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Abstract

Let a1, a2, . . . , ak be relatively prime, positive integers arranged in increasing order. Let
Γ? denote the positive integers in the set { a1x1 + a2x2 + · · ·+ akxk : xj ≥ 0 }. Let

S?(a1, a2, . . . , ak)
.
= {n /∈ Γ? : n+ Γ? ⊆ Γ? }.

We determine S?(a1, a2, . . . , ak) in the case where the aj’s are in arithmetic progression.
In particular, this determines g(a1, a2, . . . , ak) in this particular case.

1. Introduction

Let a1, a2, . . . , ak be relatively prime, positive integers arranged in increasing order. Let Γ
denote { a1x1 +a2x2 + · · ·+akxk : xj ≥ 0 }, and let Γ?

.
= Γ\{0}. It is well known and easy

to show that Γc
.
= IN \ Γ is a finite set. We use the classical notation g(a1, a2, . . . , ak) to

denote the largest number in Γc. J.J. Sylvester [15] showed that g(a1, a2) = a1a2−a1−a2.
In later years, the number of elements in Γc, denoted by n(a1, a2, . . . , ak), was also stud-
ied, and it was shown that n(a1, a2) = (a1 − 1)(a2 − 1)/2. Another function related to
this is the function s(a1, a2, . . . , ak) that denotes the sum of elements in Γc. Introduced
in [4], it was shown that s(a1, a2) = (a1 − 1)(a2 − 1)(2a1a2 − a1 − a2 − 1)/12.

There is a neat formula for each of the functions g and n when the aj’s are in arith-
metic progression ([1],[5],[9],[16]), but other results obtained are mostly partial results
([2],[3],[6],[7],[10],[11], [12],[13],[14]) and often not as neat. Due to an obvious connection
with making change given money of different denominations, this problem is also known
as the Coin Exchange Problem.
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2. Main Result

We study a variation of the Coin Exchange Problem in this note. We denote by
S?(a1, a2, . . . , ak) the set of all n ∈ Γc such that

n+ Γ? ⊆ Γ?,

and let g?(a1, a2, . . . , ak) (respectively, n?(a1, a2, . . . , ak) and s?(a1, a2, . . . , ak)) denote the
least (respectively, the number and sum of) elements in S?. Since g(a1, a2, . . . , ak) is the
largest element in S?,

g?(a1, a2, . . . , ak) ≤ g(a1, a2, . . . , ak),

and n?(a1, a2, . . . , ak) ≥ 1, with equality if and only if g? = g. This problem arises from
looking at the generators for the Derivation modules of certain curves [8], and has been
extensively studied.

For each j, 1 ≤ j ≤ a1 − 1, let mj denote the least number in Γ congruent to j
(mod a1). Then mj − a1 is the largest number in Γc congruent to j (mod a1), and no
number less than this in this residue class can be in S?, for they would differ by a multiple
of a1, an element in Γ?. Therefore,

S?(a1, a2, . . . , ak) ⊆ {mj − a1 : 1 ≤ j ≤ a1 − 1 }, (1)

g?(a1, a2, . . . , ak) ≤
(

max
1≤j≤a1−1

mj

)
− a1 = g(a1, a2, . . . , ak), (2)

n?(a1, a2, . . . , ak) ≤ a1 − 1, (3)

and

s?(a1, a2, . . . , ak) ≤
a1−1∑
j=1

mj − a1(a1 − 1). (4)

More precisely,

mj − a1 ∈ S?(a1, a2, . . . , ak)⇐⇒ (mj − a1) +mi ≥ mj+i for 1 ≤ i ≤ a1 − 1. (5)

We shall explicitly evaluate the set S?, and as a consequence, the functions g, g?,
n? and s?, when the aj’s are in arithmetic progression. We write aj = a + (j − 1)d
for 1 ≤ j ≤ k, and assume gcd(a, d) = 1. In this case, we denote the functions g, g?,
n? and s? by g(a, d; k), g?(a, d; k), n?(a, d; k) and s?(a, d; k), respectively. To determine
S?(a, d; k), we recall Lemma 2 from [16].

Lemma: For each t, 1 ≤ t ≤ a − 1, the least integer in Γ? congruent to dt (mod a)
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is given by a(1 + [ t−1
k−1

]) + dt.

Theorem: Let a, d be relatively prime, positive integers, and let k ≥ 2. If a − 1 =
q(k − 1) + r, with 1 ≤ r ≤ k − 1, then

S?(a, d; k) =
{
a
[
x− 1

k − 1

]
+ dx : a− r ≤ x ≤ a− 1

}
.

Proof: Fix k ≥ 2. Throughout this proof, and elsewhere, by x mod m we mean
x− x[ x

m
]. By (1) and Lemma,

S?(a, d; k) ⊆
{
a
[
x− 1

k − 1

]
+ dx : 1 ≤ x ≤ a− 1

}
.

From (5), n = a[x−1
k−1

] + dx ∈ S? if and only if for each y with 1 ≤ y ≤ a− 1,

a

(
1 +

[
((x+ y) mod a)− 1

k − 1

])
+ d((x+ y) mod a) ≤

{
a

[
x− 1
k − 1

]
+ dx

}
+
{
a

(
1 +

[
y − 1
k − 1

])
+ dy

}
,

or,

a

[
((x+ y) mod a)− 1

k − 1

]
+ d((x+ y) mod a) ≤ a

{[
x− 1

k − 1

]
+
[
y − 1

k − 1

]}
+ d(x+ y). (6)

Suppose 2 ≤ k ≤ a−1. Let a−1 = q(k−1)+r, with 1 ≤ r ≤ k−1. Unless x = a−1,
x+ y ≤ a− 1 for at least one y, for such a y, (6) reduces to proving the inequality[

x+ y − 1

k − 1

]
≤
[
x− 1

k − 1

]
+
[
y − 1

k − 1

]
.

If we now write x = q1(k − 1) + r1, y = q2(k − 1) + r2, with 1 ≤ r1, r2 ≤ k − 1, the
reduced inequality above fails to hold precisely when r1 + r2 ≥ k. Given x, and hence r1,
the choice y = r2 = k − r1 will thus ensure that (6) fails to hold provided x+ y ≤ a− 1.
However, such a choice for y is not possible precisely when x ≥ q(k − 1) + 1 = a − r,
so that (6) always holds in only these cases. Finally, it is easy to verify that (6) holds if
x = a− 1. This shows S? = { a[x−1

k−1
] + dx : a− r ≤ x ≤ a− 1 } if 2 ≤ k ≤ a− 1.

If k ≥ a, (6) reduces to d((x+y) mod a) ≤ d(x+y). Thus, S? = { dx : 1 ≤ x ≤ a−1 },
as claimed, since r = a− 1 and [x−1

k−1
] = 0 in this case. This completes the proof. 2

Corollary: If a, d be relatively prime, positive integers, k ≥ 2, and a− 1 = q(k− 1) + r,
with 1 ≤ r ≤ k − 1, then

g(a, d; k) = aq + d(a− 1),
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g?(a, d; k) = aq + d(a− r),
n?(a, d; k) = r,

and

s?(a, d; k) = aqr +
1

2
dr(2a− r − 1).
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