ON A VARIATION OF THE COIN EXCHANGE PROBLEM FOR ARITHMETIC PROGRESSIONS

Amitabha Tripathi
Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi - 110016, India
atripath@maths.iitd.ac.in

Received: 3/21/02, Revised: 10/24/02, Accepted: 1/1/03, Published: 1/2/03

Abstract

Let $a_{1}, a_{2}, \ldots, a_{k}$ be relatively prime, positive integers arranged in increasing order. Let Γ^{\star} denote the positive integers in the set $\left\{a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}: x_{j} \geq 0\right\}$. Let $$
\mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \doteq\left\{n \notin \Gamma^{\star}: n+\Gamma^{\star} \subseteq \Gamma^{\star}\right\}
$$

We determine $\mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ in the case where the a_{j} 's are in arithmetic progression. In particular, this determines $g\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ in this particular case.

1. Introduction

Let $a_{1}, a_{2}, \ldots, a_{k}$ be relatively prime, positive integers arranged in increasing order. Let Γ denote $\left\{a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}: x_{j} \geq 0\right\}$, and let $\Gamma^{\star} \doteq \Gamma \backslash\{0\}$. It is well known and easy to show that $\Gamma^{c} \doteq I N \backslash \Gamma$ is a finite set. We use the classical notation $g\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ to denote the largest number in Γ^{c}. J.J. Sylvester [15] showed that $g\left(a_{1}, a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}$. In later years, the number of elements in Γ^{c}, denoted by $n\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, was also studied, and it was shown that $n\left(a_{1}, a_{2}\right)=\left(a_{1}-1\right)\left(a_{2}-1\right) / 2$. Another function related to this is the function $s\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ that denotes the sum of elements in Γ^{c}. Introduced in [4], it was shown that $s\left(a_{1}, a_{2}\right)=\left(a_{1}-1\right)\left(a_{2}-1\right)\left(2 a_{1} a_{2}-a_{1}-a_{2}-1\right) / 12$.

There is a neat formula for each of the functions g and n when the a_{j} 's are in arithmetic progression $([1],[5],[9],[16])$, but other results obtained are mostly partial results ([2],[3],[6],[7],[10],[11], [12],[13],[14]) and often not as neat. Due to an obvious connection with making change given money of different denominations, this problem is also known as the Coin Exchange Problem.

2. Main Result

We study a variation of the Coin Exchange Problem in this note. We denote by $\mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ the set of all $n \in \Gamma^{c}$ such that

$$
n+\Gamma^{\star} \subseteq \Gamma^{\star}
$$

and let $g^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ (respectively, $n^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $\left.s^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right)\right)$ denote the least (respectively, the number and sum of) elements in \mathcal{S}^{\star}. Since $g\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the largest element in S^{\star},

$$
g^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \leq g\left(a_{1}, a_{2}, \ldots, a_{k}\right)
$$

and $n^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \geq 1$, with equality if and only if $g^{\star}=g$. This problem arises from looking at the generators for the Derivation modules of certain curves [8], and has been extensively studied.

For each $j, 1 \leq j \leq a_{1}-1$, let m_{j} denote the least number in Γ congruent to j $\left(\bmod a_{1}\right)$. Then $m_{j}-a_{1}$ is the largest number in Γ^{c} congruent to $j\left(\bmod a_{1}\right)$, and no number less than this in this residue class can be in \mathcal{S}^{\star}, for they would differ by a multiple of a_{1}, an element in Γ^{\star}. Therefore,

$$
\begin{gather*}
\mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \subseteq\left\{m_{j}-a_{1}: 1 \leq j \leq a_{1}-1\right\}, \tag{1}\\
g^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \leq\left(\max _{1 \leq j \leq a_{1}-1} m_{j}\right)-a_{1}=g\left(a_{1}, a_{2}, \ldots, a_{k}\right), \tag{2}\\
n^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \leq a_{1}-1 \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
s^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \leq \sum_{j=1}^{a_{1}-1} m_{j}-a_{1}\left(a_{1}-1\right) . \tag{4}
\end{equation*}
$$

More precisely,

$$
\begin{equation*}
m_{j}-a_{1} \in \mathcal{S}^{\star}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \Longleftrightarrow\left(m_{j}-a_{1}\right)+m_{i} \geq m_{j+i} \text { for } 1 \leq i \leq a_{1}-1 \tag{5}
\end{equation*}
$$

We shall explicitly evaluate the set \mathcal{S}^{\star}, and as a consequence, the functions g, g^{\star}, n^{\star} and s^{\star}, when the a_{j} 's are in arithmetic progression. We write $a_{j}=a+(j-1) d$ for $1 \leq j \leq k$, and assume $\operatorname{gcd}(a, d)=1$. In this case, we denote the functions g, g^{\star}, n^{\star} and s^{\star} by $g(a, d ; k), g^{\star}(a, d ; k), n^{\star}(a, d ; k)$ and $s^{\star}(a, d ; k)$, respectively. To determine $\mathcal{S}^{\star}(a, d ; k)$, we recall Lemma 2 from [16].

Lemma: For each $t, 1 \leq t \leq a-1$, the least integer in Γ^{\star} congruent to $d t(\bmod a)$
is given by $a\left(1+\left[\frac{t-1}{k-1}\right]\right)+d t$.
Theorem: Let a, d be relatively prime, positive integers, and let $k \geq 2$. If $a-1=$ $q(k-1)+r$, with $1 \leq r \leq k-1$, then

$$
\mathcal{S}^{\star}(a, d ; k)=\left\{a\left[\frac{x-1}{k-1}\right]+d x: a-r \leq x \leq a-1\right\} .
$$

Proof: Fix $k \geq 2$. Throughout this proof, and elsewhere, by $x \bmod m$ we mean $x-x\left[\frac{x}{m}\right]$. By (1) and Lemma,

$$
\mathcal{S}^{\star}(a, d ; k) \subseteq\left\{a\left[\frac{x-1}{k-1}\right]+d x: 1 \leq x \leq a-1\right\}
$$

From (5), $n=a\left[\frac{x-1}{k-1}\right]+d x \in \mathcal{S}^{\star}$ if and only if for each y with $1 \leq y \leq a-1$,
$a\left(1+\left[\frac{((x+y) \bmod a)-1}{k-1}\right]\right)+d((x+y) \bmod a) \leq\left\{a\left[\frac{x-1}{k-1}\right]+d x\right\}+\left\{a\left(1+\left[\frac{y-1}{k-1}\right]\right)+d y\right\}$,
or,

$$
\begin{equation*}
a\left[\frac{((x+y) \bmod a)-1}{k-1}\right]+d((x+y) \bmod a) \leq a\left\{\left[\frac{x-1}{k-1}\right]+\left[\frac{y-1}{k-1}\right]\right\}+d(x+y) \tag{6}
\end{equation*}
$$

Suppose $2 \leq k \leq a-1$. Let $a-1=q(k-1)+r$, with $1 \leq r \leq k-1$. Unless $x=a-1$, $x+y \leq a-1$ for at least one y, for such a y, (6) reduces to proving the inequality

$$
\left[\frac{x+y-1}{k-1}\right] \leq\left[\frac{x-1}{k-1}\right]+\left[\frac{y-1}{k-1}\right] .
$$

If we now write $x=q_{1}(k-1)+r_{1}, y=q_{2}(k-1)+r_{2}$, with $1 \leq r_{1}, r_{2} \leq k-1$, the reduced inequality above fails to hold precisely when $r_{1}+r_{2} \geq k$. Given x, and hence r_{1}, the choice $y=r_{2}=k-r_{1}$ will thus ensure that (6) fails to hold provided $x+y \leq a-1$. However, such a choice for y is not possible precisely when $x \geq q(k-1)+1=a-r$, so that (6) always holds in only these cases. Finally, it is easy to verify that (6) holds if $x=a-1$. This shows $\mathcal{S}^{\star}=\left\{a\left[\frac{x-1}{k-1}\right]+d x: a-r \leq x \leq a-1\right\}$ if $2 \leq k \leq a-1$.

If $k \geq a,(6)$ reduces to $d((x+y) \bmod a) \leq d(x+y)$. Thus, $\mathcal{S}^{\star}=\{d x: 1 \leq x \leq a-1\}$, as claimed, since $r=a-1$ and $\left[\frac{x-1}{k-1}\right]=0$ in this case. This completes the proof.

Corollary: If a, d be relatively prime, positive integers, $k \geq 2$, and $a-1=q(k-1)+r$, with $1 \leq r \leq k-1$, then

$$
g(a, d ; k)=a q+d(a-1)
$$

$$
\begin{gathered}
g^{\star}(a, d ; k)=a q+d(a-r), \\
n^{\star}(a, d ; k)=r,
\end{gathered}
$$

and

$$
s^{\star}(a, d ; k)=a q r+\frac{1}{2} d r(2 a-r-1) .
$$

Acknowledgements

The author wishes to thank Professor R. Balasubramanian for introducing him to the problem, and Dr. C.S. Yogananda for arranging a copy of the eighth reference.

References

[1] Bateman, P.T., Remark on a Recent Note on Linear Forms, American Mathematical Monthly 65 (1958), 517-518.
[2] Brauer, A., On a Problem of Partitions, American Journal of Mathematics 64 (1942), 299-312.
[3] Brauer, A. and Shockley, J.E., On a problem of Frobenius, Crelle 211 (1962), 215220.
[4] Brown, T.C. and Shiue, P.J., A remark related to the Frobenius problem, Fibonacci Quarterly, 31 (1993), 31-36.
[5] Grant, D.D., On linear forms whose coefficients are in Arithmetic progression, Israel Journal of Mathematics 15 (1973), 204-209.
[6] Hofmeister, G.R., Zu einem Problem von Frobenius, Norske Videnskabers Selskabs Skrifter 5 (1966), 1-37.
[7] Nijenhuis, A. and Wilf, H.S., Representations of integers by linear forms in non negative integers, Journal of Number Theory 4 (1972), 98-106.
[8] Patil, D.P. and Singh, Balwant, Generators for the derivation modules and the relation ideals of certain curves, Manuscripta Mathematica 68 (1990), 327-335.
[9] Roberts, J.B., Note on Linear Forms, Proceedings of the American Mathematical Society 7 (1956), 465-469.
[10] Roberts, J.B., On a Diophantine problem, Canadian Journal of Mathematics 9 (1957), 219-222.
[11] Rödseth, Ö.J., On a linear Diophantine problem of Frobenius, Crelle 301 (1978), 171-178.
[12] Rödseth, Ö.J., On a linear Diophantine problem of Frobenius II, Crelle 307/308 (1979), 431-440.
[13] Selmer, E.S., On the linear Diophantine problem of Frobenius, Crelle 293/294 (1977), 1-17.
[14] Selmer, E.S. and Beyer, Ö., On the linear Diophantine problem of Frobenius in three variables, Crelle 301 (1978), 161-170.
[15] Sylvester, J.J., Mathematical questions with their solutions, The Educational Times 41 (1884), 21.
[16] Tripathi, A., The Coin Exchange Problem for Arithmetic Progressions, American Mathematical Monthly 101 (1994), no. 10, 779-781.

