MULTIPLE SET ADDITION IN \mathbb{Z}_{p}

Tomasz Schoen ${ }^{1}$
Department of Discrete Mathematics, Adam Mickiewicz University, Poznań, Poland
schoen@amu.edu.pl

Received: 2/22/03, Revised: 10/6/03, Accepted: 11/1/03, Published: 11/5/03

Abstract

It is shown that there exists an absolute constant H such that for every $h>H$, every prime p, and every set $A \subseteq \mathbb{Z}_{p}$ such that $10 \leq|A| \leq p(\ln h)^{1 / 2} /\left(9 h^{9 / 4}\right)$ and $|h A| \leq$ $h^{3 / 2}|A| /\left(8(\ln h)^{1 / 2}\right)$, the set A is contained in an arithmetic progression modulo p of cardinality $\max _{1 \leq j \leq h-1} \frac{|h A|-P_{j}(|A|)}{h-j}+1$, where $P_{j}(n)=\frac{(j+1) j}{2} n-j^{2}+1$. This result can be viewed as a generalization of Freiman's "2.4-theorem".

1. Introduction

For a non-empty subset A of an additively written group and an integer $h \geq 2$ the h-sumset of A is defined as

$$
h A=\left\{a_{1}+\cdots+a_{h}: a_{1}, \ldots, a_{h} \in A\right\} ;
$$

and by a sumset we mean a 2 -sumset of A. The following well-known " 2.4 -theorem" of Freiman [2] describes the structure of sets $A \subseteq \mathbb{Z}_{p}$ with small sumsets.

Theorem 1 (Freiman). Let $A,|A| \leq p / 35$, be a subset of \mathbb{Z}_{p} for some prime p. If

$$
|2 A| \leq 2.4|A|-3
$$

then A is contained in an arithmetic progression of \mathbb{Z}_{p} with $|2 A|-|A|+1$ terms.
Freiman's proof goes roughly as follows. Since A has a small sumset, the characteristic function of A has a large non-zero Fourier coefficient. Hence A is dense in some arithmetic progression $P \subseteq \mathbb{Z}_{p}$ of length $(p-1) / 2$. The set $A^{\prime}=A \cap P$ is isomorphic (in the sense of Freiman) to a subset of integers, hence one can apply to A^{\prime} Freiman's additive theorem for integers, and infer that A^{\prime} is contained in an arithmetic progression of cardinality $\left|2 A^{\prime}\right|-\left|A^{\prime}\right|+1$. As a last step one shows that $A^{\prime}=A$, otherwise we would have $|2 A|>$ $2.4|A|-3$.

[^0]In this note we generalize Freiman's theorem to h summands, provided h is large. Our main result is as follows.

Theorem 2. There is an absolute constant H such that for every $h>H$, every prime p, and every $A \subseteq \mathbb{Z}_{p}$ such that $10 \leq|A| \leq \frac{p(\ln h)^{1 / 2}}{9 h^{9 / 4}}$ and

$$
|h A| \leq \frac{h^{3 / 2}}{8(\ln h)^{1 / 2}}|A|
$$

the set A is contained in an arithmetic progression of cardinality $\max _{1 \leq j \leq h-1} \frac{|h A|-P_{j}(|A|)}{h-j}+$ 1 , where $P_{j}(n)=\frac{(j+1) j}{2} n-j^{2}+1$.

Our approach follows the main idea of Freiman's proof. First we observe that the absolute value of some Fourier coefficient of the characteristic function of A is very close to $|A|$. We use this fact to show the existence of a large subset A^{\prime} of A contained in an arithmetic progression of cardinality roughly $p(\ln h / h)^{1 / 2}$. Then we apply a result of Lev (Theorem 3 below) to A^{\prime} and some $h_{0}>(h / \ln h)^{1 / 2}$ to prove that A^{\prime} is, in fact, contained in a much shorter arithmetic progression. Finally we employ a well-known theorem of Cauchy-Davenport to infer that $A^{\prime}=A$.

In order for our method to work we have to impose some restrictions on the sizes of A and $h A$. Thus, we assume that $h>H$, where the value of an absolute constant H can be explicitly computed. In our result Freiman's constant " 2.4 " is replaced by " $h^{3 / 2} / 4(\ln h)^{1 / 2}$ ", although one can expect that, as in Theorem 3, the assertion holds for each A with $|h A| \leq \frac{(h+1) h}{2}|A|-h^{2}$.

2. Auxiliary results

In this section we recall some theorems and definitions used in the proof of our main result. First we state a consequence of [3, Corollary 1]. Here and below $L(A)$ denotes the cardinality of the shortest arithmetic progression containing A.

Theorem 3 (Lev [3]). Let $h \geq 2$ and A be a finite subset of $\mathbb{Z},|A| \geq 2$ such that $|h A| \leq \frac{(h+1) h}{2}|A|-h^{2}$. Then

$$
L(A) \leq \max _{1 \leq j \leq h-1} \frac{|h A|-P_{j}(|A|)}{h-j}+1
$$

where $P_{j}(n)=\frac{(j+1) j}{2} n-j^{2}+1$.

Remark 1. The estimate of Theorem 3 is tight, as shows the following example given in [3]. Let $\ell \geq n-1, A=\{0, \ldots, n-2\} \cup\{\ell\}$ and put $k=\left\lceil\frac{\ell-1}{n-2}\right\rceil-1$. If $h>\frac{\ell-1}{n-2}$ then it is
easily seen that $|h A|=P_{k}(n)+(h-k) l<P_{h}(n)$ and

$$
\max _{1 \leq j \leq h-1} \frac{|h A|-P_{j}(n)}{h-j}+1=\ell+1=L(A)
$$

maximum is attained for $j=k$.
Remark 2. Note that under the assumptions of Theorem 3 we have

$$
L(A) \leq \frac{2|h A|}{h}+1
$$

Indeed, suppose that the maximum is attained for j_{0}. If $j_{0} \leq h / 2$ then the inequality follows immediately. Assume that $j_{0}>h / 2$ and

$$
\frac{|h A|-P_{j_{0}}(|A|)}{h-j_{0}}>\frac{2|h A|}{h} .
$$

Then we have

$$
|h A|>\frac{h}{2 j_{0}-h} P_{j_{0}}(|A|) \geq \min _{h / 2<j \leq h} \frac{h}{2 j-h} P_{j}(|A|)
$$

Since $\frac{h}{2 j-h} P_{j}(n)$ is a strictly decreasing function of j it follows that

$$
|h A|>P_{h}(|A|)>\frac{(h+1) h}{2}|A|-h^{2}
$$

contradicting the assumptions of Theorem 3.
Theorem 4 (Cauchy-Davenport). Let p be a prime number and let A be a nonempty subset of \mathbb{Z}_{p}. Then, for every integer $h \geq 2$,

$$
|h A| \geq \min (p, h|A|-h+1)
$$

We will also need the following straightforward consequence of Theorem 4.
Corollary 1. Let p be a prime number and let A be a nonempty subset of \mathbb{Z}_{p} such that $|h A|<p$. Then, for every integers $h \geq h_{1} \geq 2$,

$$
\left|h_{1} A\right|<\left\lfloor h / h_{1}\right\rfloor^{-1}|h A|+1
$$

Proof. By Cauchy-Davenport theorem, we have

$$
|h A| \geq\left|\left\lfloor h / h_{1}\right\rfloor\left(h_{1} A\right)\right| \geq\left\lfloor h / h_{1}\right\rfloor\left|h_{1} A\right|-\left\lfloor h / h_{1}\right\rfloor+1 .
$$

Let G and H be abelian groups and let $A \subseteq G$ and $B \subseteq H$. We say that a mapping $\phi: A \rightarrow B$ is a Freiman's isomorphism of order h (briefly, F_{h}-isomorphism), if for every $a_{1}, \ldots, a_{h}, a_{1}^{\prime}, \ldots, a_{h}^{\prime} \in A$ the equation

$$
a_{1}+\cdots+a_{h}=a_{1}^{\prime}+\cdots+a_{h}^{\prime}
$$

holds if and only if

$$
\phi\left(a_{1}\right)+\cdots+\phi\left(a_{h}\right)=\phi\left(a_{1}^{\prime}\right)+\cdots+\phi\left(a_{h}^{\prime}\right)
$$

holds. In particular F_{h}-isomorphisms preserve the size of h-sumsets.

3. Proof of the main theorem

For a set $S \subseteq \mathbb{Z}_{p}$ let $\{\hat{S}(r)\}_{r \in \mathbb{Z}_{p}}$ denote the Fourier coefficients of the indicator function of $S \quad\left(\hat{S}(r)=\sum_{s \in S} e^{2 \pi i r s / p}\right)$. It is easy to see that $|\hat{S}(0)|=|S|$. We recall also Parseval formula

$$
\sum_{r=0}^{p-1}|\hat{S}(r)|^{2}=|S| p
$$

By the definition all sums $a_{1}+\cdots+a_{h}, a_{1}, \ldots, a_{h} \in A$ belong to the set $h A$, hence

$$
\sum_{r=0}^{p-1} \hat{A}(r)^{h}(\hat{h A})(-r)=|A|^{h} p
$$

and

$$
\sum_{r=1}^{p-1} \hat{A}(r)^{h}(\hat{h A})(-r)=|A|^{h} p-|A|^{h}|h A| \geq|A|^{h} p / 2
$$

Put $M=\max _{r \neq 0}|\hat{A}(r)|$. By Cauchy-Schwarz inequality and Parseval formula we have

$$
\begin{aligned}
|A|^{h} p / 2 & \leq \sum_{r=1}^{p-1}|\hat{A}(r)|^{h}|(\hat{h A})(-r)| \leq M^{h-1} \sum_{r=1}^{p-1}|\hat{A}(r)||(\hat{h A})(-r)| \\
& \left.\leq\left. M^{h-1}\left(\sum_{r=1}^{p-1}|\hat{A}(r)|^{2}\right)^{1 / 2}\left(\sum_{r=1}^{p-1} \mid \hat{h A}\right)(-r)\right|^{2}\right)^{1 / 2} \\
& <M^{h-1}|A|^{1 / 2}|h A|^{1 / 2} p .
\end{aligned}
$$

Thus,

$$
\begin{align*}
M & >\left(\frac{|A|}{4|h A|}\right)^{\frac{1}{2(h-1)}}|A| \geq\left(h^{-3 / 2}\right)^{\frac{1}{2(h-1)}}|A| \\
& =\exp \left(-\frac{3}{4} \frac{\ln h}{h-1}\right)|A|>\left(1-\frac{3}{4} \frac{\ln h}{h-1}\right)|A| \\
& >\left(1-\frac{\ln h}{h}\right)|A| \tag{1}
\end{align*}
$$

Let $r_{0} \in \mathbb{Z}_{p} \backslash\{0\}$ be an element with $\left|\hat{A}\left(r_{0}\right)\right|=M$. Put $\gamma=\arg \hat{A}\left(r_{0}\right), \alpha=\arccos (1-$ $\left.\frac{2 \ln h}{h}\right)$, so that $\alpha \leq \pi\left(\frac{\ln h}{2 h}\right)^{1 / 2}$. Define

$$
B=\left\{r_{0} a: a \in A \text { and } d\left(\gamma-2 \pi \frac{\left(r_{0} a\right)_{p}}{p}\right) \leq \alpha\right\}
$$

where $\left(r_{0} a\right)_{p}$ stands for the least non-negative integer congruent to $r_{0} a$ modulo p and $d(x)$ denotes the distance of x from the nearest number of the form $2 \pi k, k \in \mathbb{Z}$. It follows that

$$
\left|\hat{A}\left(r_{0}\right)\right| \leq|B|+(\cos \alpha)(|A|-|B|)
$$

and by (1)

$$
\begin{equation*}
|B| \geq \frac{1-\frac{\ln h}{h}-\cos \alpha}{1-\cos \alpha}|A|=|A| / 2 \tag{2}
\end{equation*}
$$

Observe that B is $F_{h_{0}}$-isomorphic to a subset of integers, where $h_{0}=\lfloor 2 \pi / \alpha\rfloor$. Then $h_{0} \geq 2\left(\frac{h}{\ln h}\right)^{1 / 2}$ and by Corollary 1 , (1), and (2), we get

$$
\begin{aligned}
\left|h_{0} B\right| & \leq \frac{|h B|}{\left\lfloor h / h_{0}\right\rfloor}+1 \leq \frac{2 h_{0}|h A|}{h}+1 \leq \frac{h_{0} h^{1 / 2}|A|}{4(\ln h)^{1 / 2}}+1 \\
& \leq \frac{h_{0} h^{1 / 2}|B|}{2(\ln h)^{1 / 2}}+1 \leq \frac{h_{0}^{2}}{4}|B|+1 \\
& <\frac{\left(h_{0}+1\right) h_{0}|B|}{2}-h_{0}^{2}+1 .
\end{aligned}
$$

Thus, one can apply Theorem 3 to the set B, so that B is contained in an arithmetic progression in \mathbb{Z}_{p} of size

$$
\begin{align*}
\max _{1 \leq j \leq h_{0}-1} \frac{\left|h_{0} B\right|-P_{j}(|B|)}{h_{0}-j}+1 & \leq \frac{2\left|h_{0} B\right|}{h_{0}}+1 \leq \frac{2|h B|}{h_{0}\left\lfloor h / h_{0}\right\rfloor}+2 \\
& \leq \frac{4|h A|}{h}+2 \leq \frac{h^{1 / 2}|A|}{2(\ln h)^{1 / 2}}+2 \\
& \leq \frac{p}{2 h^{7 / 4}} \tag{3}
\end{align*}
$$

Let A_{1} be any subset of A of the maximum cardinality, contained in an arithmetic progression of cardinality $\lfloor p / h\rfloor$. From (2) and (3) it follows that $\left|A_{1}\right| \geq|A| / 2$. An argument analogous to that used in (3) shows that A_{1} is contained in an arithmetic progression of size at most $p /\left(2 h^{7 / 4}\right)$. Without loss of generality we may assume that A_{1} is a subset of the arithmetic progression with the common difference 1 centered at 0 that means $\|a\| \leq p /\left(4 h^{7 / 4}\right)$ for every $a \in A_{1}$, where $\|x\|=\min \left((x)_{p},(p-x)_{p}\right)$. If $a_{0} \in A \backslash A_{1}$, then

$$
\left\|k a_{0}\right\| \leq \frac{p}{2 h}
$$

for some $k \in \mathbb{N}$. Let k be the smallest number with this property. Observe that if $k \leq h^{3 / 4}$, then for every $a \in A_{1}$

$$
\|k a\| \leq k\|a\| \leq h^{3 / 4} \frac{p}{4 h^{7 / 4}}<\frac{p}{2 h}
$$

so the set $A_{1} \cup\left\{a_{0}\right\}$ is contained in an arithmetic progression of size at most p / h and the common difference k^{-1} (the multiplicative inverse of k in \mathbb{Z}_{p}), contradicting the
maximality of A_{1}. Hence we may assume that $k \geq h^{3 / 4}$. Put $\ell=\left\lfloor h^{3 / 4}\right\rfloor$. Then, the elements $a_{0}, 2 a_{0}, \ldots, \ell a_{0}$ are well-spaced:

$$
\left\|i a_{0}-j a_{0}\right\|=\left\|(i-j) a_{0}\right\| \geq \frac{p}{2 h}
$$

for all $i \neq j, i, j \in\{1, \ldots, \ell\}$. Consequently, the sets

$$
\begin{equation*}
\ell A_{1}, a_{0}+(\ell-1) A_{1}, \ldots,(\ell-1) a_{0}+A_{1} \tag{4}
\end{equation*}
$$

are pairwise disjoint. Indeed, if $\left(i a_{0}+(\ell-i) A_{1}\right) \cap\left(j a_{0}+(\ell-j) A_{1}\right) \neq \emptyset$ for some $i \neq j, i, j \in\{0, \ldots, \ell-1\}$, then there are elements $a_{1}, \ldots, a_{\ell-i}, b_{1}, \ldots, b_{\ell-j} \in A_{1}$ such that

$$
i a_{0}+a_{1}+\cdots+a_{\ell-i}=j a_{0}+b_{1}+\cdots+b_{\ell-j},
$$

so that we would have

$$
\begin{aligned}
\left\|j a_{0}-i a_{0}\right\| & =\left\|a_{1}+\cdots+a_{\ell-i}-b_{1}-\cdots-b_{\ell-j}\right\| \\
& \leq\left\|a_{1}\right\|+\cdots+\left\|a_{\ell-i}\right\|+\left\|b_{1}\right\|+\cdots+\left\|b_{\ell-j}\right\| \\
& \leq \frac{p}{2 h}
\end{aligned}
$$

Now by (4) and Theorem 4

$$
\begin{aligned}
|h A| & \geq\left|\ell A_{1}\right|+\left|a_{0}+(\ell-1) A_{1}\right|+\cdots+\left|(\ell-1) a_{0}+A_{1}\right| \\
& \geq\left(\ell\left|A_{1}\right|-\ell+1\right)+\left((\ell-1)\left|A_{1}\right|-\ell+2\right)+\cdots+\left|A_{1}\right| \\
& >\ell^{2}|A| / 4-\ell^{2} / 2>|h A|,
\end{aligned}
$$

a contradiction. Hence A is contained in an arithmetic progression of cardinality $\lfloor p / h\rfloor$ in \mathbb{Z}_{p} and is F_{h}-isomorphic to a subset of integers. Applying Theorem 3 we infer that A is contained in an arithmetic progression of size $\max _{1 \leq j \leq h-1} \frac{|h A|-P_{j}(|A|)}{h-j}+1$, which completes the proof.

Remark. Using a rectification principle from [1], one can prove that the bound for $L(A)$ similar to that given in Theorem 3 holds also for $A \subseteq \mathbb{Z}_{p}$, provided we put much more restrictive bounds on the size of A.

References

[1] Y. Bilu, V. F. Lev and I. Z. Ruzsa, Rectification principles in additive number theory, Discrete Computational Geometry 19 (1998), 343-353.
[2] G. Freiman, "Foundations of a structural theory of set addition," Translations of Math. Monographs 37 (1973), American Math. Soc., Providence.
[3] V. F. Lev, Structure theorem for multiple addition and the Frobenius problem, Journal of Number Theory 58 (1996), 79-88.

[^0]: ${ }^{1}$ Research partially supported by KBN Grant 2 P03A 00724

