# RAINBOW 3-TERM ARITHMETIC PROGRESSIONS 

Veselin Jungić<br>Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada<br>vjungic@sfu.ca<br>Radoš Radoičić<br>Department of Mathematics, MIT, Cambridge, MA 02139, U.S.A.<br>rados@math.mit.edu

Received: 8/7/03, Revised: 11/17/03, Accepted: 11/20/03, Published: 11/20/03


#### Abstract

Consider a coloring of $\{1,2, \ldots, n\}$ in 3 colors, where $n \equiv 0(\bmod 3)$. If all the color classes have the same cardinality, then there is a 3 -term arithmetic progression whose elements are colored in distinct colors. This rainbow variant of van der Waerden's theorem proves the conjecture of the second author.


## 1. Introduction

Given a coloring of a set of natural numbers, we say that a subset is monochromatic if all of its elements have the same color and we say that it is rainbow if all of its elements have distinct colors. A classical result in Ramsey theory is van der Waerden's theorem [vW27], which states that for every $k$ and $t$ and sufficiently large $n$, every $k$-coloring of $[n]:=\{1,2, \ldots, n\}$ contains a monochromatic arithmetic progression of length $t$. Jungić et. al. [JLMNR] considered, for the first time in the literature, a rainbow counterpart of van der Waerden's theorem. They proved that every 3-coloring of the set of natural numbers $\mathbb{N}$ with the upper density of each color greater than $1 / 6$ contains a rainbow $\mathrm{AP}(3)$. They also asked whether the "finite" version of their theorem also holds, and, backed by the computer evidence $(n \leq 56)$, posed the following conjecture.

Conjecture 1 For every $n \geq 3$, every partition of $[n]$ into three color classes $R$, $G$, and $B$ with $\min (|R|,|G|,|B|)>r(n)$, where

$$
r(n):= \begin{cases}\lfloor(n+2) / 6\rfloor & \text { if } n \not \equiv 2  \tag{1}\\ (\bmod 6) \\ (n+4) / 6 & \text { if } n \equiv 2 \quad(\bmod 6)\end{cases}
$$

contains a rainbow $A P(3)$.

Moreover, they constructed a 3 -coloring of $[n]$ with $\min (|R|,|G|,|B|)=r(n)$, where $r$ is the function defined in (1), that contains no rainbow $A P(3)$. This shows that Conjecture 1, if true, is the best possible.

A weaker form of this conjecture, due to the second author, was posed at the open problem session of the 2000 MIT Combinatorics Seminar [JLMNR].

Conjecture 2 Let $n \equiv 0(\bmod 3)$. For every equinumerous 3 -coloring of $[n]$, that is, a coloring in which all color classes have the same cardinality, there exists a rainbow $A P(3)$.

In this paper, we prove Conjecture 2.

## 2. Proof of Conjecture 2

Given a 3-coloring of $[n]$ with colors Red $(R)$, Green $(G)$ and Blue $(B)$, a $B$-block is a string of consecutive elements of $[n]$ that are colored Blue. $R$-block and $G$-block are defined similarly. We say that the coloring is rainbow-free if it contains no rainbow $A P(3)$.

First, we show that every rainbow-free 3-coloring contains a dominant color, that is, a color $z \in\{B, G, R\}$ such that for every two consecutive numbers that are colored with different colors, one of them is colored with $z$. We will need the following two lemmata.

Lemma 1 Let $c:[n] \rightarrow\{B, G, R\}$ be a 3-coloring of $[n]$ such that every two different colors appear next to each other. Then there exist $p, r \in[n], p<r$, such that

1. $c(p)=c(r)$,
2. $c(p+1) \neq c(p)$,
3. $c(r-1) \notin\{c(p), c(p+1)\}$, and
4. no element in the interval $[p+1, r-1]$ is colored by the color $c(p)$.

Proof. Let $G$ be the first color to appear and let the first $G$-block be followed by an $R$-block. Since $G$ appears next to $B$, there exists a $G$-block that is next to a $B$-block. If this $G$-block is preceded by a $B$-block,

then the lemma follows. So, suppose that $\mathcal{G}$, the first $G$-block that is next to a $B$-block, is preceded by an $R$-block and followed by a $B$-block $\mathcal{B}$.


Suppose there is a $B$-block between the two $G$-blocks. Consider the last such $B$-block and denote it by $\mathcal{B}^{\prime}$. The lemma immediately follows, since we can take $p$ and $r$ to be the last element of $\mathcal{B}^{\prime}$ and the first element of $\mathcal{B}$.

Now, suppose there is no $B$-block between the two $G$-blocks.
If $\mathcal{B}$ is followed by an $R$-block, then the lemma clearly follows. So, let $\mathcal{B}$ be followed by a $G$-block. The same reasoning as above, combined with the assumption that $R$ appears next to $B$, implies that one of the following two scenarios happens:

or

which completes the proof.

Lemma 2 Let $c:[n] \rightarrow\{B, G, R\}$ be a 3-coloring of $[n]$ such that

$$
\min \left\{\left|c^{-1}(B)\right|,\left|c^{-1}(G)\right|,\left|c^{-1}(R)\right|\right\} \geq 5
$$

and every two different colors appear next to each other. Then there is a rainbow $A P(3)$.

Proof. By Lemma 1, we can assume that there are $p, q, r$, such that


If $q=p+1$ or $q=r-2$ we are done. So, we assume that $p+2 \leq q<r-2$, $c(p)=G, c(p+1)=R, c(q)=R, c(r)=G, c(i)=B$ for all $q<i<r$ and $c(j) \neq G$ for all $p+1<j<q$. Since $\left|c^{-1}(G)\right| \geq 5$, then $p \geq 3$ or $r \leq n-2$. Without loss of
generality, assume $p \geq 3 .{ }^{1}$ If $r+q$ is even, then $q, \frac{r+q}{2}, r$ is a rainbow $A P(3)$. So, let $r+q$ be odd. It follows that an even number of elements between $q$ and $r$ are colored by $B$. If $c(q-1)=R$ then $q-1, \frac{r+q-1}{2}, r$ is a rainbow $A P(3)$. Let $c(q-1)=B$ and let $s=\min \{i \in[p, q] \mid c(i)=B\}$. Then,


Notice that $s$ could be equal to $q-1$. Now, if $p+s$ is even, then $p, \frac{p+s}{2}, s$ is a rainbow $A P(3)$. Otherwise, an even number of elements between $p$ and $s$ are colored by $R$. If $c(p-1)=G$, then $p-1, \frac{p+s-1}{2}, s$ is a rainbow $A P(3)$. So, let $c(p-1)=R$. If $c(s+1)=B$ (here, $s \neq q-1$ ), then $p, \frac{p+s+1}{2}, s+1$ is a rainbow $A P(3)$. Hence, let $c(s+1)=R$. Then, the interval $[p-1, r]$ is colored as follows.


Suppose that $p+r-1$ is even. If $c\left(\frac{p+r-1}{2}\right)=R$, then $p, \frac{p+r-1}{2}, r-1$ is a rainbow $A P(3)$. If $c\left(\frac{p+r-1}{2}\right)=B$, then $p-1, \frac{p+r-1}{2}, r$ is a rainbow $A P(3)$.

So, let $p+r-1$ be odd. If $c(p-2)=B$ then $p-2, p-1, p$ is a rainbow $A P(3)$. Suppose $c(p-2)=R$. If $c\left(\frac{p+r-2}{2}\right)=R$, then $p, \frac{p+r-2}{2}, r-2$ is a rainbow $A P(3)$. If $c\left(\frac{p+r-2}{2}\right)=B$, then $p-2, \frac{p+r-2}{2}, r$ is a rainbow $A P(3)$. Hence, the only remaining case is when $c(p-2)=G$.


Since an even number of elements between $q$ and $r$ are colored by $B$, there exists $k$, $2 \leq k<\frac{r-p}{2}$, such that $c(p+2 k)=B$. Suppose that $k$ is the smallest number with this property. Now, consider elements $\frac{p+p+2 k}{2}=p+k$ and $\frac{p-2+p+2 k}{2}=p+k-1$. By the property of $k$ and the fact that one of the elements $k, k-1$ is even, we conclude that either $c(p+k)=R$ or $c(p+k-1)=R$. Then, either $p-2, p+k-1, p+2 k$ or $p, p+k$, $p+2 k$ is a rainbow $A P(3)$.

[^0]Lemma 2 immediately implies

Corollary 1 Let $c:[n] \rightarrow\{B, G, R\}$ be a rainbow-free 3 -coloring of $[n]$ such that

$$
\min \left\{\left|c^{-1}(B)\right|,\left|c^{-1}(G)\right|,\left|c^{-1}(R)\right|\right\} \geq 5
$$

Then there exists a dominant color.
Clearly, there can be only one dominant color
The following lemma will be instrumental in showing that in every rainbow-free 3coloring of $[n]$ there exists a recessive color, that is, a color $w \in\{B, G, R\}$ such that no two consecutive numbers are colored by $w$.

Lemma 3 Let $c:[n] \rightarrow\{B, G, R\}$ be a 3 -coloring of $[n]$ such that $R$ is the dominant color. Suppose there exist $i$ and $j$, so that $i+2<j, c(i)=c(i+1)=B, c(i+2)=$ $c(j-1)=R, c(j)=c(j+1)=G$. Suppose also that the interval $[i+2, j-1]$ does not contain two consecutive elements that are both colored by $B$ or by $G$. Then, there is a rainbow $A P(3)$.

Proof. Suppose there exists a rainbow-free coloring $c$ with the properties above. Consider the interval $[i, j+1]$.

$$
\begin{array}{llccccl}
\ldots & B B & R & \ldots & R & G G & \ldots \\
& \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \\
& i & i+2 & \text { no } B B, \text { no } G G & j-1 & j &
\end{array}
$$

Suppose no element of $[i+3, j-2]$ is colored by $R$. Since $R$ is the dominant color, $[i+3, j-2]$ is either a $B$-block or a $G$-block. Then, either $i+1, i+2, i+3$ or $j-2$, $j-1, j$ is a rainbow $A P(3)$, contradicting the assumption that $c$ is rainbow-free.

Suppose no element of $[i+3, j-2]$ is colored by $G$. Since $c(j)=G$ and $c(j-1)=R$, then $c(j-2)=R$. Since $c(j+1)=G$ and $c(j-1)=R$, then $c(j-3)=R$. Iterating this reasoning from right to left, we conclude that $[i+2, j-1]$ is an $R$-block. Then, clearly, there exists a rainbow $A P(3)$, and, thus, we arrive at a contradiction. A symmetric argument shows that at least one of the elements of $[i+3, j-2]$ is colored by $B$.

Therefore, there is at least one element of each color in $[i+3, j-2]$.
Suppose $i+j+1$ is odd. Since $R$ is the dominant color and there are no consecutive elements in $[i+3, j-2]$ both colored by $B$ or by $G$, at least one of the elements $\left\lfloor\frac{i+j+1}{2}\right\rfloor$, $\left\lfloor\frac{i+j+1}{2}\right\rfloor+1$ is colored by $R$. This implies that one of the arithmetic progressions

$$
i, \frac{i+j}{2}=\left\lfloor\frac{i+j+1}{2}\right\rfloor, j \quad \text { or } \quad i+1, \frac{i+j+2}{2}=\left\lfloor\frac{i+j+1}{2}\right\rfloor+1, j+1
$$

is a rainbow $A P(3)$.

Therefore, if $c$ is rainbow-free then $i+j+1$ is even. It follows that $c\left(\frac{i+j+1}{2}\right) \neq R$, otherwise, $i, \frac{i+j+1}{2}, j$ is a rainbow $A P(3)$.

If there exists $i+2<k<\frac{i+j+1}{2}$, with $c(k)=G$, then $c(2 k-i) \neq R$ and $c(2 k-i-1) \neq$ $R$, otherwise $i, k, 2 k-i$ or $i+1, k, 2 k-i-1$ is a rainbow $A P(3)$. Since $R$ is the dominant color, it follows that $2 k-i$ and $2 k-i-1$ are both colored by $B$ or by $G$, which contradicts the assumed property of $i$ and $j$. Therefore, if $c(k)=G$, where $i+2<k<j-1$, then $k \geq \frac{i+j+1}{2}$.

A symmetric argument implies that if $c(k)=B, i+2<k<j-1$, then $k \leq \frac{i+j+1}{2}$.
Without loss of generality, assume that $c\left(\frac{i+j+1}{2}\right)=G$, the other case being symmetric. Then, interval $[i, j+1]$ is colored as follows.


Hence, there are no elements colored by $G$ in $\left[i, \frac{i+j-1}{2}\right]$ and there are no elements colored by $B$ in $\left[\frac{i+j+1}{2}, j+1\right]$. Since an element of each color appears in $[i+2, j-1]$, there exists $p \geq 2$ such that $c\left(\frac{i+j+1}{2}-l\right)=R$ for all $l \in[1, p]$ and $c\left(\frac{i+j+1}{2}-p-1\right)=B$. Moreover, since $c$ is rainbow-free, $p$ must be even. It follows that $c\left(\frac{i+j+1}{2}+p+1\right)=G$.

Let $x=\frac{i+j+1}{2}-p-1$ and $y=\frac{i+j+1}{2}+p+1$. Define intervals $\mathcal{I}_{s}=\left[a_{s}, b_{s}\right], \mathcal{J}_{s}=\left[c_{s}, d_{s}\right]$, $s \in[0, r-1]$, where $a_{s}=i+2(s p+s+1), b_{s}=i+2((s+1) p+s)+1, c_{s}=j-2((s+1) p+s)$, $d_{s}=j-2(s p+s+1)+1$, and $r$ is the smallest index such that $1 \leq c_{r-1}-y=x-b_{r-1} \leq 2 p$. Notice that the number of elements in each of these intervals is $2 p$.

For each $l \in[p]$, the following two arithmetic progressions

$$
\begin{array}{ccc}
i, & \frac{i+j+1}{2+}-l, & i+j+1-2 l-i=j-2 l+1 \\
i+1, & \frac{i+j+1}{2}-l, & i+j+1-2 l-i-1=j-2 l
\end{array}
$$

are not rainbow only if both $j-2 l$ and $j-2 l+1$ are red. Hence, $\mathcal{J}_{0}$ is an $R$-block. This implies that $\mathcal{I}_{0}$ is an $R$-block, since $c\left(\frac{i+j+1}{2}\right)=G$ and $c$ is rainbow-free. Since $\mathcal{I}_{0}$ is an $R$-block and $c(x)=B$, we conclude that $\mathcal{J}_{1}$ is an $R$-block. This, in turn, implies that $\mathcal{I}_{1}$ is an $R$-block, since $c\left(\frac{i+j+1}{2}\right)=G$. Iterating this argument, we conclude that all the intervals $\mathcal{I}_{s}, \mathcal{J}_{s}, s \in[0, r-1]$, are $R$-blocks. We have the following two cases.

- Case 1. $2<c_{r-1}-y=x-b_{r-1} \leq 2 p$. In this case, $y+2 p+2 \in \mathcal{J}_{r-1}$ and $x, y$, $y+2 p+2$ is a rainbow $A P(3)$, contradicting our assumption that $c$ is rainbow-free.
- Case 2. $c_{r-1}-y=x-b_{r-1}=1$ or $c_{r-1}-y=x-b_{r-1}=2$. In this case, $x-p-1 \in \mathcal{I}_{r-1}$ and $x-p-1, x, \frac{i+j+1}{2}$ is a rainbow $A P(3)$, thus, arriving at a contradiction.

Therefore, $c$ cannot be rainbow-free.

Corollary 2 Let $c:[n] \rightarrow\{B, G, R\}$ be a rainbow-free 3 -coloring of $[n]$ such that $R$ is the dominant color. Then, either $B$ or $G$ is a recessive color.

Proof. Suppose that neither $B$ nor $G$ is a recessive color. Then, among all pairs of elements $(i, j)$, such that $c(i)=c(i+1)=B$ and $c(j)=c(j+1)=G$, choose the one where $|j-i|$ is minimal. Without loss of generality, assume that $i+2<j$. Then, by the choice of $i$ and $j, c(i+2)=R, c(j-1)=R$ and interval $[i+2, j-1]$ does not contain two consecutive elements both colored by $B$ or by $G$. Lemma 3 implies that $c$ contains a rainbow $A P(3)$, which is a contradiction.

Finally, we are in a position to prove Conjecture 2.

Theorem 1 Let $n \equiv 0(\bmod 3)$. For every equinumerous 3 -coloring of $[n]$ there exists a rainbow $A P(3)$.

Proof. The claim is true for $n \leq 15$ [JLMNR]. Let $n \geq 15, n \equiv 0(\bmod 3)$, and let $c:[1, n] \rightarrow\{B, G, R\}$ be an equinumerous 3-coloring. Suppose that $c$ is rainbow-free. By Corollary 1 , there is a dominant color, say $R$. By Corollary 2, one of the remaining colors, say $G$, is recessive. It follows that every element colored by $G$ is followed ${ }^{2}$ by an element colored by $R$. Since there are elements of $[n]$ colored by $B$, there exists at least one pair $i, j \in[n]$, such that $c(i)=B, c(j)=G$, and all the elements between $i$ and $j$ are colored with $R$. Since the number of elements between $i$ and $j$ must be greater than or equal to two, or else we have a rainbow 3 -term arithmetic progression, at least one of these elements is such that both of its neighbors are not colored by $G$. It follows that $\left|c^{-1}(G)\right|<\left|c^{-1}(R)\right|$, which contradicts our assumption that $c$ is equinumerous. Therefore, $c$ is not rainbow-free.

## 3. Concluding remarks

This note settles the question of the existence of a rainbow arithmetic progression in equinumerous 3 -colorings of $[n]$. However, Conjecture 1 is still open. We hope that our lemmas in Section 2 with some additional ideas could prove that conjecture as well.

There are many directions and generalizations one might consider. For a discussion on this topic, as well as similar results for $\mathbb{Z}_{n}$, consult [JLMNR]. One natural direction is imitating the well known Rado's theorem for the monochromatic analogue [GRS90] and generalizing the problems above for rainbow solutions of other linear equations, under appropriate conditions on the cardinality of the color classes. The equation $x+y=z$ has already been studied. Alekseev and Savchev [AS87, G94] proved that every equinumerous

[^1]3 -coloring of [3n] contains a rainbow solution of this equation. Schönheim [Sch90, S95], answering the question of E. and G. Szekeres, proved that for every 3-coloring of $[n]$, such that every color class has cardinality greater than $n / 4$, the equation $x+y=z$ has rainbow solutions. Here, $n / 4$ is optimal.

Finally, it would be very interesting to prove similar rainbow-type results for longer arithmetic progressions and larger numbers of colors. For example, it is not known whether every equinumerous 4 -coloring of $[4 n]$ contains a rainbow $A P(4)$. However, note that for every $n$ and $k>3$, there exists a $k$-coloring of $[n]$ with no rainbow $A P(k)$ and with each color class of size at least $\left\lfloor\frac{n+2}{3\lfloor(k+4) / 3\rfloor}\right\rfloor[J L M N R]$.

## References

[AS87] V. E. Alekseev, S. Savchev: Problem M. 1040, Kvant 4 (1987), 23.
[G94] R. K. Guy: Unsolved Problems in Number Theory, Springer-Verlag 1994. (E11-12)
[GRS90] R. L. Graham, B. L. Rothschild, J. H. Spencer: Ramsey Theory, John Wiley and Sons 1990.
[JLMNR] V. Jungić, J. Licht, M. Mahdian, J. Nešetřil, R. Radoičić: Rainbow arithmetic progressions and anti-Ramsey results, Combinatorics, Probability, and Computing, to appear.
[Sch90] J. Schönheim: On partitions of the positive integers with no $x, y, z$ belonging to distinct classes satisfying $x+y=z$, in R. A. Mollin (ed.) Number theory (Proceedings of the First Conference of the Canadian Number Theory Association, Banff 1988), de Gruyter (1990), 515-528.
[S16] I. Schur: Über die Kongruenz $x^{m}+y^{m} \equiv z^{m} \bmod p$, Jahresb. Deutsche Math. Verein 25 (1916), 114-117.
[S95] G. Székely, ed.: Contests in Higher Mathematics, Miklós Schweitzer Competition 1962-1991, Problem Books in Mathematics, Springer 1995. (C.22)
[Sz75] E. Szemerédi: On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 (1975), 199-245.
[vW27] B. L. van der Waerden: Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde 15 (1927), 212-216.


[^0]:    ${ }^{1}$ Otherwise, consider the coloring $c^{\prime}:[n] \rightarrow\{B, G, R\}$, defined by $c^{\prime}(i)=c(n-i+1)$ for every $i \in[n]$.

[^1]:    ${ }^{2}$ or preceded, if $c(n)=G$

