ON A VARIATION OF THE COIN EXCHANGE PROBLEM FOR ARITHMETIC PROGRESSIONS

Amitabha Tripathi

Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi - 110016, India atripath@maths.iitd.ac.in

Received: 3/21/02, Revised: 10/24/02, Accepted: 1/1/03, Published: 1/2/03

Abstract

Let a_1, a_2, \ldots, a_k be relatively prime, positive integers arranged in increasing order. Let Γ^* denote the positive integers in the set $\{a_1x_1 + a_2x_2 + \cdots + a_kx_k : x_j \ge 0\}$. Let

$$\mathcal{S}^{\star}(a_1, a_2, \dots, a_k) \doteq \{ n \notin \Gamma^{\star} : n + \Gamma^{\star} \subseteq \Gamma^{\star} \}.$$

We determine $\mathcal{S}^*(a_1, a_2, \ldots, a_k)$ in the case where the a_j 's are in *arithmetic progression*. In particular, this determines $g(a_1, a_2, \ldots, a_k)$ in this particular case.

1. Introduction

Let a_1, a_2, \ldots, a_k be relatively prime, positive integers arranged in increasing order. Let Γ denote $\{a_1x_1+a_2x_2+\cdots+a_kx_k: x_j \geq 0\}$, and let $\Gamma^* \doteq \Gamma \setminus \{0\}$. It is well known and easy to show that $\Gamma^c \doteq \mathbb{N} \setminus \Gamma$ is a *finite* set. We use the classical notation $g(a_1, a_2, \ldots, a_k)$ to denote the *largest* number in Γ^c . J.J. Sylvester [15] showed that $g(a_1, a_2) = a_1a_2 - a_1 - a_2$. In later years, the number of elements in Γ^c , denoted by $n(a_1, a_2, \ldots, a_k)$, was also studied, and it was shown that $n(a_1, a_2) = (a_1 - 1)(a_2 - 1)/2$. Another function related to this is the function $s(a_1, a_2, \ldots, a_k)$ that denotes the sum of elements in Γ^c . Introduced in [4], it was shown that $s(a_1, a_2) = (a_1 - 1)(a_2 - 1)(2a_1a_2 - a_1 - a_2 - 1)/12$.

There is a neat formula for each of the functions g and n when the a_j 's are in arithmetic progression ([1],[5],[9],[16]), but other results obtained are mostly partial results ([2],[3],[6],[7],[10],[11], [12],[13],[14]) and often not as neat. Due to an obvious connection with making change given money of different denominations, this problem is also known as the *Coin Exchange Problem*.

2. Main Result

We study a variation of the Coin Exchange Problem in this note. We denote by $\mathcal{S}^{\star}(a_1, a_2, \ldots, a_k)$ the set of all $n \in \Gamma^c$ such that

$$n + \Gamma^{\star} \subseteq \Gamma^{\star},$$

and let $g^*(a_1, a_2, \ldots, a_k)$ (respectively, $n^*(a_1, a_2, \ldots, a_k)$ and $s^*(a_1, a_2, \ldots, a_k)$) denote the *least* (respectively, the *number* and *sum* of) elements in \mathcal{S}^* . Since $g(a_1, a_2, \ldots, a_k)$ is the *largest* element in \mathcal{S}^* ,

$$g^{\star}(a_1, a_2, \dots, a_k) \leq g(a_1, a_2, \dots, a_k),$$

and $n^*(a_1, a_2, \ldots, a_k) \ge 1$, with equality if and only if $g^* = g$. This problem arises from looking at the generators for the Derivation modules of certain curves [8], and has been extensively studied.

For each j, $1 \leq j \leq a_1 - 1$, let m_j denote the *least* number in Γ congruent to $j \pmod{a_1}$. Then $m_j - a_1$ is the largest number in Γ^c congruent to $j \pmod{a_1}$, and no number less than this in this residue class can be in \mathcal{S}^* , for they would differ by a multiple of a_1 , an element in Γ^* . Therefore,

$$\mathcal{S}^{\star}(a_1, a_2, \dots, a_k) \subseteq \{ m_j - a_1 : 1 \le j \le a_1 - 1 \},$$
(1)

$$g^{\star}(a_1, a_2, \dots, a_k) \le \left(\max_{1 \le j \le a_1 - 1} m_j\right) - a_1 = g(a_1, a_2, \dots, a_k),$$
 (2)

$$n^{\star}(a_1, a_2, \dots, a_k) \le a_1 - 1,$$
 (3)

and

$$s^{\star}(a_1, a_2, \dots, a_k) \le \sum_{j=1}^{a_1-1} m_j - a_1(a_1 - 1).$$
 (4)

More precisely,

$$m_j - a_1 \in \mathcal{S}^*(a_1, a_2, \dots, a_k) \iff (m_j - a_1) + m_i \ge m_{j+i} \text{ for } 1 \le i \le a_1 - 1.$$
 (5)

We shall explicitly evaluate the set S^* , and as a consequence, the functions g, g^* , n^* and s^* , when the a_j 's are in arithmetic progression. We write $a_j = a + (j - 1)d$ for $1 \leq j \leq k$, and assume gcd(a, d) = 1. In this case, we denote the functions g, g^* , n^* and s^* by g(a, d; k), $g^*(a, d; k)$, $n^*(a, d; k)$ and $s^*(a, d; k)$, respectively. To determine $S^*(a, d; k)$, we recall Lemma 2 from [16].

Lemma: For each t, $1 \le t \le a - 1$, the least integer in Γ^* congruent to dt (mod a)

is given by $a(1 + [\frac{t-1}{k-1}]) + dt$.

Theorem: Let a, d be relatively prime, positive integers, and let $k \ge 2$. If a - 1 = q(k-1) + r, with $1 \le r \le k - 1$, then

$$\mathcal{S}^{\star}(a,d;k) = \left\{ a \left[\frac{x-1}{k-1} \right] + dx : a-r \le x \le a-1 \right\}.$$

PROOF: Fix $k \ge 2$. Throughout this proof, and elsewhere, by $x \mod m$ we mean $x - x[\frac{x}{m}]$. By (1) and Lemma,

$$\mathcal{S}^{\star}(a,d;k) \subseteq \left\{ a \left[\frac{x-1}{k-1} \right] + dx : 1 \le x \le a-1 \right\}.$$

From (5), $n = a[\frac{x-1}{k-1}] + dx \in \mathcal{S}^*$ if and only if for each y with $1 \le y \le a-1$,

$$a\left(1+\left[\frac{((x+y) \mod a)-1}{k-1}\right]\right)+d((x+y) \mod a) \le \left\{a\left[\frac{x-1}{k-1}\right]+dx\right\}+\left\{a\left(1+\left[\frac{y-1}{k-1}\right]\right)+dy\right\},$$
 or,

$$a\left[\frac{((x+y) \mod a) - 1}{k-1}\right] + d((x+y) \mod a) \le a\left\{\left[\frac{x-1}{k-1}\right] + \left[\frac{y-1}{k-1}\right]\right\} + d(x+y).$$
(6)

Suppose $2 \le k \le a-1$. Let a-1 = q(k-1)+r, with $1 \le r \le k-1$. Unless x = a-1, $x + y \le a-1$ for at least one y, for such a y, (6) reduces to proving the inequality

$$\left[\frac{x+y-1}{k-1}\right] \le \left[\frac{x-1}{k-1}\right] + \left[\frac{y-1}{k-1}\right].$$

If we now write $x = q_1(k-1) + r_1$, $y = q_2(k-1) + r_2$, with $1 \le r_1, r_2 \le k-1$, the reduced inequality above fails to hold precisely when $r_1 + r_2 \ge k$. Given x, and hence r_1 , the choice $y = r_2 = k - r_1$ will thus ensure that (6) fails to hold provided $x + y \le a - 1$. However, such a choice for y is not possible precisely when $x \ge q(k-1) + 1 = a - r$, so that (6) always holds in only these cases. Finally, it is easy to verify that (6) holds if x = a - 1. This shows $S^* = \{a[\frac{x-1}{k-1}] + dx : a - r \le x \le a - 1\}$ if $2 \le k \le a - 1$.

If $k \ge a$, (6) reduces to $d((x+y) \mod a) \le d(x+y)$. Thus, $\mathcal{S}^* = \{ dx : 1 \le x \le a-1 \}$, as claimed, since r = a - 1 and $[\frac{x-1}{k-1}] = 0$ in this case. This completes the proof. \Box

Corollary: If a, d be relatively prime, positive integers, $k \ge 2$, and a - 1 = q(k - 1) + r, with $1 \le r \le k - 1$, then

$$g(a,d;k) = aq + d(a-1),$$

$$g^{\star}(a,d;k) = aq + d(a-r),$$
$$n^{\star}(a,d;k) = r,$$

and

$$s^{\star}(a,d;k) = aqr + \frac{1}{2}dr(2a - r - 1).$$

Acknowledgements

The author wishes to thank Professor R. Balasubramanian for introducing him to the problem, and Dr. C.S. Yogananda for arranging a copy of the eighth reference.

References

- Bateman, P.T., Remark on a Recent Note on Linear Forms, American Mathematical Monthly 65 (1958), 517-518.
- [2] Brauer, A., On a Problem of Partitions, American Journal of Mathematics 64 (1942), 299-312.
- [3] Brauer, A. and Shockley, J.E., On a problem of Frobenius, *Crelle* **211** (1962), 215-220.
- [4] Brown, T.C. and Shiue, P.J., A remark related to the Frobenius problem, *Fibonacci Quarterly*, **31** (1993), 31-36.
- [5] Grant, D.D., On linear forms whose coefficients are in Arithmetic progression, Israel Journal of Mathematics 15 (1973), 204-209.
- [6] Hofmeister, G.R., Zu einem Problem von Frobenius, Norske Videnskabers Selskabs Skrifter 5 (1966), 1-37.
- [7] Nijenhuis, A. and Wilf, H.S., Representations of integers by linear forms in non negative integers, *Journal of Number Theory* 4 (1972), 98-106.
- [8] Patil, D.P. and Singh, Balwant, Generators for the derivation modules and the relation ideals of certain curves, *Manuscripta Mathematica* 68 (1990), 327-335.
- [9] Roberts, J.B., Note on Linear Forms, Proceedings of the American Mathematical Society 7 (1956), 465-469.

- [10] Roberts, J.B., On a Diophantine problem, Canadian Journal of Mathematics 9 (1957), 219-222.
- [11] Rödseth, O.J., On a linear Diophantine problem of Frobenius, Crelle 301 (1978), 171-178.
- [12] Rödseth, O.J., On a linear Diophantine problem of Frobenius II, Crelle 307/308 (1979), 431-440.
- [13] Selmer, E.S., On the linear Diophantine problem of Frobenius, Crelle 293/294 (1977), 1-17.
- [14] Selmer, E.S. and Beyer, Ö., On the linear Diophantine problem of Frobenius in three variables, *Crelle* **301** (1978), 161-170.
- [15] Sylvester, J.J., Mathematical questions with their solutions, *The Educational Times* 41 (1884), 21.
- [16] Tripathi, A., The Coin Exchange Problem for Arithmetic Progressions, American Mathematical Monthly 101 (1994), no. 10, 779-781.