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Abstract

Consider a coloring of {1, 2, . . . , n} in 3 colors, where n ≡ 0 (mod 3). If all the color
classes have the same cardinality, then there is a 3-term arithmetic progression whose
elements are colored in distinct colors. This rainbow variant of van der Waerden’s theorem
proves the conjecture of the second author.

1. Introduction

Given a coloring of a set of natural numbers, we say that a subset is monochromatic if
all of its elements have the same color and we say that it is rainbow if all of its elements
have distinct colors. A classical result in Ramsey theory is van der Waerden’s theorem
[vW27], which states that for every k and t and sufficiently large n, every k-coloring of
[n] := {1, 2, . . . , n} contains a monochromatic arithmetic progression of length t. Jungić
et. al. [JLMNR] considered, for the first time in the literature, a rainbow counterpart
of van der Waerden’s theorem. They proved that every 3-coloring of the set of natural
numbers N with the upper density of each color greater than 1/6 contains a rainbow
AP(3). They also asked whether the “finite” version of their theorem also holds, and,
backed by the computer evidence (n ≤ 56), posed the following conjecture.

Conjecture 1 For every n ≥ 3, every partition of [n] into three color classes R, G, and
B with min(|R|, |G|, |B|) > r(n), where

r(n) :=

{
b(n + 2)/6c if n 6≡ 2 (mod 6)
(n + 4)/6 if n ≡ 2 (mod 6)

(1)

contains a rainbow AP (3).
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Moreover, they constructed a 3-coloring of [n] with min(|R|, |G|, |B|) = r(n), where
r is the function defined in (1), that contains no rainbow AP (3). This shows that
Conjecture 1, if true, is the best possible.

A weaker form of this conjecture, due to the second author, was posed at the open
problem session of the 2000 MIT Combinatorics Seminar [JLMNR].

Conjecture 2 Let n ≡ 0 (mod 3). For every equinumerous 3-coloring of [n], that is,
a coloring in which all color classes have the same cardinality, there exists a rainbow
AP (3).

In this paper, we prove Conjecture 2.

2. Proof of Conjecture 2

Given a 3-coloring of [n] with colors Red (R), Green (G) and Blue (B), a B-block is
a string of consecutive elements of [n] that are colored Blue. R-block and G-block are
defined similarly. We say that the coloring is rainbow-free if it contains no rainbow AP (3).

First, we show that every rainbow-free 3-coloring contains a dominant color, that is,
a color z ∈ {B, G, R} such that for every two consecutive numbers that are colored with
different colors, one of them is colored with z. We will need the following two lemmata.

Lemma 1 Let c : [n] → {B, G, R} be a 3-coloring of [n] such that every two different
colors appear next to each other. Then there exist p, r ∈ [n], p < r, such that

1. c(p) = c(r),

2. c(p + 1) 6= c(p),

3. c(r − 1) 6∈ {c(p), c(p + 1)}, and

4. no element in the interval [p + 1, r − 1] is colored by the color c(p).

Proof. Let G be the first color to appear and let the first G-block be followed by an
R-block. Since G appears next to B, there exists a G-block that is next to a B-block. If
this G-block is preceded by a B-block,

G . . . G R . . . R . . . B . . . B G . . . G . . .
↑ ↑
p r
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then the lemma follows. So, suppose that G, the first G-block that is next to a B-block,
is preceded by an R-block and followed by a B-block B.

G . . . G R . . . R . . . R . . . R G . . . G B . . . B . . .
↑ ↑
G B

Suppose there is a B-block between the two G-blocks. Consider the last such B-block
and denote it by B′. The lemma immediately follows, since we can take p and r to be
the last element of B′ and the first element of B.

Now, suppose there is no B-block between the two G-blocks.

If B is followed by an R-block, then the lemma clearly follows. So, let B be followed by
a G-block. The same reasoning as above, combined with the assumption that R appears
next to B, implies that one of the following two scenarios happens:

. . . G . . . G R . . . R G . . . G B . . . B R . . . R
↑ ↑ ↑
GB p r

or
. . . G . . . G B . . . B G . . . G R . . . R B . . . B
↑ ↑ ↑
GB p r

which completes the proof. 2

Lemma 2 Let c : [n]→ {B, G, R} be a 3-coloring of [n] such that

min{|c−1(B)|, |c−1(G)|, |c−1(R)|} ≥ 5

and every two different colors appear next to each other. Then there is a rainbow AP (3).

Proof. By Lemma 1, we can assume that there are p, q, r, such that

. . . G R . . . R B . . . B G . . .
↑ ↑ ↑ ↑ ↑
p R/B q B r

only only

If q = p + 1 or q = r − 2 we are done. So, we assume that p + 2 ≤ q < r − 2,
c(p) = G, c(p + 1) = R, c(q) = R, c(r) = G, c(i) = B for all q < i < r and c(j) 6= G
for all p + 1 < j < q. Since |c−1(G)| ≥ 5, then p ≥ 3 or r ≤ n − 2. Without loss of
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generality, assume p ≥ 3.1 If r + q is even, then q, r+q
2

, r is a rainbow AP (3). So, let
r + q be odd. It follows that an even number of elements between q and r are colored by
B. If c(q − 1) = R then q − 1, r+q−1

2
, r is a rainbow AP (3). Let c(q − 1) = B and let

s = min{i ∈ [p, q]|c(i) = B}. Then,

. . . G R . . . R B . . . B R B . . . B G . . .
↑ ↑ ↑ ↑ ↑ ↑ ↑
p only R s R/B q only B r

even#

Notice that s could be equal to q−1. Now, if p+s is even, then p, p+s
2

, s is a rainbow
AP (3). Otherwise, an even number of elements between p and s are colored by R. If
c(p−1) = G, then p−1, p+s−1

2
, s is a rainbow AP (3). So, let c(p−1) = R. If c(s+1) = B

(here, s 6= q−1), then p, p+s+1
2

, s+1 is a rainbow AP (3). Hence, let c(s+1) = R. Then,
the interval [p− 1, r] is colored as follows.

. . . R G R . . . R B R . . . B R B . . . B G . . .
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

p− 1 p only R s s + 1 q only B r
even# even#

Suppose that p + r − 1 is even. If c(p+r−1
2

) = R, then p, p+r−1
2

, r − 1 is a rainbow
AP (3). If c(p+r−1

2
) = B, then p− 1, p+r−1

2
, r is a rainbow AP (3).

So, let p + r − 1 be odd. If c(p − 2) = B then p − 2, p − 1, p is a rainbow AP (3).
Suppose c(p − 2) = R. If c(p+r−2

2
) = R, then p, p+r−2

2
, r − 2 is a rainbow AP (3). If

c(p+r−2
2

) = B, then p− 2, p+r−2
2

, r is a rainbow AP (3). Hence, the only remaining case
is when c(p− 2) = G.

. . . G R G R . . . R B R . . . B R B . . . B G . . .
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

p− 2 p− 1 p onlyR s s + 1 q onlyB r
even# even#

Since an even number of elements between q and r are colored by B, there exists k,
2 ≤ k < r−p

2
, such that c(p + 2k) = B. Suppose that k is the smallest number with

this property. Now, consider elements p+p+2k
2

= p + k and p−2+p+2k
2

= p + k − 1. By the
property of k and the fact that one of the elements k, k − 1 is even, we conclude that
either c(p + k) = R or c(p + k− 1) = R. Then, either p− 2, p + k− 1, p + 2k or p, p + k,
p + 2k is a rainbow AP (3). 2

1Otherwise, consider the coloring c′ : [n]→ {B, G, R}, defined by c′(i) = c(n− i+1) for every i ∈ [n].
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Lemma 2 immediately implies

Corollary 1 Let c : [n]→ {B, G, R} be a rainbow-free 3-coloring of [n] such that

min{|c−1(B)|, |c−1(G)|, |c−1(R)|} ≥ 5.

Then there exists a dominant color.

Clearly, there can be only one dominant color

The following lemma will be instrumental in showing that in every rainbow-free 3-
coloring of [n] there exists a recessive color, that is, a color w ∈ {B, G, R} such that no
two consecutive numbers are colored by w.

Lemma 3 Let c : [n] → {B, G, R} be a 3-coloring of [n] such that R is the dominant
color. Suppose there exist i and j, so that i + 2 < j, c(i) = c(i + 1) = B, c(i + 2) =
c(j − 1) = R, c(j) = c(j + 1) = G. Suppose also that the interval [i + 2, j − 1] does not
contain two consecutive elements that are both colored by B or by G. Then, there is a
rainbow AP (3).

Proof. Suppose there exists a rainbow-free coloring c with the properties above. Consider
the interval [i, j + 1].

. . . BB R . . . R GG . . .
↑ ↑ ↑ ↑ ↑
i i + 2 no BB, no GG j − 1 j

Suppose no element of [i + 3, j − 2] is colored by R. Since R is the dominant color,
[i + 3, j − 2] is either a B-block or a G-block. Then, either i + 1, i + 2, i + 3 or j − 2,
j − 1, j is a rainbow AP (3), contradicting the assumption that c is rainbow-free.

Suppose no element of [i+3, j− 2] is colored by G. Since c(j) = G and c(j− 1) = R,
then c(j−2) = R. Since c(j +1) = G and c(j−1) = R, then c(j−3) = R. Iterating this
reasoning from right to left, we conclude that [i + 2, j − 1] is an R-block. Then, clearly,
there exists a rainbow AP (3), and, thus, we arrive at a contradiction. A symmetric
argument shows that at least one of the elements of [i + 3, j − 2] is colored by B.

Therefore, there is at least one element of each color in [i + 3, j − 2].

Suppose i + j + 1 is odd. Since R is the dominant color and there are no consecutive
elements in [i + 3, j− 2] both colored by B or by G, at least one of the elements

⌊
i+j+1

2

⌋
,⌊

i+j+1
2

⌋
+ 1 is colored by R. This implies that one of the arithmetic progressions

i,
i + j

2
=

⌊
i + j + 1

2

⌋
, j or i + 1,

i + j + 2

2
=

⌊
i + j + 1

2

⌋
+ 1, j + 1

is a rainbow AP (3).
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Therefore, if c is rainbow-free then i + j + 1 is even. It follows that c
(

i+j+1
2

)
6= R,

otherwise, i, i+j+1
2

, j is a rainbow AP (3).

If there exists i+2 < k < i+j+1
2

, with c(k) = G, then c(2k−i) 6= R and c(2k−i−1) 6=
R, otherwise i, k, 2k−i or i+1, k, 2k−i−1 is a rainbow AP (3). Since R is the dominant
color, it follows that 2k−i and 2k−i−1 are both colored by B or by G, which contradicts
the assumed property of i and j. Therefore, if c(k) = G, where i + 2 < k < j − 1, then
k ≥ i+j+1

2
.

A symmetric argument implies that if c(k) = B, i + 2 < k < j − 1, then k ≤ i+j+1
2

.

Without loss of generality, assume that c
(

i+j+1
2

)
= G, the other case being symmetric.

Then, interval [i, j + 1] is colored as follows.

. . . BB R . . . RGR . . . R GG . . .
↑ ↑ ↑ ↑ ↑ ↑ ↑
i i + 2 no BB i+j+1

2 no GG j − 1 j
no G no B

Hence, there are no elements colored by G in [i, i+j−1
2

] and there are no elements colored
by B in [ i+j+1

2
, j + 1]. Since an element of each color appears in [i+ 2, j− 1], there exists

p ≥ 2 such that c
(

i+j+1
2
− l

)
= R for all l ∈ [1, p] and c

(
i+j+1

2
− p− 1

)
= B. Moreover,

since c is rainbow-free, p must be even. It follows that c
(

i+j+1
2

+ p + 1
)

= G.

Let x = i+j+1
2
−p−1 and y = i+j+1

2
+p+1. Define intervals Is = [as, bs], Js = [cs, ds],

s ∈ [0, r−1], where as = i+2(sp+s+1), bs = i+2((s+1)p+s)+1, cs = j−2((s+1)p+s),
ds = j−2(sp+s+1)+1, and r is the smallest index such that 1 ≤ cr−1−y = x−br−1 ≤ 2p.
Notice that the number of elements in each of these intervals is 2p.

For each l ∈ [p], the following two arithmetic progressions

i, i+j+1
2
− l, i + j + 1− 2l − i = j − 2l + 1

i + 1, i+j+1
2
− l, i + j + 1− 2l − i− 1 = j − 2l

are not rainbow only if both j− 2l and j− 2l + 1 are red. Hence, J0 is an R-block. This
implies that I0 is an R-block, since c( i+j+1

2
) = G and c is rainbow-free. Since I0 is an

R-block and c(x) = B, we conclude that J1 is an R-block. This, in turn, implies that
I1 is an R-block, since c( i+j+1

2
) = G. Iterating this argument, we conclude that all the

intervals Is, Js, s ∈ [0, r − 1], are R-blocks. We have the following two cases.

• Case 1. 2 < cr−1 − y = x − br−1 ≤ 2p. In this case, y + 2p + 2 ∈ Jr−1 and x, y,
y +2p+2 is a rainbow AP (3), contradicting our assumption that c is rainbow-free.

• Case 2. cr−1 − y = x − br−1 = 1 or cr−1 − y = x − br−1 = 2. In this case,
x − p − 1 ∈ Ir−1 and x − p − 1, x, i+j+1

2
is a rainbow AP (3), thus, arriving at a

contradiction.

Therefore, c cannot be rainbow-free. 2
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Corollary 2 Let c : [n] → {B, G, R} be a rainbow-free 3-coloring of [n] such that R is
the dominant color. Then, either B or G is a recessive color.

Proof. Suppose that neither B nor G is a recessive color. Then, among all pairs of
elements (i, j), such that c(i) = c(i + 1) = B and c(j) = c(j + 1) = G, choose the one
where |j− i| is minimal. Without loss of generality, assume that i + 2 < j. Then, by the
choice of i and j, c(i + 2) = R, c(j − 1) = R and interval [i + 2, j − 1] does not contain
two consecutive elements both colored by B or by G. Lemma 3 implies that c contains
a rainbow AP (3), which is a contradiction. 2

Finally, we are in a position to prove Conjecture 2.

Theorem 1 Let n ≡ 0 (mod 3). For every equinumerous 3-coloring of [n] there exists
a rainbow AP (3).

Proof. The claim is true for n ≤ 15 [JLMNR]. Let n ≥ 15, n ≡ 0 (mod 3), and let
c : [1, n] → {B, G, R} be an equinumerous 3-coloring. Suppose that c is rainbow-free.
By Corollary 1, there is a dominant color, say R. By Corollary 2, one of the remaining
colors, say G, is recessive. It follows that every element colored by G is followed2 by an
element colored by R. Since there are elements of [n] colored by B, there exists at least
one pair i, j ∈ [n], such that c(i) = B, c(j) = G, and all the elements between i and j
are colored with R. Since the number of elements between i and j must be greater than
or equal to two, or else we have a rainbow 3-term arithmetic progression, at least one of
these elements is such that both of its neighbors are not colored by G. It follows that
|c−1(G)| < |c−1(R)|, which contradicts our assumption that c is equinumerous. Therefore,
c is not rainbow-free. 2

3. Concluding remarks

This note settles the question of the existence of a rainbow arithmetic progression in
equinumerous 3-colorings of [n]. However, Conjecture 1 is still open. We hope that our
lemmas in Section 2 with some additional ideas could prove that conjecture as well.

There are many directions and generalizations one might consider. For a discussion
on this topic, as well as similar results for Zn, consult [JLMNR]. One natural direction is
imitating the well known Rado’s theorem for the monochromatic analogue [GRS90] and
generalizing the problems above for rainbow solutions of other linear equations, under
appropriate conditions on the cardinality of the color classes. The equation x+y = z has
already been studied. Alekseev and Savchev [AS87, G94] proved that every equinumerous

2or preceded, if c(n) = G
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3-coloring of [3n] contains a rainbow solution of this equation. Schönheim [Sch90, S95],
answering the question of E. and G. Szekeres, proved that for every 3-coloring of [n],
such that every color class has cardinality greater than n/4, the equation x + y = z has
rainbow solutions. Here, n/4 is optimal.

Finally, it would be very interesting to prove similar rainbow-type results for longer
arithmetic progressions and larger numbers of colors. For example, it is not known
whether every equinumerous 4-coloring of [4n] contains a rainbow AP (4). However, note
that for every n and k > 3, there exists a k-coloring of [n] with no rainbow AP (k) and
with each color class of size at least b n+2

3b(k+4)/3cc [JLMNR].
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