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Abstract

Consider a coloring of {1,2,... ,n} in 3 colors, where n = 0 (mod 3). If all the color
classes have the same cardinality, then there is a 3-term arithmetic progression whose
elements are colored in distinct colors. This rainbow variant of van der Waerden’s theorem
proves the conjecture of the second author.

1. Introduction

Given a coloring of a set of natural numbers, we say that a subset is monochromatic if
all of its elements have the same color and we say that it is rainbow if all of its elements
have distinct colors. A classical result in Ramsey theory is van der Waerden’s theorem
[vW27], which states that for every k and ¢ and sufficiently large n, every k-coloring of
[n] :={1,2,... ,n} contains a monochromatic arithmetic progression of length ¢. Jungi¢
et. al. [JLMNR] considered, for the first time in the literature, a rainbow counterpart
of van der Waerden’s theorem. They proved that every 3-coloring of the set of natural
numbers N with the upper density of each color greater than 1/6 contains a rainbow
AP(3). They also asked whether the “finite” version of their theorem also holds, and,
backed by the computer evidence (n < 56), posed the following conjecture.

Conjecture 1 For every n > 3, every partition of [n] into three color classes R, G, and
B with min(|R|, |G|, |B]|) > r(n), where

{L(n+2)/6j ifn#2 (mod 6) (1)

T(n) = (TL + 4)/6 ifn=2 (mod 6)

contains a rainbow AP(3).
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Moreover, they constructed a 3-coloring of [n] with min(|R|,|G],|B]|) = r(n), where
r is the function defined in (1), that contains no rainbow AP(3). This shows that
Conjecture 1, if true, is the best possible.

A weaker form of this conjecture, due to the second author, was posed at the open
problem session of the 2000 MIT Combinatorics Seminar [JLMNR].

Conjecture 2 Let n = 0 (mod 3). For every equinumerous 3-coloring of [n], that is,

a coloring in which all color classes have the same cardinality, there exists a rainbow
AP(3).

In this paper, we prove Conjecture 2.

2. Proof of Conjecture 2

Given a 3-coloring of [n] with colors Red (R), Green (G) and Blue (B), a B-block is
a string of consecutive elements of [n] that are colored Blue. R-block and G-block are
defined similarly. We say that the coloring is rainbow-free if it contains no rainbow AP(3).

First, we show that every rainbow-free 3-coloring contains a dominant color, that is,
a color z € {B, G, R} such that for every two consecutive numbers that are colored with
different colors, one of them is colored with z. We will need the following two lemmata.

Lemma 1 Let ¢ : [n] — {B,G, R} be a 3-coloring of [n| such that every two different
colors appear next to each other. Then there exist p,r € [n], p <, such that

1. ¢(p) = c(r),
2. c(p+1) #cp),
3. c(r—1) & {clp),c(p+1)}, and

4. no element in the interval [p + 1,7 — 1] is colored by the color ¢(p).

Proof. Let G be the first color to appear and let the first G-block be followed by an
R-block. Since G appears next to B, there exists a G-block that is next to a B-block. If
this G-block is preceded by a B-block,

G... R...R ... B...B G...G

= — Q@
—
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then the lemma follows. So, suppose that G, the first G-block that is next to a B-block,
is preceded by an R-block and followed by a B-block B.

G..G R..R ... R..R G...G B...B

T T
g B

Suppose there is a B-block between the two G-blocks. Consider the last such B-block
and denote it by B’. The lemma immediately follows, since we can take p and r to be
the last element of B’ and the first element of B.

Now, suppose there is no B-block between the two G-blocks.

If B is followed by an R-block, then the lemma clearly follows. So, let B be followed by
a G-block. The same reasoning as above, combined with the assumption that R appears
next to B, implies that one of the following two scenarios happens:

... G..G R..R G...G B...B R...R
T T T

gB P r
or
G..G B..B G..G R..R B...B
7 7 7
gB P r
which completes the proof. O

Lemma 2 Let ¢: [n] — {B,G, R} be a 3-coloring of [n] such that
min{|e™ (B)], [ H(G)] [ H(R)[} > 5

and every two different colors appear next to each other. Then there is a rainbow AP(3).

Proof. By Lemma 1, we can assume that there are p, ¢, r, such that

G R ... R B..B G

T T 1 T T

P R/B ¢ B r
only only

Ifq=p+1orq=r—2we are done. So, we assume that p+2 < g < r — 2,
clp) =G, c(p+1) =R, c(q) =R, c(r) =G, c(i) = Bforall g < i <randc(j) #G
for all p+1 < j < g. Since |¢"}(G)| > 5, then p > 3 or r < n — 2. Without loss of
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generality, assume p > 3.1 If r + ¢ is even, then g, %, r is a rainbow AP(3). So, let
r+ g be odd. It follows that an even number of elements between ¢ and r are colored by
B. If ¢(¢ — 1) = R then ¢ — 1, Z2=1 1 is a rainbow AP(3). Let ¢(¢ — 1) = B and let
s =min{i € [p,q||c(i) = B}. Then,

G R..R B ... B R B...B G

7 T T 1 7 T T

p onlyR s R/B g only B r
even#

Notice that s could be equal to ¢ — 1. Now, if p+ s is even, then p, p+s , § 1s a rainbow

AP(3). Otherwise, an even number of elements between p and s are colored by R. If
c(p—1) = G, then p—1, B2=1 s is a rainbow AP(3). So, let ¢(p—1) = R. If ¢(s+1) = B
(here, s # g—1), then p, p+;+1, s+1is a rainbow AP(3). Hence, let ¢(s+1) = R. Then,
the interval [p — 1, 7] is colored as follows.

R G R...R B R B R B...B G

T 7 T 7 7 7

p—1 p only R s s+1 q only B r
even# even#

Suppose that p +r — 1 is even. If c(p” 1) = R, then p, EE=, r — 1 is a rainbow
AP(3). If ¢(22=1) = B, then p — 1, Z2=1 1 is a rainbow AP(3 )

So, let p+7r —1 be odd. If ¢(p —2) = B then p —2,p — 1,p is a rainbow AP(3).
Suppose ¢(p —2) = R. If C(H—;Q) = R, then p, p+;72, r — 2 is a rainbow AP(3). If
o(H2=2) = B, then p — 2, B22=2 1 is a rainbow AP(3). Hence, the only remaining case
is when ¢(p — 2) = G.

G R G R..R B R B R B...B G

T T 1 T T 1 T T T

p—2 p—1 p onlyR s s+1 q onlyB r
even even#

Since an even number of elements between ¢ and r are colored by B, there exists k,
2 < k < 52, such that c(p + 2k) = B. Suppose that £ is the smallest number with
this property. Now, consider elements % =p—+ k and % =p-+k—1. By the
property of k and the fact that one of the elements k,k — 1 is even, we conclude that
either ¢(p+ k) = Ror ¢c(p+k —1) = R. Then, either p—2, p+k—1, p+ 2k or p, p+ k,

p + 2k is a rainbow AP(3). O

1Otherwise, consider the coloring ¢’ : [n] — {B, G, R}, defined by /(i) = ¢(n—i+1) for every i € [n].
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Lemma 2 immediately implies

Corollary 1 Let c: [n] — {B,G, R} be a rainbow-free 3-coloring of [n] such that
min{le™ (B)[, [ (G)], [ (R)[} > 5.
Then there exists a dominant color.

Clearly, there can be only one dominant color

The following lemma will be instrumental in showing that in every rainbow-free 3-
coloring of [n] there exists a recessive color, that is, a color w € {B, G, R} such that no
two consecutive numbers are colored by w.

Lemma 3 Let ¢ : [n] — {B,G, R} be a 3-coloring of [n] such that R is the dominant
color. Suppose there exist i and j, so that i +2 < j, c(i) = c(i+1) = B, ¢(i +2) =
c(j—1)=R, c(j) =c(j+1) = G. Suppose also that the interval [i + 2,j — 1] does not
contain two consecutive elements that are both colored by B or by G. Then, there is a
rainbow AP(3).

Proof. Suppose there exists a rainbow-free coloring ¢ with the properties above. Consider
the interval [¢, j + 1].
BB R . R GG

T T T T 1
1 i+2 noBB, noGG j—1 j

Suppose no element of [i + 3,7 — 2] is colored by R. Since R is the dominant color,
[i + 3,7 — 2] is either a B-block or a G-block. Then, either i + 1, i + 2, i+ 3 or j — 2,
j — 1, j is a rainbow AP(3), contradicting the assumption that ¢ is rainbow-free.

Suppose no element of [i + 3, 7 — 2] is colored by G. Since ¢(j) = G and ¢(j — 1) = R,
then ¢(j —2) = R. Since ¢(j+1) = G and ¢(j — 1) = R, then ¢(j —3) = R. Iterating this
reasoning from right to left, we conclude that [i + 2,7 — 1] is an R-block. Then, clearly,
there exists a rainbow AP(3), and, thus, we arrive at a contradiction. A symmetric
argument shows that at least one of the elements of [i + 3,7 — 2] is colored by B.

Therefore, there is at least one element of each color in [i + 3,5 — 2.

Suppose ¢ + 7 + 1 is odd. Since R is the dominant color and there are no consecutive
elements in [i 4 3, j — 2] both colored by B or by G, at least one of the elements Vﬂ;lj,
L%J + 1 is colored by R. This implies that one of the arithmetic progressions

.z‘+j_v+j+1

S S
1, 5 5 J,j or i—i—l,iZjL‘7+ :{7%‘_‘7—’_

1,7 +1
/ s

is a rainbow AP(3).
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Therefore, if ¢ is rainbow-free then 72 + j 4+ 1 is even. It follows that ¢ (%) # R,
otherwise, i, Z+J+1, j is a rainbow AP(3).

If there exists i +2 < k < @ with c(k) = G, then ¢(2k —i) # R and ¢(2k—i—1) #
R, otherwise i, k, 2k—i or i+1, k, 2k —i—1 is a rainbow AP(3). Since R is the dominant
color, it follows that 2k —7 and 2k —i— 1 are both colored by B or by G, which contradicts
the assumed property of ¢ and j. Therefore, if ¢(k) = G, where i +2 < k < j — 1, then
k > i+j+1
puy 2 .
A symmetric argument implies that if ¢(k) = B, i +2 < k < j — 1, then k < %

i+j+1>

5—) = G, the other case being symmetric.

Without loss of generality, assume that ¢ (
Then, interval [i, j + 1] is colored as follows.

BB R RGR R GG

T ) ) 1 T T 1
i i+2 noBB "M n0GG j-1 j
no G no B

Hence, there are no elements colored by G in [i, %} and there are no elements colored

by B in [#,j +1]. Since an element of each color appears in [i + 2, j — 1], there exists
p > 2 such that ¢ (% — l) = Rforalll € [1,p] and ¢ (% —p— 1) = B. Moreover,
since ¢ is rainbow-free, p must be even. It follows that ¢ (% +p+ 1) =G.

Let x = ”]“ —p—1landy = ’+]+1 +p-+1. Define intervals Z; = [as, bs|, Js = [cs, ds],
s e [0,r—1], Where as —z—|—2(sp+s—|—1) bs = i+2((s+1)p+s)+1,cs =j—2((s+1)p+s),
ds = j—2(sp+s+1)+1, and r is the smallest index such that 1 < ¢, ;—y = x—b,_1 < 2p.
Notice that the number of elements in each of these intervals is 2p.

For each [ € [p], the following two arithmetic progressions

i, WL i1 -2—i=j—-214+1

.2
i+1, %—l, i+j+1-20—i—1=75—2l

are not rainbow only if both 7 —2[ and j — 2/ + 1 are red. Hence, 7, is an R-block. This
implies that Z, is an R-block, since ¢(**22) = @ and c is rainbow-free. Since Ty is an
R-block and ¢(z) = B, we conclude that J; is an R-block. This, in turn, implies that
7, is an R-block, since c(%) = (. Iterating this argument, we conclude that all the
intervals Zg, Js, s € [0, — 1], are R-blocks. We have the following two cases.

e Case 1. 2<c¢1—y=o—>0._1 <2p. In thiscase, y+2p+2 € J,_1 and z, v,
y+2p+2is a rainbow AP(3), contradicting our assumption that ¢ is rainbow-free.

e Case 2. ¢, 1 —y=x—b._1 =1o0rc¢_ 41—y =2x—>b_1 = 2. In this case,
r—p—1€Z._yandz—p—1, z, Zﬂ;l is a rainbow AP(3), thus, arriving at a
contradiction.

Therefore, ¢ cannot be rainbow-free. O
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Corollary 2 Let ¢ : [n] — {B,G, R} be a rainbow-free 3-coloring of [n] such that R is
the dominant color. Then, either B or GG is a recessive color.

Proof. Suppose that neither B nor G is a recessive color. Then, among all pairs of
elements (7, j), such that ¢(i) = ¢(i + 1) = B and ¢(j) = ¢(j + 1) = G, choose the one
where |7 — 7| is minimal. Without loss of generality, assume that i +2 < j. Then, by the
choice of 7 and j, ¢(i +2) = R, ¢(j — 1) = R and interval [i 4+ 2, j — 1] does not contain
two consecutive elements both colored by B or by G. Lemma 3 implies that ¢ contains
a rainbow AP(3), which is a contradiction. O

Finally, we are in a position to prove Conjecture 2.

Theorem 1 Let n = 0 (mod 3). For every equinumerous 3-coloring of [n] there exists
a rainbow AP(3).

Proof. The claim is true for n < 15 [JLMNR]. Let n > 15, n = 0 (mod 3), and let
c:[1,n] — {B,G, R} be an equinumerous 3-coloring. Suppose that ¢ is rainbow-free.
By Corollary 1, there is a dominant color, say R. By Corollary 2, one of the remaining
colors, say G, is recessive. It follows that every element colored by G is followed? by an
element colored by R. Since there are elements of [n] colored by B, there exists at least
one pair ¢,j € [n], such that ¢(i) = B, ¢(j) = G, and all the elements between i and j
are colored with R. Since the number of elements between ¢ and j must be greater than
or equal to two, or else we have a rainbow 3-term arithmetic progression, at least one of
these elements is such that both of its neighbors are not colored by G. It follows that
lc71(G)| < | (R)]|, which contradicts our assumption that ¢ is equinumerous. Therefore,
¢ is not rainbow-free. O

3. Concluding remarks

This note settles the question of the existence of a rainbow arithmetic progression in
equinumerous 3-colorings of [n]. However, Conjecture 1 is still open. We hope that our
lemmas in Section 2 with some additional ideas could prove that conjecture as well.

There are many directions and generalizations one might consider. For a discussion
on this topic, as well as similar results for Z,, consult [JLMNR]. One natural direction is
imitating the well known Rado’s theorem for the monochromatic analogue [GRS90] and
generalizing the problems above for rainbow solutions of other linear equations, under
appropriate conditions on the cardinality of the color classes. The equation x4y = 2 has
already been studied. Alekseev and Savchev [AS87, G94] proved that every equinumerous

2or preceded, if ¢(n) = G
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3-coloring of [3n] contains a rainbow solution of this equation. Schénheim [Sch90, S95],
answering the question of E. and G. Szekeres, proved that for every 3-coloring of [n],
such that every color class has cardinality greater than n/4, the equation x + y = z has
rainbow solutions. Here, n/4 is optimal.

Finally, it would be very interesting to prove similar rainbow-type results for longer
arithmetic progressions and larger numbers of colors. For example, it is not known
whether every equinumerous 4-coloring of [4n]| contains a rainbow AP(4). However, note
that for every n and k > 3, there exists a k-coloring of [n] with no rainbow AP(k) and

with each color class of size at least Lﬁj [JLMNR].
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