, 3) =
n

4
.

2. If κ is even but not divisible by 4, then

s(G, 3) =
1

4
(n− |Ord(G, 2)|).

3. If κ (iff n) is odd and has prime divisors congruent to 5 (mod 6), and p is the
smallest such divisor, then

s(G, 3) =

(
1 +

1

p

)
n

6
.

4. Finally, if κ (iff n) is odd and has no prime divisors congruent to 5 (mod 6),
then ⌊κ

6

⌋ n
κ
≤ s(G, 3) ≤ n

6
.

Since the exponent of the cyclic group Zn is n, we have settled the value of S(Zn, 3);
see Theorem 4.

In order to prove Theorem 6, we should estimate |Ord(G, 2)| when κ is even. Let
K be a cyclic subgroup of G of order κ, and write H = G/K. Then, since κ is even,
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|Ord(G, 2)| = 2·|Ord(H, 2)|. Since obviously |Ord(H, 2)| ≤ |H| = n
κ
, we get |Ord(G, 2)| ≤

2n
κ

, and the first two cases of Theorem 12 yield that when κ is even, we have⌊κ
4

⌋ n
κ
≤ s(G, 3) ≤ n

4
.

So if κ ≥ 4 is even, we get
n

6
≤ s(G, 3) ≤ n

4
,

and when κ ≥ 5 is odd, Theorem 12 implies

n

9
≤ s(G, 3) ≤ n

5
.

In particular, we have proved Theorem 6.

3. t-independent sets in the cyclic group

In this section we study the maximum size of a t-independent set in the cyclic group Zn.
In view of (5) and Theorem 4, it is enough to focus on 4 ≤ t ≤ n− 1.

For t = 4 (in fact, for t ≥ 4), condition (3) requires that pairwise sums (or, equiva-
lently, pairwise differences) of elements of A be essentially distinct. This condition has
been studied extensively among the set of positive integers. For a fixed positive integer
N , a subset B of {1, 2, . . . , N} with this property is called a Sidon-sequence after Sidon
who introduced them to study Fourier series [29]. An excellent survey of Sidon-sequences
was written (in Hungarian) by Erdős and Freud [13]. Denoting the maximum cardinality
of a Sidon-sequence in {1, 2, . . . , N} by F2(N), we have the classic result of Erdős and
Turán [15] which says that for every ε > 0, δ > 0, and large enough N ,

(1− ε)
√
N < F2(N) < (1 + δ)

√
N ; (12)

and it is a famous conjecture of Erdős that, in fact, |F2(N)−
√
N | = O(1).

More generally, a subset B of {1, 2, . . . , N} with the property that all h-term sums
of (not necessarily distinct) elements of B are distinct, except for the order of the terms,
is called a Bh-sequence. Bose and Chowla [8] have shown that, if Fh(N) denotes the
maximum size of a Bh-sequence in {1, 2, . . . , N}, then for every ε > 0 and large enough
N , we have

Fh(N) > (1− ε)N 1
h . (13)

The simple counting argument leading to Proposition 2, noting that h-term sums of
elements of B are in the interval [1, hN ], yields the upper bound

Fh(N) ≤ (hh!N)
1
h ;
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reducing the coefficient of N is the subject of vigorous recent study (see C11 in [18] and
its references). It is unknown whether the limit

lim
n→∞

Fh(N)

N1/h

exists for any h ≥ 3. For further references on Bh-sequences see the book by Halberstam
and Roth [19]; sections C9 and C11 in Guy’s book [18]; and the survey paper of Graham
[17].

We use Bh-sequences to construct t-independent sets in the cyclic group Zn. Elements
of Zn will be denoted by 0, 1, 2, . . . , n− 1.

Proposition 13 Let 3 ≤ t ≤ n− 1 and

N =

⌊ bn/tc
b(t+ 1)/2c

⌋
, (14)

and suppose that B is a Bbt/2c-sequence in the interval [1, N ]. Then the set

A = {bn/tc − b|b ∈ B}

is t-independent in the cyclic group Zn.

Proof. First note that 3 ≤ t ≤ n − 1 guarantees that N < bn/tc, and thus, for each
a ∈ A, we have

0 < bn/tc −N ≤ a ≤ bn/tc − 1 < n/t.

We verify that requirements (1), (2), and (3) hold. (i) Let 1 ≤ h ≤ t. Since g ∈ h · A
satisfies

0 < h · (bn/tc −N) ≤ g ≤ h · (bn/tc − 1) < n,

we see that (1) holds.

(ii) To show (2), let 1 ≤ h < k ≤ t− h, and suppose, indirectly, that g ∈ h ·A∩ k ·A.
Then we must have

k · (bn/tc −N) ≤ g ≤ h · (bn/tc − 1) .

Since k ≥ h+ 1, this implies

(h+ 1) · (bn/tc −N) ≤ h · (bn/tc − 1) ,

or, equivalently,

N ≥ bn/tc+ h

h+ 1
.

But this contradicts (14), since h ≤ b(t− 1)/2c.
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(iii) Finally, (3) holds, since for 1 ≤ h ≤ bt/2c, B is a Bh-sequence in [1, N ] and,
using self-explanatory notation,

a1 + a2 + · · ·+ ah = a′1 + a′2 + · · ·+ a′h in Zn
implies

a1 + a2 + · · ·+ ah = a′1 + a′2 + · · ·+ a′h in Z
and this further implies

b1 + b2 + · · ·+ bh = b′1 + b′2 + · · ·+ b′h in Z.

2

Theorem 3 is now an easy corollary to Proposition 13 and (13) (also using (5) for
t = 2).

It is worthwhile to further analyze the cases t = 4 and t = 5 as follows. Suppose that
A is a t-independent set in Zn where t ≥ 4. Without loss of generality, we may assume
that each a ∈ A satisfies 1 ≤ a ≤ bn−1

2
c (replace a by n − a, if necessary). Note that A

is a Sidon-sequence in {1, 2, . . . , bn−1
2
c}. Therefore, by (12), we have

|A| ≤ (1 + o(1)) ·
√
n/2,

and this results in the following improvements.

Corollary 14 For every ε > 0, δ > 0, and large enough n we have(
1√
8
− ε
)
·
√
n ≤ s(Zn, 4) ≤

(
1√
2

+ δ

)
·
√
n.

(
1√
15
− ε
)
·
√
n ≤ s(Zn, 5) ≤

(
1√
2

+ δ

)
·
√
n.

We have determined the values of s(Zn, 4) and s(Zn, 5) for all n ≤ 200. While neither
sequence is monotone, the values of s(Zn, 4) tend to grow more uniformly; we venture to
state the following conjectures.

Conjecture 15 We have

1. lim s(Zn,4)√
n

= 1√
3
,

2. lim s(Zn,5)√
n

does not exist.

It is worth to recall, in comparison, that the sequence s(Zn, 2)/n is convergent while
s(Zn, 3)/n is not. A further observation on these sequences: by Theorem 4, the sequence
s(Zn, 3) is monotone for even values of n (but not for the odd values); we find that, for
n ≤ 200, the sequence s(Zn, 5) is monotone for odd values of n (but not for the even
values).
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4. t-independent sets in abelian groups

In this section we prove the general lower bound for s(G, t) stated in Theorem 7.

Recall that for a positive integer h, we let the “h-torsion” subgroup of G be

Tor(G, h) = {x ∈ G|hx = 0};

and we also defined

σ(G, t) =
t∑

h=1

|Tor(G, h)|.

Proposition 16 Suppose that m is a positive integer for which

n > σ(G, t) ·
(

2m− 2 + t

t

)
.

Then G has a t-independent set of size m.

Proof. We use induction on m. For m = 1 we have n > σ(G, t), thus we can choose an
element

a ∈ G \
t⋃

h=1

Tor(G, h).

Clearly, {a} is then a t-independent set in G.

Assume now that our proposition holds for a positive integer m and suppose that

n > σ(G, t) ·
(

2m+ t

t

)
.

Since this value is greater than

σ(G, t) ·
(

2m− 2 + t

t

)
,

our inductive hypothesis implies that G has a t-independent set A of size m.

Define B = A ∪ (−A) and

〈B, t〉 =
t⋃

h=1

h ·B.

First, note that 〈B, t〉 has size at most

t∑
h=1

(
2m+ h− 1

h

)
=

(
2m+ t

t

)
− 1.
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For a fixed positive integer h and group element g, define

Rooth(g) = {x ∈ G|hx = g}.

We prove the following

Claim. If Rooth(g) 6= ∅, then |Rooth(g)| = |Tor(G, h)|.

Proof of Claim. Fix x ∈ Rooth(g). Our claim follows from the fact that y ∈ Rooth(g), if
and only if, y − x ∈ Tor(G, h).

Now define

C =
⋃

b∈〈B,t〉

t⋃
h=1

Rooth(b).

An obvious upper bound for the size of C is

σ(G, t) ·
((

2m+ t

t

)
− 1

)
.

Therefore, according to our inductive hypothesis, the set G\C is non-empty; fix a ∈ G\C.

Claim. A ∪ {a} is a t-independent set of size m+ 1 in G.

Proof. To see that A ∪ {a} is of size m+ 1, note that

a ∈ G \ C ⊆ G \ 〈B, t〉 ⊆ G \B ⊆ G \ A.

Now let A = {a1, a2, . . . , am} and assume that

λ1a1 + λ2a2 + · · ·+ λmam + λa = 0

for some integers λ1, λ2, . . . , λm, λ. Suppose, indirectly, that

1 ≤ |λ1|+ |λ2|+ · · ·+ |λm|+ |λ| ≤ t.

Set
x = λ1a1 + λ2a2 + · · ·+ λmam.

Note that x ∈ 〈B, t〉 and therefore −x ∈ 〈B, t〉; we also have a ∈ Rootλ(−x).

Without loss of generality, we can assume that λ ≥ 0. If 1 ≤ λ ≤ t, then we have
a ∈ Rootλ(−x) ⊆ C, a contradiction with the choice of a. Otherwise, λ = 0, from which
x = 0; a contradiction, since A is t-independent. This completes the proof of our claim
and therefore our Proposition. 2

Now Theorem 7 follows from Propositions 16, by noting that
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(
2m− 2 + t

t

)
=

t∏
k=1

2m− 2 + k

k

=
t∏

k=1

mk − (k − 2)(m− 1)

k

≤ (2m− 1)mt−1

< 2mt.

5. Weakly t-independent sets in abelian groups

When discussing solutions of equations in a set, it is natural to consider the version when
we restrict ourselves to distinct solutions; this is referred to as the weak property. A
comparison between sum-free and weak sum-free, as well as Sidon and weak Sidon sets,
and Bh sequences versus weak Bh sequences, can be found in Ruzsa’s papers [26] and
[27]; there it was shown that their maximum sizes among the positive integers behave
similarly. This certainly does not hold for t-independence in abelian groups, as we see in
this section.

For a positive integer h, we use the notation

h ? A = {a1 + a2 + · · ·+ ah|a1, a2, . . . , ah ∈ A are distinct}.

We introduce the following measure for the degree of weak independence of A ⊆ G.

Definition 17 Let t be a non-negative integer and A = {a1, a2, . . . , am}. We say that A
is a weakly t-independent set in G, if whenever

λ1a1 + λ2a2 + · · ·+ λmam = 0

for some integers λ1, λ2, . . . , λm ∈ {−1, 0, 1} with

|λ1|+ |λ2|+ · · ·+ |λm| ≤ t,

we have λ1 = λ2 = · · · = λm = 0. We call the largest t for which A is weakly t-
independent the weak independence number of A in G and denote it by wind(A); if A is
weakly t-independent for every t, we set wind(A) =∞.

Equivalently, A is a weakly t-independent set in G, if for all non-negative integers h
and k with h + k ≤ t, the sum of h distinct elements of A can only equal the sum of k
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distinct elements of A in a trivial way, that is, h = k and the two sums contain the same
terms in some order.

This time, we have the following three requirements:

0 6∈ h ? A for 1 ≤ h ≤ t; (15)

(h ? A) ∩ (k ? A) = ∅ for 1 ≤ h < k ≤ t− h; (16)

and

|h ? A| =
(
m

h

)
for 1 ≤ h ≤

⌊
t
2

⌋
. (17)

The difference between independence and weak independence can be illustrated by
the following examples in G = Z30: we see that ind({1, 2, 4, 8, 16}) = 2 (as 1 + 1 = 2),
and wind({1, 2, 4, 8, 16}) = 3 (we have 2 + 4 + 8 + 16 = 0); but ind({1, 2, 4, 8}) = 2 still,
yet wind({1, 2, 4, 8}) =∞.

For a non-negative integer t, we let w(G, t) denote the size of a maximum weakly
t-independent set in G; we also set w(G,∞) to be the largest size of a subset A of G for
which wind(A) =∞. It is easy to see that

w(G, 0) = n,

w(G, 1) = n− 1,

and

w(G, 2) =
n+ |Ord(2)| − 2

2
;

the last equation results from the fact that no element of G, other than those of order 2,
can be in a weakly 2-independent set together with its negative. On the other end, if the
invariant factor decomposition of G contains s terms, then w(G,∞) ≥ s; in particular,
if κ denotes the exponent of G, then

w(G, t) ≥ w(G,∞) ≥ log n

log κ

holds for every t.

It is not hard to prove the following stronger result.

Theorem 18 For t ≥ 2 we have(
t!

2t
n

)1/t

− t

2
< w(G, t) <

(⌊
t

2

⌋
!n

)1/bt/2c
+
t

2
.
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Proof. Let us first prove two claims.

Claim 1. Suppose that m is a positive integer for which

n >
t∑

h=1

(
2m− 2

h

)
+ 1.

Then G has a weakly t-independent set of size m.

Proof of Claim 1. The proof will be similar (but simpler than) that of Proposition 16. We
use induction on m. For m = 1 we have n ≥ 2, and clearly {a} is a weakly t-independent
set in G whenever a 6= 0.

Assume now that our proposition holds for a positive integer m and suppose that

n >
t∑

h=1

(
2m

h

)
+ 1.

Since this value is greater than

t∑
h=1

(
2m− 2

h

)
+ 1,

our inductive hypothesis implies that G has a weakly t-independent set A of size m.

Define B = A ∪ (−A) and

〈B, t〉∗ =
t⋃

h=1

h ? B.

Then |〈B, t〉∗| ≤
∑t

h=1

(
2m
h

)
. Therefore, we can choose an a ∈ G \ 〈B, t〉∗. Then

clearly a 6∈ A, and, as in the proof of Proposition 16, we can show that A ∪ {a} is a
weakly t-independent set of size m+ 1 in G.

Claim 2. Suppose that A is a weakly t-independent set in G of size m. Then

n ≥
bt/2c∑
h=1

(
m

h

)
+ 1

.

Proof of Claim 2. Define

〈A, bt/2c〉∗ =

bt/2c⋃
h=1

h ? A.

By (15), 0 6∈ 〈A, bt/2c〉∗, so we have n − 1 ≥ |〈A, bt/2c〉∗|. Furthermore, by conditions
(16) and (17), we see that 〈A, bt/2c〉∗ has size exactly

bt/2c∑
h=1

(
m

h

)
,
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proving our Claim.

To derive our upper and lower bounds for w(G, t), we use the (rather crude) estimates
that for positive integers c and d we have

(d+ 2− c)c
c!

≤
(
d+ 1

c

)
≤

c∑
h=0

(
d

h

)
≤
(
d+ c

c

)
≤ (d+ c)c

c!
. (18)

Namely, using Claim 1 and (18) for d = 2m− 2 and c = t we see that if

n >
(2m− 2 + t)t

t!
,

then G has a weakly t-independent set of size m, implying the lower bound

w(G, t) ≥ (t!n)1/t − t+ 2

2
− 1 =

(
t!

2t
n

)1/t

− t

2
.

The upper bound for w(G, t) follows similarly from Claim 2 and (18). 2

Note that, for a fixed t, we have

lim inf w(G, t) =∞

as |G| = n approaches ∞, in contrast to

lim inf s(G, t) = 0

for each t ≥ 2; in Section 1 we have seen that even

lim inf{s(G, t)|Ord(G, t) 6= G} = O(1)

as t ≥ 4. Thus t-independence and weak t-independence behave quite differently in
abelian groups.
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