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Abstract

We study several enumerative properties of the set of all circular binary strings without
zigzags and of the set of all (0, 1)-necklaces without zigzags, where a zigzag is a 1 followed
and preceded by a 0 or a 0 followed and preceded by a 1.

1. Introduction

A circular binary string is a function defined on a cycle with values in {0, 1} . As usual
we write a circular binary string as a linear string with the convention that the first and
the last letter are adjacent. A (0, 1)-necklace is a circular binary string defined up to
cyclic shifts. Hence a (0, 1)-necklace is an equivalence class of circular binary strings.
However, for simplicity, we write circular binary strings and necklaces in the same way.
For instance 001 , 010 and 100 are different circular binary strings but represent the
same necklace.

We say that a circular binary string has a zigzag when a 1 is followed and preceded
by a 0 or, dually, when a 0 is followed and preceded by a 1. Recall that a linear string
σ is a substring of a circular string α when there exist two linear strings α1 and α2

such that α = α1σα2 or when σ = σ1σ2 and there exists a linear string β such that
α = σ2βσ1 . For instance the substrings of length 3 of the circular string α = 1011 are
101 , 011 , 111 and 110 .

For linear strings a zigzag is equivalent to a substring equal to 010 or 101 . This is
still true for circular binary strings of length n 6= 2 , but when n = 2 also the circular
strings 10 and 01 have a zigzag.
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The aim of this paper is to obtain enumerative properties for the circular binary strings
without zigzags and for the (0, 1)-necklaces without zigzags. Specifically we obtain the
recurrences, the generating series and several explicit formulas for the numbers zm,n of
all circular binary strings without zigzags with m 1’s and n 0’s and in particular for
the numbers zn = zn,n of central strings. In particular for the numbers zn we also give
a first-order asymptotic formula.

Then we consider the infinite matrix Z = [zi,j]i,j≥0 and we prove that it can be
decomposed as LTLt where L is a lower triangular matrix and T is a tridiagonal
matrix. Both such matrices have non-negative integer entries. Moreover we show that
the lower triangular matrix R = [ri,j]i,j≥0 , where ri,j = zi,i−j for i ≥ j , i 6= 0 ,
r0,0 = 1 and ri,j = 0 otherwise, is a Riordan matrix [13].

Finally we consider the cyclic species of all circular binary strings without zigzags
and we prove that it can be decomposed as a suitable composition of species. Such a
decomposition passes to types allowing to obtain an explicit formula for the numbers
z̃m,n of all (0, 1)-necklaces without zigzags with m 1’s and n 0’s.

In [11] we studied the same problem for linear binary strings. Both the problems,
for linear and circular strings, were posed by Jie Wu in the particular case in which the
number of 1’s is equal to the number of 0’s. See [3] for an algorithmic approach to this
particular case for linear strings.

2. Explicit formulas and generating functions

Let Z be the set of all circular binary strings without zigzags. Then let Zm,n be the
set of all strings in Z with m 1’s and n 0’s and let zm,n = |Zm,n| . The conjugate
string α of a binary string α is the string obtained by interchanging 0 and 1 in
α . For instance, if α = 100110 then α = 011001 . Clearly conjugation establishes a
bijection between Zm,n and Zn,m which implies the symmetry zm,n = zn,m .

First formula. Here we give a canonical decomposition for the strings in Zm,n similar
to the one used in [11] for linear strings. Let α be any string in Zm,n . Since α has
no zigzags, each maximal block of 1’s and 0’s has length at least two, except possibly for
the first and the last maximal block. This implies that α can be uniquely decomposed
as a product of strings of the form 01 , 10 , 0 · · · 0 , 1 · · · 1 in one of the following way

(1 · · · 1)(10)(0 · · · 0)(01)(1 · · · 1) · · ·

(0 · · · 0)(01)(1 · · · 1)(10)(0 · · · 0) · · ·
where any block 01 is followed by a block 1 · · · 1 and is preceded by a block
0 · · · 0 , and dually any block 10 is followed by a block 0 · · · 0 and is preceded
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by a block 1 · · · 1 . For instance, the string α = 000011110001100 decomposes as
α = (000)(01)(11)(10)(0)(01)(10)(0) . We say that 01 and 10 are the principal blocks.
The non principal blocks can also be empty.

To enumerate all the stings in Zm,n we have to consider two cases, according to
the parity of the number of principal blocks. Suppose first there are 2k (with k ≥ 1 )
principal blocks. Then to obtain all the strings α of the form

0 · · · 0 01 1 · · · 1 10 0 · · · 0 · · · 01 1 · · · 1 10 0 · · · 0

we fix the principal blocks and then we distribute m− 2k 1’s in k places and n− 2k
0’s in k + 1 places. Hence the total number of the strings of this form is((

k

m− 2k

))((
k + 1

n− 2k

))
. (1)

Similarly, the total number of the strings α of the form

1 · · · 1 10 0 · · · 0 01 1 · · · 1 · · · 10 0 · · · 0 01 1 · · · 1

turns out to be ((
k + 1

m− 2k

))((
k

n− 2k

))
. (2)

Suppose now that α contains 2k+1 principal blocks. Then α has one of the following
forms:

0 · · · 0 0 01 1 · · · 1 10 0 · · · 0 · · · 01 1 1 · · · 1
1 · · · 1 1 10 0 · · · 0 01 1 · · · 1 · · · 10 0 0 · · · 0

In both cases we have m− 2k− 2 1’s to distribute in k+ 1 places and n− 2k− 2 0’s
to distribute in k + 1 places. Then the total number of the strings of this second case
is equal to

2

((
k + 1

m− 2k − 2

))((
k + 1

n− 2k − 2

))
. (3)

All this implies the identity

zm,n =
∑
k≥1

((
k

m− 2k

))((
k + 1

n− 2k

))
+
∑
k≥1

((
k + 1

m− 2k

))((
k

n− 2k

))
+

+ 2
∑
k≥0

((
k + 1

m− 2k − 2

))((
k + 1

n− 2k − 2

))
. (4)
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Generating series. To obtain the generating series for the numbers zm,n we use the
Schützenberger symbolic method [12, 4]. The above analysis also implies that the set
Z , considered as a language, is given by

Z = 0+ + 1+ +

+
∑
k≥1

0∗(01)1∗(10) · · · (01)1∗(10)0∗︸ ︷︷ ︸
2k principal blocks

+
∑
k≥1

1∗(10)0∗(01) · · · (10)0∗(01)1∗︸ ︷︷ ︸
2k principal blocks

+

+
∑
k≥0

0∗(0)(01)1∗(10) · · · (10)0∗(01)(1)1∗︸ ︷︷ ︸
2k+1 principal blocks

+
∑
k≥0

1∗(1)(10)0∗(01) · · · (01)1∗(10)(0)0∗︸ ︷︷ ︸
2k+1 principal blocks

where 0∗ = {ε, 0, 00, 000, . . . } , 0+ = 0∗ \ {ε} , etc. Substituting 1 and 0 with the
indeterminates x and y respectively, the above identity yields the following geometric
series

Z(x, y) =
∑
m,n≥0

zm,n x
myn

=
x

1− x +
y

1− y +
∑
k≥1

x2k

(1− x)k
y2k

(1− y)k+1
+

+
∑
k≥1

x2k

(1− x)k+1

y2k

(1− y)k
+ 2

∑
k≥0

x2k+2

(1− x)k+1

y2k+2

(1− y)k+1

which turns out to be equal to

Z(x, y) =
x+ y − 2xy + 4x2y2

1− x− y + xy − x2y2
. (5)

The form of this series immediately implies the recurrence

zm+2,n+2 = zm+1,n+2 + zm+2,n+1 − zm+1,n+1 + zm,n + 4δm,0δn,0 (6)

where δn,k is the usual Kronecker delta.

Second formula. The formal series (5) yields another expression for the coefficients
zm,n . First notice that it can be rewritten as

Z(x, y) = −1 +
1 + xy + x2y2

1− x− y + xy − x2y2
− 2

xy − x2y2

1− x− y + xy − x2y2
.

Since we have

1 + xy + x2y2

1− x− y + xy − x2y2
=

1

(1− x)(1− y)

1 + xy + x2y2

1− x2

1− x
y2

1− y

=

=
∑
k≥0

xk−bk/3c

(1− x)bk/3c+1

yk−bk/3c

(1− y)bk/3c+1

=
∑
m,n≥0

[∑
k≥0

(
m− k + 2bk/3c

bk/3c

)(
n− k + 2bk/3c

bk/3c

)]
xmyn
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zm,n 0 1 2 3 4 5 6 7 8 9 10
0 0 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 4 5 6 7 8 9 10 11 12
3 1 0 5 6 7 8 9 10 11 12 13
4 1 0 6 7 12 18 25 33 42 52 63
5 1 0 7 8 18 30 44 60 78 98 120
6 1 0 8 9 25 44 70 104 147 200 264
7 1 0 9 10 33 60 104 168 255 368 510
8 1 0 10 11 42 78 147 255 412 629 918
9 1 0 11 12 52 98 200 368 629 1014 1558
10 1 0 12 13 63 120 264 510 918 1558 2514

Figure 1: Numbers of circular binary strings without zigzags.

and

xy − x2y2

1− x− y + xy − x2y2
=

1

(1− x)(1− y)

xy − x2y2

1− x2

1− x
y2

1− y

=

=
∑
k≥0

(−1)k
xk+1

(1− x)bk/2c+1

yk+1

(1− y)bk/2c+1

=
∑
m,n≥0

[∑
k≥0

(
m− dk/2e − 1

bk/2c

)(
n− dk/2e − 1

bk/2c

)
(−1)k

]
xmyn ,

then, for m,n 6= 0 , we have the identity

zm,n =
∑
k≥0

(
m− k + 2bk/3c

bk/3c

)(
n− k + 2bk/3c

bk/3c

)
+

−2
∑
k≥0

(
m− dk/2e − 1

bk/2c

)(
n− dk/2e − 1

bk/2c

)
(−1)k . (7)

Total number of circular binary strings without zigzags. Let sn be the total
number of all circular binary strings without zigzags of length n . Then the generating
series S(t) =

∑
n≥0 sn t

n of these numbers is given by

S(t) = Z(t, t) =
2t− 2t2 + 4t4

1− 2t+ t2 − t4 =
2t(1− t+ 2t3)

(1− t− t2)(1− t+ t2)
. (8)

Since (1− 2t+ t2 − t4)S(t) = 2t− 2t2 + 4t4 , we have the linear recurrence

sn+4 = 2sn+3 − sn+2 + sn + 4δn,0 . (9)
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The first few terms of this sequence are: 0, 2, 2, 2, 6, 12, 20, 30, 46, 74, 122, 200, 324,
522, 842, 1362, 2206, 3572, 5780, 9350, 15126, 24474. Moreover, since series (8) can be
written as

S(t) =
2− t

1− t− t2 +
2− t

1− t+ t2
− 4 =

∑
n≥0

Ln t
n +

∑
n≥0

Hn t
n − 4 ,

we have that sn = Ln + Hn − 4δn,0 where the Ln’s are Lucas numbers and the Hn’s
are the numbers defined by the recurrence Hn+2 = Hn+1 − Hn with the initial values
H0 = 2 and H1 = 1 . It is easy to see that the sequence {Hn}n is periodic with period
2, 1,−1,−2,−1, 1 .

3. Central strings

We say that a circular binary string is central when the number of 1’s is equal to the
number of 0’s. Let zn be the number of all central circular binary strings without
zigzags, with length 2n . The first few values of zn are: 0, 2, 4, 6, 12, 30, 70, 168,
412, 1014, 2514, 6270, 15702, 39468, 99516, 251586, 637500. Identities (4), (7), (25)
immediately imply that

zn = 2
∑
k≥1

((
k

n− 2k

))((
k + 1

n− 2k

))
+ 2

∑
k≥0

((
k + 1

n− 2k − 2

))2

(10)

zn =
∑
k≥0

(
n− k + 2bk/3c

bk/3c

)2

− 2
∑
k≥0

(
n− dk/2e − 1

bk/2c

)2

(−1)k (11)

zn =
∑
k≥0

(
n− k − 2

k

)2
2n

k + 1
. (12)

Now we will find the geometric series, a recurrence and a first-order asymptotic for-
mula for the numbers zn . The geometric series of the numbers zn is the diagonal series
of (5) and, by Cauchy’s integral theorem, is given by [2, 8, 15, 7]

z(t) =
∑
n≥0

zn t
n =

1

2πi

∮
Z

(
z,
t

z

)
dz

z

=
1

2πi

∮
z2 − (2t− 4t2)z + t

−z(z2 − (1 + t− t2)z + t)
dz

where the integral is taken over a simple contour containing all the singularities s(t) of
the series such that s(t)→ 0 as t→ 0 . The polynomial z2 − (1 + t− t2)z + t at the
denominator has roots

z± =
1 + t− t2 ±

√
(1 + t− t2)2 − 4t

2
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of which only z− → 0 as t→ 0 . Hence z = 0 and z = z− are the only poles (of first
order) which tend to zero as t→ 0 . By the residue theorem, we have

z(t) = lim
z→0

z2 − (2t− 4t2)z + t

−(z2 − (1 + t− t2)z + t)
+ lim

z→z−
z2 − (2t− 4t2)z + t

−z(z − z+)

that is

z(t) =
1− t+ 3t2 −

√
1− 2t− t2 − 2t3 + t4√

1− 2t− t2 − 2t3 + t4
. (13)

Now to obtain a recurrence for the numbers zn we rewrite identity (13) as

√
1− 2t− t2 − 2t3 + t4 =

(1− 2t− t2 − 2t3 + t4)(z(t) + 1)

1− t+ 3t2
.

Then, differentiating such an identity, we obtain the identity

(1− 3t+ 4t2 − 7t3 − 7t5 + 3t6)z′(t)+

−(8t− 6t2 − 6t3 − 2t4)z(t)− 8t+ 6t2 + 6t3 + 2t4 = 0

which implies the linear recurrence

(n+ 6)zn+6 − 3(n+ 5)zn+5 + 4(n+ 2)zn+4+

−(7n+ 15)zn+3 + 6zn+2 − (7n+ 5)zn+1 + 3nzn = 0 . (14)

Finally we give a first-order asymptotic formula for zn . Recall ([1] p. 252) that
given a complex number ξ 6= 0 and a complex function f(t) analytic at the origin, if
f(t) = (1− t/ξ)−αψ(t) where ψ(t) is a series with radius of convergence R > |ξ| and
α 6∈ {0,−1,−2, . . . } , then

[tn]f(t) ∼ ψ(ξ)

ξn
nα−1

Γ(α)
.

Since

z(t) =
1− t+ 3t2√

1− 2t− t2 − 2t3 + t4
− 1

=

(
1− t

ξ

)−1/2
1− t+ 3t2√

(1 + t+ t2)(1− ξt)
− 1

where ξ = (3−
√

5)/2 and α = 1/2 , we have

zn ∼
√

5− 1

2

√√
5

nπ

(
3 +
√

5

2

)n

. (15)
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In particular

lim
n→∞

zn+1

zn
=

3 +
√

5

2
. (16)

In [11] we proved that for the number wn of all central binary strings, without
zigzags, of length 2n we have the asymptotic formula

wn ∼
√

4

nπ
√

5

(
3 +
√

5

2

)n
.

This implies that

lim
n→∞

wn
zn

=
4√

5− 1
' 3.24

or equivalently wn ' 3.24 zn .

4. The matrix Z

In this section we will prove that the matrix

Z = [zi,j]i,j≥0 =



0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0
1 0 4 5 6 7 8 9 10
1 0 5 6 7 8 9 10 11
1 0 6 7 12 18 25 33 42
1 0 7 8 18 30 44 60 78
1 0 8 9 25 44 70 104 147
1 0 9 10 33 60 104 168 255
1 0 10 11 42 78 147 255 412
. . .


has a factorization LTLt where L is the lower triangular matrix

L = [li,j]i,j≥0 =



1
0 1
0 1 1
0 1 1 1
0 1 1 2 1
0 1 1 3 2 1
0 1 1 4 3 3 1
0 1 1 5 4 6 3 1
0 1 1 6 5 10 6 4 1
. . .
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with entries given by

li,0 = 0i , li,j =

(
i− bj/2c − 1

i− j

)
for i ≥ j > 1 ,

Lt is the transpose of L and T is the tridiagonal matrix

T = [ti,j]i,j≥0 =



0 1
1 0 0

0 4 1
1 0 0

0 4 1
1 0 0

0 4 1
1 0 0

0 4
. . .


with entries

ti,j = [ j mod 2 = 0 ] δi,j+1 + 4[ i mod 2 = 0, i 6= 0 ]δi,j + [ i mod 2 = 0 ] δi+1,j

where the square brackets denote the Iverson notation [6] for the characteristic function
of a proposition and δi,j = [ i = j ] is the usual Kronecker delta.

To prove the stated decomposition it is sufficient to rewrite the series Z(x, y) in the
following way:

Z(x, y) =
x(1− y) + 4x2y2 + y(1− y)

(1− x)(1− y)− x2y2

=
x

1− x
1

1− x2

1− x
y2

1− y

+ 4
x2

1− x
y2

1− y
1

1− x2

1− x
y2

1− y

+
y2

1− y
1

1− x2

1− x
y2

1− y

=
∑
k≥0

x2k+1

(1− x)k+1

y2k

(1− y)k
+ 4

∑
k≥1

x2k

(1− x)k
y2k

(1− y)k
+
∑
k≥0

x2k

(1− x)k
y2k+1

(1− y)k+1

=
∑
h,k≥0

xh

(1− x)dh/2e
[ k mod 2 = 0 ]δh,k+1

yk

(1− y)dk/2e
+

∑
h,k≥0

xh

(1− x)dh/2e
[ k mod 2 = 0 , k ≥ 1 ]δh,k

yk

(1− y)dk/2e
+

∑
h,k≥0

xh

(1− x)dh/2e
[ k mod 2 = 0 ]δh+1,k

yk

(1− y)dk/2e

=
∑
h,k≥0

xh

(1− x)dh/2e
th,k

yk

(1− y)dk/2e

=
∑
i,j≥0

(∑
h,k≥0

li,hth,klj,k

)
xiyj
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where the numbers li,j are the coefficients of the series∑
i≥1

li,j x
i =

xj

(1− x)dj/2e
.

Then it follows that

li,j =

(
i− j + dj/2e − 1

dj/2e − 1

)
=

(
i− bj/2c − 1

i− j

)
.

Hence we have the identity ∑
h,k≥0

li,hth,klj,k = zi,j (17)

which is equivalent to the decomposition W = LTLt .

5. A Riordan Matrix

In [11] we observed that the numbers wi,j of all linear binary strings without zigzags
with i 1’s and j 0’s can be used to generate a Riordan matrix. This is also true for the
numbers zi,j . Let rn,k = zn,n−k for k ≤ n , n 6= 0 , r0,0 = 1 and rn,k = 0 otherwise.
Then

R = [rn,k]n,k≥0 =



1
0 1
4 0 1
6 5 0 1

12 7 6 0 1
30 18 8 7 0 1
70 44 25 9 8 0 1

168 104 60 33 10 9 0 1
412 255 147 78 42 11 10 0 1
. . .


is a Riordan matrix [13, 10]. Indeed also this time we have the recurrence

rn+2,k+1 = rn+1,k + rn+2,k+2 − rn+1,k+1 + rn,k+1 (18)

which can be obtained by (6). Moreover the matrix R is completely determined by the
recurrences {

rn+2,k+1 = rn+1,k + rn,k+1 + rn,k+2 + · · ·+ rn,n
rn+2,0 = rn+1,0 + rn,0 + 2rn,1 + · · ·+ 2rn,n + 3δn,0

with the initial conditions r0,0 = 1 , r1,0 = 0 and r1,1 = 1 .

It is easy to see that the recurrence (18) imply that the generating series rk(t) =∑
n≥k rn,k t

n of the columns of the matrix R have the form rk(t) = g(t)f(t)k where
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g(t) = r0(t) = z(t) + 1 and

f(t) =
1 + t− t2 −

√
1− 2t− t2 − 2t3 + t4

2
.

This last series is the generating series of the numbers of irreducible secondary structures
[16, 15]. Since g0 = 1 , f0 = 0 and f1 6= 0 , R is the Riordan matrix(

1− t+ 3t2√
1− 2t− t2 − 2t3 + t4

,
1 + t− t2 −

√
1− 2t− t2 − 2t3 + t4

2

)
.

Finally, since (for k ≥ 1 )

rn,k = [tn] g(t)f(t)k =

(
1− t

ξ

)−1/2
1− t+ 3t2√

(1 + t+ t2)(1− ξt)
f(t)k

where ξ = (3 −
√

5)/2 and α = 1/2 , using the theorem we recalled in Section 3, it
follows that (for every fixed k )

rn,k ∼
√

5− 1

2

√√
5

nπ

(
3 +
√

5

2

)n(√
5− 1

2

)k

=

√√
5

nπ
(φ+ 1)n(φ− 1)k+1 (19)

where φ = (1 +
√

5)/2 is the golden ratio. More in general we have [14]

n∑
k=0

akrn,k = [tn] g(t) a(f(t))

where a(t) is the ordinary generating series for the numbers ak . For instance, for
ak = 1 and ak = k , we have

n∑
k=0

rn,k = [tn] g(t) f(t) ∼ 3−
√

5

2

√√
5

nπ
φ2n

n∑
k=0

k rn,k = [tn] g(t)
f(t)

1− f(t)
∼

√√
5

nπ
φ2n+2 .

6. Cyclic species and generating series

The theory of species allows to interpret combinatorially several algebraic operations on
formal series. As well known [9, 1, 5] ordinary species, linear species and cyclic species
correspond to the combinatorics of sets, linearly ordered sets and cycles, respectively.
Moreover their cardinalities are the exponential series, the ordinary power series and
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the logarithmic series. In this way several combinatorial operations on species become
algebraic operations on series. In particular if a species S can be expressed by means
of sums, products and compositions of other species S1 , . . . , Sk then its cardinality
can be expressed in the same way in terms of the cardinalities of S1 , . . . , Sk . This is
true also for types, considering as cardinalities the indicatrice series.

In this section we consider the cyclic species of circular binary strings without zigzags
and we show that it can be decomposed in more elementary species. This decomposition
allows to compute the logarithmic series for the numbers sn and zm,n and above all it
allows to obtain the indicatrice series for types (see next section).

Let Z be the cyclic species of circular binary strings without zigzags and let Z≥2 be
the cyclic species of circular binary strings without zigzags with maximal blocks of length
at least 2. Then clearly Z = 2X + Z≥2 where X is the linear species of singletons.

Let C be a cycle and α ∈ Z≥2[C] . Decompose α in its maximal blocks of 1’s
and 0’s. Then pair each maximal block of 1’s with the next maximal block of 0’s. For
instance, if α = 110001111001 then we have the grouping α = 11)(000)][(1111)(00)][(1 .
The square brackets define a cyclic partition [5] of the cycle C , while the parenthesis
inside the square brackets define a linear partition of an interval in two classes of size
≥ 2 . The blocks determined by the square brackets will be called external blocks.

Hence we have that to give a structure of species Z≥2 on a cycle C is equivalent
to assign a cyclic partition π of C and then to assign on each class of π a pair of
disjoint intervals with at least 2 elements whose union is all the class. So it follows that

Z≥2 = L ◦ (G≥2 · G≥2) (20)

where L is the logarithmic species (or the uniform cyclic species) and G is the geometric
species (or the uniform linear species). Relation (20) implies that

Card(Z≥2; t) = Card(L; t) ◦Card(G≥2; t)2

= ln
1

1− t ◦
(

t2

1− t

)2

= ln
(1− t)2

1− 2t+ t2 − t4

that is

Card(Z≥2; t) = ln
1

1− 2t+ t2 − t4 − 2 ln
1

1− t . (21)

Since Z = 2X + Z≥2 , it follows that

Card(Z; t) =
∑
n≥1

sn
tn

n
= ln

1

1− 2t+ t2 − t4 . (22)
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This is the logarithmic generating series for the numbers sn . This identity can be
obtained directly by (8) using the formula

∑
n≥1

sn
tn

n
=

∫ t

0

S(u)− S(0)

u
du .

To obtain a generating series for the numbers zm,n we can consider the weighted
cyclic species Zx,y where each maximal block of 1’s have weight x and each block of
0’s have weight y . Then, exactly as before, we have

Z≥2
x,y = L ◦ (G≥2

x · G≥2
y ) (23)

where G≥2
x is the weighted linear species of the linear orders of size at least 2 with weight

x . Hence we have

Card(Z≥2
x,y; t) = Card(L; t) ◦ (Card(G≥2

x ; t) ·Card(G≥2
y ; t))

= ln
1

1− t ◦
(

x2t2

1− xt
y2t2

1− yt

)
= ln

(1− xt)(1− yt)
1− xt− yt+ xyt2 − x2y2t4

that is

Card(Z≥2
x,y; t) = ln

1

1− xt− yt+ xyt2 − x2y2t4
− ln

1

(1− xt)(1− yt) .

Since Zx,y = Xx + Xy + Z≥2
x,y , we have

Card(Zx,y; t) = ln
1

1− xt− yt+ xyt2 − x2y2t4
.

In particular, for t = 1 , we obtain the series∑
m+n≥1

zm,n
xmyn

m+ n
= ln

1

1− x− y + xy − x2y2
(24)

from which we have that

zm,n = (m+ n)[xmyn] ln
1

1− x− y + xy − x2y2
.

Identity (24) can also be obtained by (5) using the formula∑
m+n≥1

zm,n
xmyn

m+ n
=

∫ x

0

Z
(
t,
y

x
t
) dt

t
.
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Third formula. We can obtain another explicit formula for the numbers zm,n ex-
panding the series Card(Z≥2

x,y; 1) . Indeed we have

Card(Z≥2
x,y; 1) = ln

1

1− x2

1− x
y2

1− y

=
∑
k≥1

1

k

(
x2

1− x

)k (
y2

1− y

)k
=

∑
k≥1

1

k

∑
m≥0

(
m− k − 1

k − 1

)
xm
∑
n≥0

(
n− k − 1

k − 1

)
yn

=
∑
m,n≥0

[∑
k≥1

(
m− k − 1

k − 1

)(
n− k − 1

k − 1

)
m+ n

k

]
xmyn

m+ n
.

Hence, for m,n ≥ 2 , we have the identity

zm,n =
∑
k≥0

(
m− k − 2

k

)(
n− k − 2

k

)
m+ n

k + 1
. (25)

7. Types

Let z̃m,n be the number of (0, 1)-necklaces without zigzags with m 1’s and n 0’s.
Equivalently z̃m,n is the number of types of circular binary strings without zigzags with
m 1’s and n 0’s. See [9, 1] for the theory of types of structures and [5] for the theory
of type of cyclic structures.

Since Z≥2
x,y = L ◦ (G≥2

x · G≥2
y ) , it follows that the corresponding species of types is

given by

Z̃≥2
x,y = ˜L ◦ (G≥2

x · G≥2
y ) = Lª ª (G≥2

x · G≥2
y ) .

Similarly, if Z≥2
x,y,k is the cyclic species of all circular binary strings without zigzags with

exactly k external blocks, then

Z≥2
x,y,k =

X k

k
◦ (G≥2

x · G≥2
y )

and consequently

Z̃≥2
x,y,k =

(X k

k

)ª
ª (G≥2

x · G≥2
y ) .

Hence it follows that

Card(Z̃≥2
x,y,k; t) = Zk

(
x2t2

1− xt
y2t2

1− yt,
x4t4

1− x2t2
y4t4

1− y2t2
, . . . ,

x2kt2k

1− xktk
y2kt2k

1− yktk
)
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where

Zk(x1, x2, . . . , xk) =
1

k

∑
d|k

ϕ(d)x
k/d
d

is the indicatrice series for k-cycles [1, 9, 5], where ϕ is the Euler function. Then, for
t = 1 , we have

Card(Z̃≥2
x,y,k; 1) =

=
1

k

∑
d|k

ϕ(d)

(
x2d

1− xd
y2d

1− yd
)k/d

=
1

k

∑
d|k

ϕ(d)
(xd)2k/d

1− xd
(yd)2k/d

1− yd

=
1

k

∑
d|k

ϕ(d)
∑
m≥0

(
m− k/d− 1

k/d− 1

)
xmd

∑
n≥0

(
n− k/d− 1

k/d− 1

)
ynd

=
∑
m,n≥0

1

k

∑
d|k

(
m− k/d− 1

k/d− 1

)(
n− k/d− 1

k/d− 1

)
ϕ(d) xmdynd

=
∑
m,n≥0

1

k

∑
d|m, d|n
d|k

(
m/d− k/d− 1

k/d− 1

)(
n/d− k/d− 1

k/d− 1

)
ϕ(d) xmyn

=
∑
m,n≥0

1

k

∑
d|m, d|n
d|k

(
m/d− k/d

k/d

)
k/d

(m− k)/d

(
n/d− k/d

k/d

)
k/d

(n− k)/d
ϕ(d)

 xmyn .

It follows that the number of all (0, 1)-necklaces without zigzags with m 1’s, n 0’s and
k external blocks is given by

z̃m,n(k) =
∑

d|(m,n,k)

(
(m− k)/d

k/d

)(
(n− k)/d

k/d

)
kϕ(d)

(m− k)(n− k)
(26)

where (m,n, k) is the greatest common divisor of m , n and k . Then, since
z̃m,n =

∑
k≥1 z̃m,n(k) , we have

z̃m,n =
∑
k≥1

 ∑
d|(m,n,k)

(
(m− k)/d

k/d

)(
(n− k)/d

k/d

)
kϕ(d)

(m− k)(n− k)

 (27)

where in the sum the index k is at most min(m/2, n/2) . In particular we have

z̃n = z̃n,n =

bn/2c∑
k=1

 ∑
d|(n,k)

(
(n− k)/d

k/d

)2
kϕ(d)

(n− k)2

 . (28)
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z̃m,n 0 1 2 3 4 5 6 7 8 9 10
0 0 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 1 1 1 1 1 1 1 1
3 1 0 1 1 1 1 1 1 1 1 1
4 1 0 1 1 2 2 3 3 4 4 5
5 1 0 1 1 2 3 4 5 6 7 8
6 1 0 1 1 3 4 7 8 11 14 17
7 1 0 1 1 3 5 8 12 17 23 30
8 1 0 1 1 4 6 11 17 27 37 52
9 1 0 1 1 4 7 14 23 37 57 82
10 1 0 1 1 5 8 17 30 52 82 128

Figure 2: Numbers of types of circular binary strings without zigzags.

See Figure for the first values of z̃m,n . The first few values of z̃n are: 0, 1, 1, 2, 3, 7,
12, 27, 57, 128, 285, 659, 1518, 3561, 8389, 19936, 47607, 114397, 276018, 669035.

When (m,n) = 1 identity (27) simplifies in

z̃m,n =
∑
k≥1

(
m− k
k

)(
n− k
k

)
k

(m− k)(n− k)
. (29)

Finally consider the number s̃n of all (0, 1)-necklaces of length n without zigzags.
Then

s̃n =
n∑
k=0

z̃n,n−k .

The first few values of s̃n are: 0, 2, 2, 2, 3, 4, 5, 6, 8, 10, 15, 20, 31, 42, 64, 94, 143,
212, 329, 494, 766, 1170, 1811, 2788, 4341.
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