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Abstract

We give an alternative proof of an identity that appeared recently in Integers. It is
shorter than the original one and uses generating functions.

In the paper [2] that appeared a few days ago the identity
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(the main result) was proved using double recursions. Here we show this result using
generating functions. This proof is perhaps more pleasant and shorter than the original
one. The relevant functions can be found in [1, p. 201ff.]. We need(
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We use the substitution z = u/(1− u)2 and get:
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Expanding the terms leads now to
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This gives
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as desired (the last sum is telescoping).
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