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Abstract

In 1888, James Joseph Sylvester (1814-1897) published a series of papers that he hoped
would pave the way for a general proof of the nonexistence of an odd perfect number
(OPN). Seemingly unaware that more than fifty years earlier Benjamin Peirce had proved
that an odd perfect number must have at least four distinct prime divisors, Sylvester
began his fundamental assault on the problem by establishing the same result. Later
that same year, he strengthened his conclusion to five. These findings would help to
mark the beginning of the modern era of research on odd perfect numbers. Sylvester’s
bound stood as the best demonstrated until Gradstein improved it by one in 1925. Today,
we know that the number of distinct prime divisors that an odd perfect number can have
is at least eight. This was demonstrated by Chein in 1979 in his doctoral thesis. However,
he published nothing of it. A complete proof consisting of almost 200 manuscript pages
was given independently by Hagis. An outline of it appeared in 1980.

What motivated Sylvester’s sudden interest in odd perfect numbers? Moreover, we also
ask what prompted this mathematician who was primarily noted for his work in algebra
to periodically direct his attention to famous unsolved problems in number theory? The
objective of this paper is to formulate a response to these questions, as well as to sub-
stantiate the assertion that much of the modern work done on the subject of odd perfect
numbers has as it roots, the series of papers produced by Sylvester in 1888.

1. Introduction

A perfect number, first introduced in antiquity, is any positive integer that is equal
to the sum of its proper divisors. Euclid (∼ 300 B.C.) established that if 2p− 1 is prime
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then the resulting integer 2p−1(2p − 1) is perfect. Twenty centuries later, Euler proved
that all even perfect numbers are necessarily of Euclid’s form. However, despite Euler’s
success in providing a defining characteristic for all even perfect numbers, we still do not
know how many of them there are. Furthermore, whether an odd perfect number exists
or not remains an unanswered question.

Having had its origin in mathematical thought more than 2000 years ago, perfect
numbers did not generate a great deal of interest until the latter part of the 19th century.
This point is underscored in [48, pg 93], when in reference to Euler’s assertion that
230(231 − 1) is perfect, Ore cites Peter Barlow’s remark that it “is the greatest [perfect
number] that will ever be discovered, for as they are merely curious without being useful,
it is not likely that any person will attempt to find one beyond it.” Time, of course,
proved Barlow wrong. In 1876 Lucas demonstrated that 2126(2127 − 1) is perfect. It was
the tenth one to be discovered. Today, there are thirty-nine known even perfect numbers.

One of the goals of this paper is to develop the argument that the modern era of
research on odd perfect numbers began with Sylvester.1 To this end, we begin by stating
that Euler established the first condition of existence when he proved that if n is an odd
perfect number, then

n = pαq1
2β1q2

2β2 · · · qk2βk (1)

where, p, q1, q2, . . . , qk are distinct odd primes and p ≡ α ≡ 1 (mod 4). However, it was
not until 1937 that Steuerwald extended this particular line of thought by showing that
not all of the βi’s can equal one [61].

Studying existence criteria from a different perspective, Peirce provided the first
known lower bound on the number of distinct prime divisors when in 1832 he proved
that an OPN must have at least four such factors [51]. This important result seems to
have been generally overlooked as even Dickson neglected to mention it in his magnum
opus, History of the Theory of Numbers, [16].

More than a half century after Peirce’s paper appeared, both Servais and Sylvester
independently published proofs of the same theorem (See [60] and [67]). It is remarkable
that Sylvester makes no mention of Peirce’s ground-breaking discovery in any of his work
for the two had known each other since at least the early 1840s. This is evidenced, for
example, in [1], wherein Archibald shows a correspondence between Sylvester and Peirce
that began shortly after the former departed Charlottesville in 1843. In [18, pg 18], it is
also stated that Sylvester was a pall-bearer at Peirce’s funeral in 1880.

Likely, this omission of credit is attributable to Sylvester’s often demonstrated aver-
sion for having been kept apprised of the works of others. For instance, in [20, pg 303],

1In his doctoral dissertation [53], Pomerance credited Sylvester with beginning the modern work on
OPNs.
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Fabian Franklin, a former student and colleague of Sylvester’s at the Johns Hopkins Uni-
versity, described [Sylvester’s] powers as “being set in motion by two opposite kinds of
stimulus; that of abundantly rewarding results, and that of the stubborn resistance of
concentrated difficulty.” He further adds, “that intermediate kind of effort which slowly
and patiently builds up and improves and perfects one’s own work, and which gives
minute and prolonged study to the work of others, he did not command in any notable
degree.” Parshall also notes in [49, pg 40] that at “numerous times throughout his ca-
reer, Sylvester found himself in the situation of having claimed as his own a previously
published result.”

Forthcoming, we shall describe the manner in which Sylvester’s attention was called
to odd perfect numbers. But first, we present a historical survey of the study of odd
perfect numbers since the time of Peirce.

In contrast to the early part of the 1800s, interest in odd perfect numbers began to
mount during the latter part of the 19th century with the general line of thought having
mirrored that of Peirce. In addition, up to 1888 most of the work that was done on the
subject appears to have been isolated efforts with the dissemination of findings sometimes
missing those individuals that would turn out to be the key players. For instance, in 1863
Nocco proved that an odd perfect number is divisible by at least three distinct prime
divisors. However, Servais, in [58] showed that an odd integer with either one or two
prime factors cannot be perfect. The following year, Sylvester demonstrated the three
factor case [66].

In 1888, both Sylvester and Servais independently published proofs that an odd per-
fect number is divisible by at least four different prime divisors (see [67] and [60]). Later
that year, Sylvester advanced his bound to five [68]. He furthermore showed that no
odd perfect number can be divisible by 105, as well as put into place a lower bound of
eight distinct prime factors for an OPN not divisible by three [67]. Also in 1888, Servais,
considering an odd perfect number with k distinct prime divisors established an upper
bound of k + 1 on its least prime divisor [59]. Improvements or extensions of this result
were later realized by Grün [23], Cohen and Hendy [13], and McDaniel [46].

In 1913 Dickson showed that for any k there can be only finitely many odd perfect
numbers with exactly k components [17].2 He proved this as a corollary to a similar
result for odd primitive non-deficient numbers (which by definition must contain all the
odd perfect numbers).3 Thus, one may check for the existence of an odd perfect number
with exactly k components by first delineating all of the finitely many primitive odd
non-deficient numbers associated with that k-value and then determining which among
them are equal to the sum of their proper divisors.

2The number n in Eq(1), for example, has k + 1 components, namely, pα, q1
2β1 , . . . , qk2βk .

3Let n be any positive integer. Then σ(n) is the sum of the positive divisors of n. A deficient number is
any positive integer n such that σ(n) < 2n. Thus, n is non-deficient provided that σ(n) ≥ 2n. Dickson
called a number primitive non-deficient provided that it is not a multiple of a smaller non-deficient
number.
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Unfortunately, this approach is not feasible for most values of k. It is also questionable
whether Dickson intended for his lists of primitive non-deficient numbers to be taken too
seriously when searching for an odd perfect number. There is an extremely large number
of them, say, with up to five distinct prime factors and they have never all been listed.
Furthermore, Dickson’s tables for those with up to four distinct prime factors contain
many errors. An account of them is provided in [12].

In 1956, Dickson’s theorem was generalized by Kanold to include any number n that
satisfies σ(n)/n = a/b, where a, b are positive integers and b 6= 0 [40].

In 1949, Kanold [39] produced a proof of the same 4-fold result previously given by
Peirce, Servais, Sylvester, and Dickson. However, the significance of his paper reached far
beyond the stated result. Because approaching the OPN question from the standpoint of
Dickson was considered impractical for most values of k, it therefore became necessary
to seek out alternative methods for examining the possible structure of such a number.
In 1974, Pomerance suggested the following class of theorems: an OPN is divisible by j
distinct primes > N [53]. Interestingly enough, Kanold had demonstrated the case of
j = 1 and N = 60 using elementary techniques in 1949 [39].

In 1973, by enlisting the use of computation, Hagis and McDaniel advanced Kanold’s
finding to j = 1 and N = 11200 [30]. Two years later, they improved N to 100110 [31].
The first proof for j > 1 was given by Pomerance in 1975 when he showed j = 2 and
N = 138 [54]. In a paper that has recently appeared, Jenkins reports that the largest
prime divisor of an odd perfect number exceeds 10 million [37]. It betters the previous
bound of 1 million established by Hagis and Cohen in 1998 [27]. New estimates on the
second and third largest prime divisors of an OPN were given by Iannucci in 1999 when
he announced that they are greater than than 10000 and 100, respectively (See [34] and
[35]).

The investigation of odd perfect numbers has also included several attempts at im-
posing a lower bound on its overall magnitude. In 1908, Turcaninov proved that an odd
perfect number is necessary larger than 2 · 106. More recently, and by integrating the use
of computers, Brent, Cohen, and te Riele tell us that it is greater than 10300 [4].

In terms of an upper bound on its overall size, Heath-Brown had shown in 1994 that
if n is an odd number with σ(n) = an, then n < (4d)4k , where d is the denominator in
a and k is equal to the number of distinct prime factors of n [33]. Specifically, for an

OPN this means that n < 44k and it sharpened the previous estimate of n < (4k)(4k)2k
2

given by Pomerance in 1977 [55]. In reference to his own result, Heath-Brown has noted
that it is still too large to be of practical value. Nevertheless, we point out that if it
is viewed in conjunction with the lower bound of 10300 provided by Brent et. al., then
Sylvester’s theorem that every odd perfect number has at least five distinct prime factors
can be demonstrated by a footnote.4 In 1999, Cook improved Heath-Brown’s result for

410300 < n < 44k implies that k > 4.48.
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an OPN with k components to n < (2.124)4k [15]. In 2003, Nielsen refined Cook’s bound
to n < 24k [47]

A lower bound of 1020 on the largest component of an odd perfect number was estab-
lished by Cohen in 1987 [11].

Addressing the OPN question from a different perspective, Steuerwald’s analysis of
allowable exponents continued in 1941 when Kanold discovered that it is neither possible
for all of the βi’s to equal two nor for one of the βi to be equal to two while all the rest are
equal to one [38]. In 1972, Hagis and McDaniel determined that not all of the βi’s can
be equal to three [29]. In 1985, Cohen and Williams eliminated possibilities for the βi,
assuming that either some or all of the βi are the same. They also provided a summary
of all previous work done in this area [14].

In a recently published paper, Iannucci and Sorli restrict the βi in order to show
that an odd perfect number cannot be divisible by three if, for all i, βi ≡ 1 (mod 3) or
βi ≡ 2 (mod 5) [36]. In that article, they also provided a slightly different analysis by
giving a lower bound of 37 on the total number of prime factors (counting multiplicities)
that an odd perfect number can have.

We now summarize some of the immediate extensions of Sylvester’s 1888 work on
OPNs.

First, we note that unlike those that had studied the odd perfect number question
before him, Sylvester seems to have sought to spotlight attention on both the problem
itself, as well as on his own work on it. For instance, before he proves that an OPN
cannot have less than four distinct prime divisors [66], he declares that “I am going to
demonstrate that such a number does not exist, by means of a form of reasoning with
which I have also provided a demonstration of the theorem that there does not exist a
perfect number which contains fewer than six distinct prime factors.” However, his proof
was incorrect.

It was not until 1925 that Gradstein offered the first correct demonstration of the
six-component case [22]. In 1949, and then in 1951, Kühnel [44] and Webber [75] in-
dependently published their own versions of this result. It would, however, take almost
fifty years years from the appearance of Gradstein’s paper for the bound of six to be
improved. In 1972, Pomerance and Robbins independently showed that an odd perfect
number has at least seven different prime divisors (see [53] and [57]). Several years later,
in his Ph.D. thesis [7], Chein proved that an OPN has at least eight such prime factors
but he published nothing of the result. In 1980, Hagis published an outline of a proof
that consisted of almost 200 pages [25]. Hagis has also stated his belief that an extension
to nine distinct prime factors is possible but that it would require an prohibitive amount
of effort and computer time.

In terms of the distinct prime divisors of an odd perfect number not divisible by three,
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the first improvement over Sylvester’s lower bound of eight came in 1957 when Kanold
proved that there must be at least nine such factors [41]. The best result known today
is eleven. It was produced independently in 1983 by both Kishore [42] and Hagis [28].

In retrospect, we note that it was Euler who rendered the first significant finding
pertaining to the structure of an odd perfect number. He may also very well have been
the first to comment on the caliber of the problem when in [19, pg 355], he remarked
that “whether . . . there are any odd perfect numbers is a most difficult question.” More
than one hundred years later, Sylvester echoed the same sentiment in [66], albeit more
descriptively, when he announced that “ . . . a prolonged meditation on the subject has
satisfied me that the existence of any one such — its escape, so to say, from the complex
web of conditions which hem it in on all sides — would be little short of a miracle. Thus
then there seems to be every reason to believe that Euclid’s perfect numbers are the
only perfect numbers which exist!” Having thus proclaimed the problem’s worthiness,
as well as its ancient roots, Sylvester also declared in that paper that he had “found a
method for determining what (if any) odd perfect numbers exist of any specified order
of manifoldness.”

Perhaps it was exactly this sort of exposition that Sylvester was so often inclined to
include in his work that served to create a greater awareness of the odd perfect number
problem. It may also be possible that the wider readership of France’s Comptes Rendus,
over say, the limited purview of the New York Mathematical Diary had also helped to
disseminate some of Sylvester’s 1888 findings on OPNs more effectively than Peirce was
able to do in 1832. In any case, Sylvester deserves the credit for having drawn enduring
attention to the problem, as well as for having approached the problem in a manner,
which with some variations, is still manifest today.

While the wait continues for Sylvester’s conjecture that an odd perfect number does
not exist to reach its definitive end, we paraphrase Guy [24, pg 45] when we say that
perhaps it is due to frustration over not being able to settle the existence question of
an odd perfect number that mathematicians have introduced many similarly defined
numerical concepts, as well as many problems associated with them to study. Alas, most
of them as Guy has suggested appear to be no more tractable than the original.

For example, we may define a multiperfect number to be a positive integer n, where
σ(n) = kn and k ≥ 1. Such numbers include all the perfect numbers, as well as the
number 1 (which is the only known odd example). However, a nontrivial odd specimen
or a proof of its nonexistence has yet to be found.

In spite of this, theory has been developed for odd multiperfect numbers which in
many ways has reflected the spirit of approach that has come to characterize the study of
OPNs. For example, in 1906, Carmichael showed that an odd “multiply perfect” number
has at least four distinct prime divisors [6]. In 1987, Kishore proved that if n is odd and
k = 3 then odd triperfect numbers must have at least twelve distinct prime factors [43].
An alternative demonstration of this result was later given by Hagis [26] with the first
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proof of its kind having come in 1983 at the hand of Reidlinger [56]. We remark that
in 2001, a multiperfect number with index k = 11 was found. Although even, it was a
noteworthy discovery. As recently as early 1992 no such number with k > 8 was known.

We now wish to offer a few comments on amicable numbers, which are represented
by pairs of positive integers, n and m, satisfying σ(m) = m + n = σ(n). It follows that
a number is perfect if and only if it is amicable with itself. There are over four million
known pairs of amicable numbers [21]. However, the question, say, of their infinitude
remains an unanswered one. Furthermore, although odd pairs of such numbers do exist
(e.g. 12285 and 14595) we do not know if there are any of opposite parity. Also open is
the question of whether or not there can be a relatively prime pair of amicable numbers.
An interesting speculation by Wall [74, pg 68] asks, “is it true that odd amicable numbers
are always incongruent modulo 4?” An affirmative answer, says Wall, would imply the
nonexistence of an odd perfect number.5

Another example of a number connected by definition to a perfect number is a quasi-
perfect number; that is, any positive integer n such that σ(n) = 2n + 1. Although we
know that such numbers must be odd squares, we do not know if there are any [24, pg
45].

On the other hand, a numerical curiosity that has proved rather easy to find is any
positive integer equal to the sum of some of its divisors. Among other things, such
numbers have been called pseudoperfect. However, any integer that is abundant6 but not
pseudoperfect has been labeled as weird. We have yet to learn if an odd weird number
exists.

Before we conclude, we would be remiss if we did not provide some opinion contrary to
the assertion that the modern interest in OPNs began with Sylvester. For this purpose,
we cite McCarthy, who in 1957 credited the modern revival of interest in the odd perfect
number question to Steuerwald [45].

McCarthy, after having made reference to Sylvester’s lower bounds on the number
of distinct prime factors of an odd perfect number (considering both the case when the
OPN is divisible by 3, as well as when it is not), declares in [45] that, “after this, progress
in the [odd perfect number] problem was at a relative standstill until recent times.” Upon
introducing cyclotomic polynomials and referring the reader back to discussions on them
in secondary sources dated from 1950, he then goes on to credit Steuerwald with initiating
the modern revival of interest in odd perfect numbers.

It would appear that in making his statement, McCarthy failed to recognize certain

5This conjecture also appears in [24, pg 57]. We remark that [24, pg 56] has given te Riele’s 33-digit
example of an odd amicable pair not divisible by 3. Although the illustration would appear to answer
Wall’s question in the negative, we have learned that there is a misprint. Therefore, Wall’s conjecture
remains alive. Our thanks goes to Dr. Iannucci for an astute observation, as well as for his follow-up
inquiry to the author of [24].

6n is abundant if σ(n) > 2n.
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significant achievements that occurred during the first half of the twentieth century. Some
examples include Gradstein’s 1925 direct extension of Sylvester’s 1888 lower bound of five
on the number of distinct prime divisors of an OPN, as well as Dickson’s 1913 theorem
stating that there can be only a finite number of odd perfect numbers having a given
number of distinct prime factors. In fact, Sylvester may have actually anticipated the
result that we now ascribe to Dickson when in [66], he remarked that, “I have found a
method for determining what (if any) odd perfect numbers exist of any specified order of
manifoldness.” Moreover, it was Dickson’s paper that ultimately motivated attempts in
the 1970s at placing lower bounds on the magnitudes of the prime divisors of an OPN.
The first result of this kind was, in fact, realized by Kanold in 1949 prior to McCarthy
having made his statement. Also not considered was Turcaninov’s 1908 lower bound on
the magnitude of an odd perfect number which has led to today’s best estimate of 10300.

We recognize that there are indeed some modern efforts that reflect the ideas advanced
by Steuerwald. Nevertheless, it is our contention that the overall focus of today’s present
study of odd perfect numbers is more closely related to the original work of Sylvester,
than say, to that of any other pioneer in the field.

2. Sylvester’s Motivation for Studying Odd Perfect Numbers

We shall begin this section by stating that Sylvester’s study of odd perfect numbers
appears to have been quite sudden and not related in any obvious way to his research
immediately prior.

We also acknowledge that the term motivation may be a multifaceted one insomuch
as it applies to ascertaining Sylvester’s reason for embarking on the odd perfect number
problem. In one sense, motivation may suggest the historical occurrence that has led to
the endeavor; that is, the specific event that put the question in Sylvester’s mind. To
this end, we shall argue that the subject of odd perfect numbers was initially brought to
his attention by Mr. Robert W. D. Christie.

In a second sense, motivation may also denote the place that Sylvester thought the
problem occupied in the broader scheme of mathematics, as well as in intellectual history
as a whole. More specifically, what did he see himself as doing if he were able to solve
this problem? In [66], Sylvester notes that the odd perfect number question is an ancient
problem possessing roots in classical Greece. While Euclid’s work on perfect numbers
had been known for centuries, Sylvester seems to have sought to give the topic increased
significance by also referring it back to the works of Aristotle, Plato, and Pythagoras.

Thirdly, we may also interpret motivation as a manifestation of a particular quality in
Sylvester’s disposition that may have caused him to be interested in exactly this sort of
a problem once he had entertained its notion. We shall suggest that Sylvester’s interest
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in the question of odd perfect numbers, as well as in other famous questions in number
theory was part of a pattern he exhibited during unsettled periods in his professional
life. Three such periods will be identified that were brought on, respectively, by the
occurrence of the following events:

1. An abrupt voluntary departure from the University of Virginia (1842)

2. A forced retirement from the Royal Military Academy, Woolwich (1870)

3. An inauspicious resignation from the Johns Hopkins University in order to accept
the Savilian Chair of Geometry at Oxford University (1883)

In order to more fully elucidate our arguments, we shall partition our discussion into
three subsections, each addressing one of the previously stated questions of motivation.

At the Urging of Mr. Christie

The principle source for answering the first question of motivation (i.e., the event that
first put the question in Sylvester’s mind), is a paper that Sylvester published in Nature
entitled, Note on a Proposed Addition to the Vocabulary of Ordinary Arithmetic [66]. In
a footnote contained therein, Sylvester reveals that “my particular attention was called
to perfect numbers by a letter from Mr. Christie, dated from ‘Carlton Selby,’ containing
some inquiries relative to the subject.” Unfortunately, there were several gentlemen with
the surname of Christie whom Sylvester was likely to have been acquainted.

Since the first name of Christie is not disclosed, perhaps Sylvester felt that the iden-
tity of this individual would be obvious to his readers. Perhaps also, he may not have
considered it a very important detail. However, the proper identification of this person
will help to produce an answer as to how and why a specific individual would have been
able to influence the research direction of Sylvester during a professionally isolated time.

A difficulty that arises in making this determination is that other than the commen-
taries provided by Sylvester on the subject in his published articles, details that directly
link his interest to odd perfect numbers are scarce. A perusal of both [1] and [49] further-
more reveals no correspondence of Sylvester’s that specifically addresses the subject of
OPNs, save a possible allusion to them made in letter dated Feb. 26, 1888 to Daniel Coit
Gilman, President of the Johns Hopkins University [49, pg 269]. In particular, Sylvester
writes that “I have not been quite idle since my accident occurred and have recently fired
off a few papers for Nature and the Comptes Rendus.” Other than this, we are aware
of no other extant communique of Sylvester that makes even the faintest reference to an
odd perfect number.

Nonetheless, we have been able to infer that from among the several Christies that
Sylvester had either met or likely corresponded with, there is one that appears to have
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had a demonstrated connection to number theory, perfect numbers, and Sylvester in
the vicinity of 1888. It is thus our contention that the identity of the person to whom
Sylvester refers in [66] is Mr. Robert William Dougall Christie.

In order to substantiate our assertion, we begin by noting that this Christie was
elected to the London Mathematical Society in 1888, a time in which Sylvester was
one of its distinguished members. We furthermore add that this individual had been
cited on several occasions in Dickson’s, History of the Theory of Numbers, [16] for work
done on perfect numbers, as well as in other areas of number theory. Moreover, this
Christie was also a frequent contributor to the Mathematical Questions column of the
Educational Times and Journal of the College of Preceptors, a periodical that published
reader’s solutions to questions posed by prominent mathematicians.7 In fact, in [9]
Christie had posed the question: “Show that the tenth perfect number is P10 = 240(241−
1) = 2, 417, 851, 639, 228, 158, 837, 784, 576.” Although there is an apparent oversight as
241 − 1 = 13367 · 164511353 is composite, this problem nevertheless serves to establish
Christie’s interest in perfect numbers around the time of 1888.8

An even stronger piece of evidence is found in [8], A Note on Perfect Numbers, that
Christie contributed to the Mathematical Questions in 1888. It began with, “these num-
bers [OPNs] have engaged the attention of mathematicians from very early times, but
there are still several problems connected with them requiring a solution before the sub-
ject can be said to be fully elucidated.” Also included is an excerpt from a letter written
by Descartes to an undisclosed individual on December 20, 1638. Upon translation, it
reads, “ . . . and I don’t know why you judge that this means the invention of a true
[odd] perfect number will not be successful; if you have a demonstration, I hold that it
is beyond my capability and I would hold it in extremely high regard; as for me, I judge
that one can find real odd perfect numbers.” This citation thus provides a link between
Christie and the existence question of an odd perfect number.

Perhaps the strongest evidence of all is obtained from the paper, “A Theorem in
Combinations”, [10], which Christie published in the 1889 volume of the Proceedings of
the London Mathematical Society. In particular, it concerns Euler’s φ-function. This
is exactly the place that Sylvester began his discussion in [66] on OPNs. Moreover,
excerpts from the footnote that Sylvester included just before his mention of Christie
states, “Euler’s function φ(n), which means the number of numbers not exceeding n and
prime to it, I call the totient of n . . . I am in the habit of representing the totient of n by
the symbol τn, τ (taken from the initial of the word it denotes) being a less hackneyed
letter than Euler’s φ, which has no claim to preference over any other letter of the Greek
alphabet, but rather the reverse.” Hence, we see Sylvester providing here an explanation

7Sylvester contributed problems to every volume of this journal from its inception up to and including
the seventieth.

8A reader, in fact, did respond with a “solution” to the stated problem citing that “The tenth perfect
number is given by Mr. Carvallo in his work ‘Theory of Perfect Numbers’”. The reader then proceeded
to give the “proof”. We add that Dickson separately points out in [16, pgs 22 and 24] that Carvallo had
twice erroneously announced having had a proof of the nonexistence of an odd perfect number.
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of the nomenclature of the topic of Christie’s paper, immediately prior to acknowledging
him for bringing to his attention some inquiries related to the subject of odd perfect
numbers.

Sylvester’s Invocation of Ancient Luminaries

The second question of Sylvester’s motivation asks, “What did Sylvester see himself
as doing if he were to solve this problem?” That is, where exactly did Sylvester see this
problem fitting into the broader picture of number theory, or indeed, into intellectual
history as a whole? Again, we get a picture of this in [66], where in the second footnote,
the issue of perfect numbers is taken up more generally.

After mentioning the inquiry of Christie, Sylvester then defines a perfect number and
praises Euclid’s ingenuity for showing in the ninth book of the Elements that a number
m is even perfect provided that m = 2n(2n+1 − 1), where 2n+1 − 1 is prime. Sylvester
proceeds to give a brief sketch of Euler’s proof of the converse of Euclid’s theorem, upon
which he offers the comment, “It is remarkable that Euler makes no reference to Euclid
in proving his own theorem. It must always stand to the credit of the Greek geometers
that they discovered a class of perfect numbers which in all probability are the only
numbers which are perfect.” Having thus duly chastised Euler for not citing his Greek
predecessors, Sylvester seeks to imbed the problem in its full pre-Euclidean context when
he adds, “Reference is made to so-called perfect numbers in Plato’s ‘Republic’ H, 546B,
and also by Aristotle, ‘Probl.’ I E 3 and ‘Metaph.’ A5.”

We now qualify Sylvester’s references by noting that in all cases, the term “perfect”
[τελιoυ] does modify “number” but not in the Euclidean sense. For example, in the
cited sections of both the Problemata [3] and Metaphysics [2], Aristotle considers what
he understands to be the claim of the number ten as “perfect”; that is, one which plays
the role of a container for all categories of number in the Pythagorean numerological
metaphysic. Also, in the passage from book VIII of the Republic [52], Plato derives
the so-called nuptial number. He first speaks of a cycle that is comprehended by a
“perfect number” that governs the birth of divine creatures and then proceeds to give
a numerological derivation of the period of this cycle for humans. Thus, in none of
the citations provided by Sylvester does it appear that the term “perfect” is used in its
Euclidean context.

A possible explanation as to why Sylvester may have chosen to include them is found
in [20]. From this first-hand account of Franklin, we learn that Sylvester had a special
interest in problems that were traceable back to the “great masters”. In particular,
Franklin recounts that “any crucial problem, especially one that was associated with the
name of one of the great masters, if once it attracted Sylvester’s attention, fastened itself
upon his mind with a grip that seemed never to slacken its tenacity.”
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Unfortunate Circumstances and Celebrated Problems in Number Theory

Primarily noted for his work in algebra, Sylvester occasionally demonstrated an affin-
ity for problems in number theory. In fact, he engaged in several such efforts during the
early 1860s while teaching at the Royal Military Academy in Woolwich. Later, he gen-
erated a bevy of results while directing the graduate program in mathematics at Johns
Hopkins. However, Sylvester’s pursuit of longstanding, notably difficult unsolved prob-
lems in the field appears to have been isolated to short-lived efforts conducted during
unsettled points in his career.

By 1888, the year in which Sylvester published his entire collection of papers on odd
perfect numbers, we find the seventy-three year old mathematician coping with the pre-
dominantly teaching-oriented duties of the Savilian Chair of Geometry at Oxford. Having
recently given up a satisfying position at the newly founded Johns Hopkins University
where his most recent discoveries often became the subject of his next graduate lecture,
Sylvester arrived at Oxford in 1884 ready to teach a predominantly undergraduate stu-
dent population primarily interested in only doing well on the university examinations.
Not surprisingly, the students were generally not very receptive to his unconventional
approach to pedagogy.

To provide some insight as to how Sylvester’s teaching techniques may have clashed
with the undergraduate environment at Oxford, we cite the following testimony given by
E. W. Davis, a student of Sylvester’s at Hopkins: 9 “Sylvester’s Methods! He had none.
‘Three lectures will be delivered on a New Universal Algebra,’ he would say; then, ‘The
course must be extended to twelve.’ It did last all the rest of the year. The following
year the course was to be Substitutions-Theorie, by Netto. We all got the text. He
lectured about three times, following the text closely and stopping sharp at the end of
the hour. Then he began to think about matrices again. ‘I must give one lecture a week
on those,’ he said. He could not confine himself to the hour, nor to the one lecture a
week. Two weeks were passed, and Netto was forgotten entirely and never mentioned
again.” A historian’s critique of his classroom style is also found in [50, pg 81] where it
is concluded that “The Englishman was completely incapable of satisfying the student
who wished to take away a notebook containing a crystallization of some mathematical
topic.”

Although Sylvester had proved successful from time to time in attracting certain indi-
viduals at Oxford to take an interest in his scholarly pursuits, the highly charged research
environment that Sylvester had helped to cultivate in Baltimore was conspicuously ab-
sent at his new academic home. It was in part because of this that Sylvester lamented
his frustration on March 11, 1887 to Gilman and inquired about his possible return to
the Johns Hopkins [49, pg 264]: “Entre nous this University except as a school of taste
and elegant light literature is a magnificent sham. It seems to me that Mathematical

9Other examples can also be found in [5]
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science is doomed and must eventually fall off like a withered branch from a Tree which
derives no nutriment from its roots. . . . I am out of heart in regard of my Professorial
work at this University in which all the real powers of influencing the studies of the place
lies in the hands of the College Tutors . . . The mathematical school here is at a very
low ebb and the number of Mathematical students here continually diminishing . . . It
depends exclusively on the Tutors whether a Professor can get undergraduates to attend
his lectures . . . Under these circumstances I am induced to inquire from you whether you
think that there is an opening for me to return to the Johns Hopkins . . . I chafe under
the sense of enforced inactivity at a time when notwithstanding the weight of my years
I feel in the plentitude of my powers physical and intellectual.”

Unfortunately, another voyage across the Atlantic never came to pass.

It was under these inauspicious circumstances that the aged Sylvester began his fun-
damental assault on the existence question of an odd perfect number. This was not
unlike two other earlier periods in his life when a significant career disruption shifted his
thoughts to problems related to either Fermat’s Last Theorem or Goldbach’s conjecture.

We shall now briefly describe the three periods of obscurity that we alluded to earlier,
for they all led to Sylvester taking an active interest in a “great master” problem in
number theory.

Post-Virginia

Forty-one years before his findings on odd perfect numbers were published, Sylvester
wrote three papers [62], [63], and [64] related to the cubic diophantine equation Ax3 +
By3 + Cz3 = Dxyz. In the first of these [62, pg 189], he remarked that “I venture
to flatter myself that as opening out a new field in connexion with Fermat’s renowned
Last Theorem, and as breaking new ground in the solution of equations of the third
degree, these results will be generally allowed to constitute an important and substantial
accession to our knowledge of the Theory of Numbers”. This trilogy of papers appeared
at a time when Sylvester was attempting to regain his footing as a mathematician. Due
to an unpleasant and short-lived experience at the University of Virginia, it had been
several years since he had been active in mathematics.10

In [49, pg 3], Parshall notes that “the years from 1842 to 1847 had been mathemati-
cally barren but by 1847, number theory, and in particular, a problem no less formidable
than Fermat’s Last Theorem, had begun to refocus his mathematical energies.” She adds
on page 19, that “in hunting for mathematical research problems in 1847, Sylvester had
big game — Fermat’s Last Theorem — in his sights. Significant progress on such a famous
open problem would certainly have established Sylvester quickly as a mathematician of
note.”

10An exaggerated but entertaining version of Sylvester’s ordeal in Virginia is offered by Sylvester’s
ex-student at Hopkins and popularizer of mathematics, Halsted [32]. A more factual account is, however,
provided by Yates in [76].
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By the time Sylvester had published his 1847 set of papers, he had been employed
as an actuary. Later, he met Cayley while both were studying law. As a result, his
enthusiasm for mathematics was restored. He later re-entered academe in 1855 at the
Royal Military Academy, Woolwich.

The Royal Military Academy was not a research institution. It was also considered to
be inferior to its French counterpart, l’Ècole Polytechnique. In addition, Sylvester would
occasionally engage in squabbles with the military governorship over matters related to
his teaching duties. Nevertheless, he subsisted and remained relatively comfortable there
for fifteen years. By 1870, a change in military regulations forced him into retirement at
the age of fifty-five. The hiatus would prove to be temporary.

Post-Woolwich

After a nearly one-year ordeal to secure a pension, Sylvester devoted a considerable
amount of time and energy to his avocations of poetry and singing. His first book-length
study on versification, The Laws of Verse [70], was published in 1871. It proved to be
a source of great pride for him. He followed this up with a private printing of Fliegende
Blätter, Supplement to the Laws of Verse, [71]. During this period of professional repose,
his mathematical output would consist of eight short articles. Among them, however,
was [65]. It addressed the famous conjecture of Goldbach.

Sylvester also provided a short discussion of this famous problem in The Laws of Verse
[70, pg 123]. He admitted that it was not due to “Euler’s correspondence with Goldbach”
that caused him to become aware of the problem’s existence, but rather, Sylvester claims
to have “re-discovered” the problem in connection with a theory of his regarding cubic
forms. This claimed accidental discovery also bears some resemblance to his later account
of how he first encountered the odd perfect number question.

Regardless of the exact manner of his introduction to Goldbach’s conjecture, Sylvester
chose not to spend a great deal of time on trying to prove it. Rather, he opted to describe
a plan that he hoped would ultimately lead to a demonstration that the probability of
the conjecture being true can be made to be as close to unity as one pleases.

By the fall of 1875, Gilman, who had been appointed president of the newly founded
Johns Hopkins University arrived in London on a faculty finding expedition. His objective
was to recruit internationally renowned scholars to help bring to fruition a vision of
an institution committed to teaching, research, and the training of future researchers.
Among other things, Gilman was looking for a world-class mathematician capable of
inspiring and directing the scholarly pursuits of the mathematics graduate students in a
research-oriented university. In other words, the position that Gilman sought to fill was
perfectly suited for the style and temperament of Sylvester.

Initially, Gilman was a bit skeptical of Sylvester [49, pg 73] for setting research cre-
dentials aside, it had been a while since he had been active in academe. In addition,
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Sylvester was not regarded as one who had honed superior teaching skills. Moreover, the
tenacity that he was capable of demonstrating in matters of personal importance was
widely known.

In spite of it all, perhaps the most accurate testimony of how well Sylvester might
fit into the plans of the new university was provided in a recommendation letter written
on his behalf by Peirce [50, pg 73]: “If you inquire about him, you will hear his genius
universally recognized but his power of teaching will probably said to be quite deficient.
. . . as the barn yard fowl cannot understand the flight of the eagle, so it is the eaglet
only who will be nourished by his instruction. . . . among your pupils, sooner or later,
there must be one, who has a genius for geometry. He will be Sylvester’s special pupil —
the one pupil who will derive from the master, knowledge and enthusiasm — and that
one pupil will give more reputation to your institution than the ten thousand, who will
complain of the obscurity of Sylvester, and for whom you will provide another class of
teachers.”

Sylvester was ultimately offered the job. However, his steadfastness in negotiating
remuneration almost caused the appointment not to materialize.11 Sylvester arrived in
Baltimore in 1876 with a renewed vigor for mathematics and a strong desire to make
good on the responsibilities that were being entrusted to him. Moreover, he was about
to occupy the most satisfying academic appointment he would ever hold. It therefore
remains somewhat of a mystery as to why Sylvester would decide to resign seven years
later in order to accept the Savilian Chair of Geometry at Oxford.

Oxford

Perhaps it was the allure of a most distinguished university in his own homeland.
Perhaps it also was the prestige associated with being the twelfth occupant of the oldest
Chair (founded in 1619) of any British university and previously held by the likes of
Briggs, Wallis, and Halley. Perhaps, it may even have been a matter of poetic justice
to him that he be offered and accept academic rank at an institution that would have
certainly rejected him years earlier on religious grounds.12 Whatever the reason may
have been, an optimistic Sylvester arrived on the grounds of Oxford in 1884.

At first, Sylvester found Oxford agreeable. He was able to continue his research
momentum on reciprocants (differential invariants).13 He also attempted to augment

11The final agreement called for an annual salary and housing allowance of $5,000 and $1,000, respec-
tively, with both amounts to be paid in gold.

12Because he was Jewish, Sylvester as a student at Cambridge refused to swear allegiance to the
thirty-nine Articles of Faith of the Church of England. This not only precluded him from receiving
the degree that he had earned but it also denied him potential fellowships and professorships at all
Anglican institutions. In 1871, the Universities Test Act was repealed. This made non-Anglicans, such
as Sylvester, eligible to hold positions at schools like Oxford.

13Sylvester described them as being “a great and unlooked for revelation which will alter the whole
face of Analytical Geometry and also produce no less effect in the theory of Differential Equations and
Transcendental Functions.” [49, pg 259]
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his teaching duties with graduate-level lectures geared toward the College Tutors and
Lecturers with some positive response but it did not last long [49, pg 238]. His attempts
to institute a learning environment similar to the one that he had enjoyed in Baltimore
had failed to materialize at Oxford.

By 1888, and well into his seventies, Sylvester felt capable of producing more than the
diminished expectations that Oxford had placed on him. It was under these circumstances
that his attention redirected itself to placing a definitive answer on the question of the
existence of an odd perfect number.

We point out that it seems to have been either a stimulating academic environment or
the want of one that dictated the nature of Sylvester’s mathematical interests. For exam-
ple, although Woolwich in the 1850s and 1860s was not a haven for research, Cayley was
nearby. As a result, Sylvester made what some have considered to be his chief contribu-
tion to the development of the mathematical sciences — Invariant Theory.14 Conversely,
when left professionally isolated, such as during the years that immediately followed his
departures from Virginia and Woolwich, or during his latter years at Oxford, Sylvester
was at a disadvantage. Franklin tells us in [20] that, “those who knew him cannot fail
to be convinced that, eminent as were his actual achievements, they do not afford a true
measure of his mathematical powers, in comparison to his great contemporaries. For he
was at once less advantageously circumstanced than they, and in an exceptional degree
subject to the influence of his surroundings.”

Thus far, we have tried to point to Sylvester’s propensity to consider celebrated prob-
lems in number theory during periods of isolation and uncertainty. We shall now take
this opportunity to remark that during his career, Sylvester also cultivated an interest in
longstanding questions in other areas of mathematics. Moreover, his work on these prob-
lems was not solely relegated to turbulent professional times. In fact, perhaps Sylvester’s
single most important achievement while at Woolwich was his proof of Newton’s Rule
for locating the imaginary roots of a polynomial equation. This was a two-hundred year
old problem that had previously eluded a rigorous demonstration by Newton himself,
Maclaurin, Waring, Euler, Lagrange, and others.

Before we conclude our findings, we offer the following translation (from the French)
of Sylvester’s proof that an odd perfect number contains at least five distinct prime
divisors [68].

14Franklin contended in 1897 that Sylvester and Cayley’s development of invariant theory marked one
of the greatest contributions of British thought to pure mathematics since the days of Newton [20].
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Sur L’Impossibilité De L’Existence D’un Nombre Parfait Impair Qui Ne
Contient Pas Au Moins 5 Diviseurs Premiers Distincts

James Joseph Sylvester

We have shown in an earlier note that an odd perfect number with less than seven
factors must be divisible by 3, but in any case, no [odd] perfect number is divisible by
105.

We now add that because

3

2
· 11

10
· 13

12
· 17

16
=

151(15
16

)

80
< 2

and that in substituting 11, 13, 17 for the other elements, one can diminish this
product so that it encroaches upon either 5 or 7, thus it follows that the element 3 must
be associated with 7 or with 5 in a perfect number with four elements.

Let us therefore suppose that such a number N exists.

(1) Let 3 and 7 be two of its elements. The third element in order of size cannot
exceed 13; because

3

2
· 7

6
· 17

16
· 19

18
=

119

64
(1 +

1

18
) <

126

64
< 2.

(α) Let 11 be the third element; because

3

2
· 7

6
· 11

10
· 29

28
=

77

40
(1 +

1

28
) < 2,

one can see that the fourth element must be from among the numbers 13, 17, 19, or 23.

But among the elements, one must be of the form 4x+ 1.

Moreover, we have shown in a previous note that no perfect number can contain the
number 17 without at the same time containing an element smaller than 67. Therefore
the four elements will be 3, 7, 11, 13.

The divisor-sum 1 of 7 cannot contain the algebraic factor 79−1, for else 1
3
· 73−1

7−1
, 1

3
· 79−1

73−1

will be divisors other than 3 and 7 of this prime sum, and further contain 13 because

1If p is an element and pi is a component of a number N , we call pi the component of p, and pi+1−1
p−1

the divisor-sum of p.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3 (2003), #A16 18

13 is neither a unilinear 2 of q nor a divisor of 73 − 1. Thus on this supposition, there
will be at least five distinct elements. Therefore the divisor-sum of 7 cannot contain 9,
but the component of 3 necessarily contains 32; consequently, because the divisor-sum of
11 (ordinary elements and not of the form 3x + 1) cannot contain 3, the divisor-sum of
13 carries with it an algebraic factor of the form 133−1

13−1
which is equal to 169 + 13 + 1.

Therefore 61 will be an element greater than 3, 7, 11, 13 and that is contrary to the
hypothesis.

(1) (β) Let 13 be the third element.

Because 3
2
· 7

6
· 13

12
· 23

22
= 91

48
(1 + 1

22
) < 2, the fourth element will necessarily be less than

23 and the system of elements will be 3, 7, 13, 19, because 17 is excluded.

The divisor-sums, either of 13 or 19, cannot contain 3; because they necessarily contain
the factors 132−1

13−1
and 193−1

19−1
, and therefore 1+13+132

3
, that is to say 61, and 1+19+192

3
, that

is to say 127.

Therefore the divisor-sum of 7 will algebraically contain the factors 1
3
· 79−1

73−1
, 1

3
· 73−1

7−1
;

the last is equal to 19; the first is necessarily prime to 3, 7, 19 and, for the reason already
given, to 13.

We have therefore demonstrated that 7 cannot be an element of N .

(2) Suppose that 3 and 5 are two of the elements.

2. A. Let 5 be the special element.

2. A(α). If the index of the element 3 is 2, then, because 1 + 3 + 32 = 13, we
have the elements 3, 5, 13; therefore the divisor-sum of 13 will contain 3, and consequently,
algebraically contain the factor 132+13+1

3
, that is to say, 61.

Hence we have the elements 3, 5, 13, 61.

But 1+3+32

9
· 1+5

5
· 13

12
· 61

60
< 2, which is inadmissible.

2. A(β). We therefore suppose that the index of the component 3 is at least 4.

Let 3, 5, p be the three elements; the index of the divisor-sum of p cannot be 9 for
then we shall have at least two other elements greater than 3, 5, p and prime to 3, 5, p.

Let q be the fourth element; the same thing will be true of the divisor-sum of q.

Therefore the product of the divisor-sums of 3, 5, p, q cannot contain a power of 3
greater than 33; but it must contain one less than 34.

Thus the hypothesis that 5 is a special element is inadmissible.

2It is very convenient in this type of research to use the phrase ”unilinear function of x” to signify
kx+ 1.
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2. B. Moving on to the hypothesis that 5 is an ordinary element.

We remark that 3
2
· 5

4
· 31

30
· 37

36
< 1.992 < 2.

Consequently, there is at least one element, call it p, that does not exceed 29: I say
that p cannot be contained in the divisor-sum of 5, for if that were the case, the index
of this sum would necessarily be an odd divisor in excess of some prime number less
than 31, that is to say 3, 5, 7, 9, or 11, of which the last four correspond to the prime
numbers 11, 29, 19, and 23.

It cannot be 3, for 53−1
5−1

= 31; nor 5, for 55−1
5−1

= 11 · 71 (and we have the combination
of elements 3, 5, 11, 71; which is inadmissible since 5 is, by hypothesis, not special, and
other elements are of the form 4x+ 3).

It cannot be 7 because it is easily shown that 57 − 1 contains neither 29 nor 9; for
although it is true that (5 being a quadratic residue of 19) 59− 1 contains 19, it contains
at the same time 53 − 1, and we have the combination 3, 5, 19, 31, which is forbidden
for the same reason as 3, 5, 11, 71.

We are left only with 11, but 511−1 does not contain 23, because 5 is not a quadratic
residue of 23.

Hence the element 5 cannot beget (by means of the divisor-sum to which it responds)
an element which is not outside the limit 29.

The divisor-sum of such an element (if it is 11 and only if in this case) may contain
5, but not 52; for if it contains 52, we will then have at least two divisors of this prime
sum between it and 3, 5, 11.

We remark that the component of the special element cannot be the power (to the
exponent 4j + 1) of a number; for, if j > 0, q4j+2 − 1 necessarily contains two distinct
prime factors in addition to 3, 5, and p; therefore j = 0; hence we see that q + 1 must
contain the powers of 3 and 5 contained in 32 · 52, that are not contained in the divisor-
sum of the other undetermined element, which can easily be shown not to contain 3 or
5 and not 32, 3 · 5, or 52; for on the first or last of these hypotheses, the number of
elements will be greater than four, and on the remaining hypotheses even greater than
5. Therefore we augment the special element to be either of the form 2k · 32 · 5 − 1 or
2k · 32 · 52− 1: consequently, its value cannot exceed 89; this proves nonetheless that the
p of which we have spoken is not a special element.

Let q be this element, we have

q = 30λ− 1.

But the divisor-sum of 5 contains neither 3 nor p.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3 (2003), #A16 20

We therefore inevitably get

5x − 1

5− 1
= q = 30λ− 1,

that is to say 5x − 120λ+ 3 = 0, which is impossible.

This demonstrates that hypothesis 2. B is inadmissible, and finally the result is
achieved that there do not exist odd perfect numbers that are divisible by fewer than
5 prime factors; the case of multiplicity 3, 2, 1 has already been demonstrated for this
theorem.

We now add a few words on perfect numbers with five elements.

Here,

3

2
· 11

10
· 13

12
· 17

16
· 23

22
< 1.986,

but

3

2
· 11

10
· 13

12
· 17

16
· 19

18
> 2.004.

We see that for a perfect number with five elements, where 5 and 7 are missing, such
elements cannot be the numerals 3, 11, 13, 17, 19.

But 17 (a cyclotomic number of Gauss) cannot exist without a companion number
of the form 17k ± 1. Therefore a perfect number with five elements, if it exists, must
necessarily have either the elements 3, 5 or the elements 3, 7.

I have succeeded in demonstrating each of these hypotheses; but the proof is too long
to be included here.

¤

The parallel between the last line of [68] and Fermat is rather striking. Further-
more, the result to which Sylvester makes reference does not seem to have been explicitly
demonstrated by him in any of his articles. However, we do find in [9] displayed promi-
nently above Christie’s erroneous question on the perfection of 240(241−1), the following
problem posed by Sylvester: “If there exist any perfect number divisible by a prime
number p of the form 2n + 1, show that it must be divisible by another prime number of
the form px± 1.”

The proof by reader, W. S. Foster, appears to be correct.
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3. Conclusion

In March of 1897, Sylvester had a paralytic seizure after having leaned over to pick
up a pen that he dropped while working in his rooms. After that, he never spoke again.
Sylvester died on March 15 of that year. His last paper was published posthumously in
1898 [73]. It was only the second article of his to appear after resigning from Oxford for
health reasons. Both papers were number theory efforts.

Sylvester was primarily known as an algebraist. In that field, he made significant
contributions to invariant theory, matrix theory, determinant theory, and the theory of
equations. Although throughout his career he had studied problems from other areas
of mathematics, it would appear that Sylvester manifested a special interest in notable
unanswered questions in the higher arithmetic during unsettled periods in his career.

In 1847, Sylvester sought to connect his trilogy of papers on cubic diophantine equa-
tions to Fermat’s Last Theorem. This marked his first set of publications after a three-
year absence from mathematics that was brought on by an abrupt decision to leave the
University of Virginia. Shortly after being forced into retirement from Woolwich in 1870
for being superannuated, Sylvester would consider another problem of the same genre —
Goldbach’s conjecture. In 1888, after having made a regrettable decision to forfeit the
favorable research surroundings of the Johns Hopkins University, Sylvester took up the
existence question of an odd perfect number while at Oxford. His intention was to prove
that such numbers do not exist.

Environment was not the only factor that motivated his research in 1888. It was,
as Sylvester claimed, some inquires related to the subject and posed to him by ‘Mr.
Christie’ that initially put the idea in his mind. Evidence seems to suggest that the
person to whom Sylvester alluded was Mr. Robert William Dougall Christie, a number
theorist and frequent contributor of problems to the Mathematical Questions column of
the Educational Times.

Sylvester began his assault on the odd perfect number problem in 1888 by first proving
what Peirce had demonstrated more than fifty years earlier — that an OPN necessarily
has at least four distinct prime factors. Later that year, he extended his result to five. He
also established that an odd perfect number cannot be divisible by 105 and showed that
any such number not divisible by three must have at least eight distinct prime factors.
Unlike Peirce, Sylvester was successful in disseminating his results to a wide audience.
In turn, this contributed to an increased level of interest in the problem that has lasted
to this day.

Finally, we know not whether an odd perfect number exists nor can we be completely
sure of the question’s decidability. However, should an answer someday be provided,
there will exist a tall pyramid of contributors.
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21. Garćia, Mariano, Pedersen, Jan Munch, te Riele, Herman, Amicable pairs, a survey,
(To Appear: Fields Inst. Comm.).
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41. Kanold, H. J., Über mehrfach vollkommene Zahlen II, J. Reine Angew. Math. 197
(1957) 82–96.

42. Kishore, Masao, Odd perfect numbers not divisible by 3, II, Math. of Comp. 40
(1983) 405–411.

43. Kishore, Masao, Odd triperfect numbers are divisible by twelve distinct prime fac-
tors, Austral. Math. Soc. Ser. A 42 (1987), 183–195.

44. Kühnel, U., Verscharfung der notwendigen Bedingungen für die Existenz vor unger-
aden vollkommenen Zahlen, Math. Zeit. 52 (1949) 202–211.

45. McCarthy, Paul J., Odd perfect numbers, Scripta Mathematica 23 (1957) 43–47.

46. McDaniel, Wayne, On odd multiply perfect numbers, Boll. Un. Mat. Ital. 2
(1970) 185–190.

47. Nielsen, Pace P., An upper bound for odd perfect numbers, Integers: Electronic
Journal of Combinatorial Number Theory 3 (2003) A14.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3 (2003), #A16 25

48. Ore, Oystein, Number theory and its history, McGraw-Hill Book Co., 1948.

49. Parshall, Karen, James Joseph Sylvester: life and works in letters, Oxford Univer-
sity Press, 1998.

50. Parshall, Karen and Rowe, David E., The emergence of the American mathematical
research community, 1876-1900: J. J. Sylvester, Felix Klein, and E. H. Moore,
Providence: American Mathematical Society and London: London Mathematical
Society, (1994).

51. Peirce, Benjamin, On perfect numbers, New York Math. Diary 2 XIII (1832)
267–277.

52. Plato, Republic, translated by G. M. A. Grube and C. D. C. Reeve, Indianapolis:
Hackett Publishing, 1992.

53. Pomerance, Carl, Odd perfect numbers are divisible by at least seven distinct
primes, Acta Arithmetica XXV (1974) 265-300.

54. Pomerance, Carl, The second largest divisor of an odd perfect number, Math. of
Comp. 29 (1975) 914–921.

55. Pomerance, Carl, Multiply perfect numbers, Mersenne primes, and effective com-
putability, Math. Ann. 226 (1977) 195–226.
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