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Abstract

We give central and local limit theorems for the number of excedances of a uniformly
distributed random permutation belonging to certain sequences of conjugacy classes and
belonging to the sequence of derangements.

1. Introduction

For n ∈ P and 0 ≤ k ≤ Dn ∈ N, let b(n, k) ∈ [0,∞) and Bn := b(n, 0)+· · ·+b(n,Dn) > 0.
We say the array {b(n, k) : n ≥ 1, 0 ≤ k ≤ Dn} satisfies a central limit theorem with
mean µn and variance σ2

n provided

lim
n→∞

sup
x∈R

∣∣∣∣ ∑
k≤b(x)nc

b(n, k)

Bn

− Φ(x)

∣∣∣∣ = 0, (1)

where (x)n := xσn+µn. Equivalently, we say {b(n, k)} is asymptotically normal. Further,
the array {b(n, k) : n ≥ 1, 0 ≤ k ≤ Dn} satisfies a local limit theorem on S ⊆ R if and
only if

lim
n→∞

sup
x∈S

∣∣∣∣σn b(n, b(x)nc)
Bn

− φ(x)

∣∣∣∣ = 0. (2)

In general, a central limit theorem for a sequence of random variables gives (1) from
which (2) follows under certain conditions (see Theorems 1, 3 and 4 and Lemma 2). We
note that (1) is equivalent to pointwise convergence in view of the uniform continuity of
e −t

2/2 and [11; Theorem 1 of Section 9] (see Bender [1]).

A permutation of [n] is a bijection σ : [n]→ [n] which we write as σ =
(
σ(1), . . . , σ(n)

)
.

We denote the set of permutations of [n] by S[n]. A permutation σ ∈ S[n] is a
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derangement of [n] provided σ(i) 6= i for all i ∈ [n]. Let D[n] denote the set of
derangements of [n].

Given a partition λ = (λ1 ≥ · · · ≥ λp ≥ 1) of n (= λ1 + · · · + λp) ∈ P, let mi =
mi(λ) :=

∣∣{j ∈ [p] : λj = i}
∣∣ for i ∈ [n]. Here we write λ = 1m12m2 · · ·nmn . We

say σ ∈ S[n] is of cycle type λ if and only if the decomposition of σ into a product of
disjoint cycles has precisely mi(λ) cycles of length i for i ∈ [n]. We denote the set of
all permutations of [n] of cycle type λ by Sλ[n]. The Sλ[n], where λ is a partition of
n, are the conjugacy classes of S[n]. It is readily seen (see [7]; p. 233]) that |Sλ[n]| =
n!/(1m12m2 · · ·nmn)(m1!m2! · · ·mn!).

We say i ∈ [n] is an excedance (respectively, a descent) of σ ∈ S[n] provided σ(i) > i
(respectively, i 6= n and σ(i) > σ(i + 1)). Let E(σ) (respectively, Des(σ)) denote the
set of excedances (respectively, descents) of σ and e(σ) := |E(σ)| (respectively, d(σ) :=
|Des(σ)|+ 1 and maj(σ) :=

∑
{i : i ∈ Des(σ)}).

Given a partition λ = 1m12m2 · · ·nmn of n ≥ 2, let aλ(n, k) := |{σ ∈ Sλ[n] : |Des(σ)| =
k}| and bλ(n, k) := |{σ ∈ Sλ[n] : e(σ) = k}| for k ∈ N. From [8; Theorem B], aλ(n, 1) =∏n

i=1

(
fi2+mi−1

mi

)
where fi2 =

∑
d|i µ(d)2i/d/i for i ∈ P when m1 6= n and n ≥ 2. Here,

aλ(n, 1) ∈ P since fi2 ∈ P upon appealing to its definition, while, aλ(n, 1) = (n− b+1)fb2
when λ = 1n−bb with 2 ≤ b ≤ n. From [4; Theorem 3.1], bλ(n, 1) is the coefficient of x in
Qλ,n(x) (see Section 3). Properties of the Eulerian polynomials imply that bλ(n, 1) = 0
when m2 + · · · + mn ≥ 2 and bλ(n, 1) =

(
n
b

)
when λ = 1n−bb with 2 ≤ b ≤ n. Hence,

aλ(n, 1) 6= bλ(n, 1) when m2 +· · ·+mn ≥ 2 and aλ(n, 1) 6= bλ(n, 1) for all but at most b−1
integers n when λ = 1n−bb with 2 ≤ b ≤ n. Consequently, descents and excedances are
not equidistributed over conjugacy classes in general. As is well known (see [14; p. 23]),
they are equidistributed over S[n].

In connection with the Betti numbers of certain varieties, Stanley [15] was interested
in the symmetry and unimodality of the coefficients of some polynomials obtained by
enumerating a set of permutations according to the number of excedances. Brenti [3],
[4] showed these excedance polynomials are symmetric and unimodal when the set is a
conjugacy class or is the set of derangements thus generalizing a conjecture and answering
a question of [15]. Fulman [10] gave a central limit theorem for the coefficients of
polynomials obtained by enumerating permutations belonging to certain sequences of
conjugacy classes according to the number of descents. Our discussion in the previous
paragraph shows that descents and excedances are not equidistributed over the conjugacy
classes considered in [10] (see the remark after Theorem 3). We give both central and
local limit theorems for the coefficients of excedance polynomials over certain sequences
of conjugacy classes, including those of [10], and over the sequence of derangements (see
Theorems 3 and 4). A more precise statement of the results and techniques is given in
the next paragraph.

Using the method of moments, Fulman [10] recently gave a central limit theorem
for d(σ) with µn = (n − 1)/2, σ2

n = (n − 1)/12 and for maj(σ) with µn =
(
n
2

)
/2,
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σ2
n = n(n − 1)(2n + 5)/72 when σ is a uniformly distributed random permutation in

Sλ(n)[n] for certain sequences λ(n) of cycle types. In this paper, we give central and local
limit theorems for e(σ) with various µn, σ2

n when σ is a uniformly distributed random
permutation in Sλ(n)[n] for certain sequences λ(n) of cycle types, including those of [10],
and for e(σ) with µn = (n − 1)/2 + o(1), σ2

n = 25n/12 + o(1) when σ is a uniformly
distributed random permutation in D[n] (see Theorems 3 and 4). Of course our results
immediately give asymptotic formulas for the number of such permutations with a certain
number of excedances. We use the method of Harper [12]. A slight extension of this
method requiring only a nice factorization of the polynomials over R[x] is given in the
next section (see Theorem 1). We refer the reader to the excellent survey of Pólya
frequency sequences by Pitman [13].

Let N denote the nonnegative integers; P the positive integers; R0 the nonnegative
real numbers and R the real numbers. The collection of all polynomials in an indetermi-
nate x whose coefficients are in the set A is denoted by A[x]. For n ∈ P, [n] := {1, . . . , n}.
The cardinality of a set A is denoted by |A|. We denote the largest integer at most x by
bxc.

The expectation of a random variable (r.v.) X is denoted by E(X) and its variance

by Var(X). We write Xn
d→ X when the sequence Xn of r.v.s converges in distribution

to the r.v. X. For x ∈ R, let

φ(x) :=
1√
2π

e −x
2/2 and Φ(x) :=

∫ x

−∞
φ(t) dt .

We write N(0, 1) for a normally distributed r.v. with mean 0 and variance 1. We refer
the reader to Comtet [7] for combinatorics and Durrett [9] for probability.

2. General Results

For completeness, we first formalize a slight extension of the method of Harper [12]
requiring only a nice factorization of the polynomials over R[x], which we will use in the
next section.

For n ∈ P, let Qn(x) := Pn,1(x) · · ·Pn,N(n)(x) where Pn,j(x) :=
∑dn,j

k=0 a(n, j, k)xk ∈
R0[x]− {0} for 1 ≤ j ≤ N(n) ∈ P. Let Xn,1, . . . , Xn,N(n) be row-independent r.v.s with

Pr (Xn,j = k) =
a(n, j, k)

Pn,j(1)
(1 ≤ j ≤ N(n), 0 ≤ k ≤ dn,j)

(which, of course, exist), hence,

E(Xn,j) =
P ′n,j(1)

Pn,j(1)
and E(X2

n,j) =
P ′n,j(1) + P ′′n,j(1)

Pn,j(1)
(1 ≤ j ≤ N(n)).
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Let
Xn := Xn,1 + · · ·+Xn,N(n)

hence,

µn := E(Xn) =
Q′n(1)

Qn(1)
and σ2

n := Var(Xn) =
Q′n(1)

Qn(1)
+
Q′′n(1)

Qn(1)
−
(
Q′n(1)

Qn(1)

)2

. (3)

If Qn(x) :=
∑Dn

k=0 b(n, k)xk where Dn := dn,1 + · · ·+ dn,N(n), then by row-independence

Pr (Xn = k) =
b(n, k)

Qn(1)
(0 ≤ k ≤ Dn) .

Let

Yn,j :=
Xn,j − E(Xn,j)

σn
and Yn := Yn,1 + · · ·+ Yn,N(m) =

Xn − µn
σn

.

Then Yn,j assumes the values
(
k−E(Xn,j)

)
/σn with probabilities a(n, j, k)/Pn,j(1) for 0 ≤

k ≤ dn,j. Let Mn := max1≤j≤N(n)

{
E(Xn,j), |dn,j−E(Xn,j)|

}
and Gn,j(x) := Pr (Yn,j ≤ x)

be the distribution function of Yn,j for 1 ≤ j ≤ N(n). For all ε > 0,

lim
n→∞

N(n)∑
j=1

∫
|y|>ε

y2dGn,j(y) = 0 ,

provided limn→∞Mn/σn = 0. By the Lindeberg-Feller Theorem (see [9; pp. 98–101]),

Yn
d→ N(0, 1). We have proved the following central limit theorem which can be expressed

in terms of the b(n, k), Xn or Yn since

Pr (Yn ≤ x) = Pr (Xn ≤ b(x)nc) =
∑

k≤b(x)nc

b(n, k)

Qn(1)

for all x ∈ R where (x)n := xσn + µn.

Theorem 1. Suppose limn→∞Mn/σn = 0. For each x ∈ R,

lim
n→∞

∑
k≤b(x)nc

b(n, k)

Qn(1)
= Φ(x)

where (x)n = xσn + µn. (As mentioned in the introduction, this is equivalent to (1).)

Remark. If dn,j ≤ 1 for all 1 ≤ j ≤ N(n), then Mn ≤ 1 and σn → ∞ as n → ∞
suffices (Harper’s method).

A sequence a(0), . . . , a(D) of real numbers is log-concave provided a2(j) ≥ a(j−1)a(j+
1) for all 1 ≤ j ≤ D − 1. It has no internal zeros if and only if there exist no indices
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0 ≤ i < j < k ≤ D with ai, ak 6= 0 but aj = 0. The array {b(n, k) : n ≥ 1, 0 ≤ k ≤ Dn}
of real numbers has property P provided the sequence b(n, 0), . . . , b(n,Dn) has property
P for all n ∈ P. We require the following result of Canfield [5; Theorem II].

Lemma 2 (Canfield [5]). Suppose the array {b(n, k) : n ≥ 1, 0 ≤ k ≤ Dn} satisfies
(1) and is log-concave with no internal zeros where σn →∞ as n→∞. Then the array
{b(n, k) : n ≥ 1, 0 ≤ k ≤ Dn} satisfies (2) on S = R.

3. Applications to Excedances

For n ∈ P, the polynomial

An(x) :=
∑
σ∈S[n]

xd(σ) :=
n∑
k=1

A(n, k)xk ∈ N[x]

is called the nth Eulerian polynomial where A0(x) := 1. The Eulerian numbers A(n, k)
satisfy the recurrence relation

A(n, k) = (n− k + 1)A(n− 1, k − 1) + kA(n− 1, k) (n, k ≥ 2) (4)

with the boundary conditions A(n, 1) = 1 (n ≥ 1) and A(n, k) = 0 (1 ≤ n < k) (see [7;
pp. 240–246]). Then (4) together with A0(x) = 1 gives

An(x) = nxAn−1(x) + (x− x2)A′n−1(x) (n ≥ 1).

Hence,

A′n(x) = nAn−1(x) + (nx− 2x+ 1)A′n−1(x) + (x− x2)A′′n−1(x) (n ≥ 1)

and, upon iteration together with An(1) = n! (n ≥ 0), we have

A′n(1) =
(n+ 1)!

2
(n ≥ 1) (5)

while,

A′′n(x) = (2n− 2)A′n−1(x) + (nx− 4x+ 2)A′′n−1(x) + (x− x2)A′′′n−1(x) (n ≥ 1)

and, upon iteration together with (5), we have

A′′n(1) = (n+ 1)!
3n− 2

12
(n ≥ 2). (6)

We first consider excedances by conjugacy class.
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Excedances by Conjugacy Class. For a partition λ = (λ1, . . . , λp) of n ∈ P, let

Qλ,n(x) :=
∑

σ∈Sλ[n]

xe(σ) ∈ N[x] .

Brenti [4; Theorem 3.1] showed that all

Qλ,n(x) = |Sλ[n]|
p∏
i=1

Aλi−1(x)

(λi − 1)!
.

Of course, Qλ,n(1) = |Sλ[n]|. Then

Q′λ,n(x) = Qλ,n(x)

p∑
i=1

A′λi−1(x)

Aλi−1(x)

so that (5) gives

Q′λ,n(1) = Qλ,n(1)
n−m1(λ)

2

and

Q′′λ,n(x) = Qλ,n(x)


(

p∑
i=1

A′λi−1(x)

Aλi−1(x)

)2

+

p∑
i=1

A′′λi−1(x)

Aλi−1(x)
−

p∑
i=1

(
A′λi−1(x)

Aλi−1(x)

)2


so that (5) and (6) give

Q′′λ,n(1) = Qλ,n(1)

{
n2

4
− m1(λ)

12
(6n− 5) +

m2
1(λ)

4
− 5n

12
− m2(λ)

6

}
.

Hence, (3) gives

µλ,n =
n−m1(λ)

2
and σ2

λ,n =
n−m1(λ)− 2m2(λ)

12
.

Since An(x) has degree of An(x) nonpositive real zeros for n ∈ N (see [7; p. 292]), each
Qλ,n(x) has degree of Qλ,n(x) nonpositive real zeros. Hence, Mλ,n ≤ 1 and the coefficients
of all Qλ,n(x) are log-concave with no internal zeros (see [2; Theorem 1.2.1]).

Now Qλ,n(x) =
∑n−1

k=0 bλ(n, k)xk where bλ(n, k) is the number of σ ∈ Sλ[n] with
e(σ) = k. Let Zλ,n(σ) = e(σ) where σ is chosen randomly from Sλ[n] according to a
uniform distribution. Then Pr (Zλ,n = k) = bλ(n, k)/|Sλ[n]| (0 ≤ k ≤ n − 1) so that

Xλ,n
d
= Zλ,n. Hence, E(Zλ,n) = µλ,n and Var(Zλ,n) = σ2

λ,n.

For any sequence λ(n) of partitions of n, now let

Qn(x) := Qλ(n),n(x) :=
n−1∑
k=0

b(n, k)xk
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with µn := µλ(n),n and σ2
n := σ2

λ(n),n. As a consequence of Theorem 1 and Lemma 2, we
have the following results for the number of excedances of σ ∈ Sλ(n)[n] which can be
expressed in terms of the b(n, k), Xλ(n),n, Yλ(n),n or Zλ(n),n.

Theorem 3. For any sequence λ(n) of partitions of n with σn → ∞ as n → ∞, the
array {b(n, k) : n ≥ 1, 0 ≤ k ≤ n− 1} satisfies both a central limit theorem and a local
limit theorem on R with the above µn and σ2

n.

Remark. We do not require, as in [10], all mi

(
λ(n)

)
→ 0 as n → ∞ for our results

to hold. If, however, all mi

(
λ(n)

)
→ 0 as n → ∞, then σn → ∞ as n → ∞, and we

have both a central limit theorem and a local limit theorem on R with µn = n/2 and
σ2
n = n/12 (so not quite the same asymptotic distribution as d(σ) in [10]). Here, descents

and excedances are not equidistributed over Sλ(n)[n] for all sufficiently large n.

We next consider excedances by derangement (which is not a conjugacy class). For
n ∈ N, let sn :=

∑n
k=0(−1)k/k! .

Excedances by Derangement. For n ∈ P, let

Qn(x) :=
∑
σ∈D[n]

xe(σ) ∈ N[x]

and Q0(x) := 1. Brenti [3; proof of Proposition 5] showed that

An(x)

x
=

n∑
m=0

(
n

m

)
Qm(x) (n ≥ 1) .

By inversion (see [7; pp. 143–144])

Qn(x) = (−1)n +
n∑

m=1

(−1)n−m
(
n

m

)
Am(x)

x
(n ≥ 1) . (7)

For n ≥ 3, (5), (6) and (7) give

Qn(1) = n! sn ,

Q′n(1) =
n!

2

{
(n− 1)sn−1 + sn−2

}
,

Q′′n(1) =
n!

12

{
(3n2 + 13n+ 10)sn−2 + (6n+ 13)sn−3 +

3(−1)n−3

(n− 3)!

}
.

Hence, (3) and sn−r/sn = 1 + o(n−1) for r = 1, 2, 3 give

µn =
n− 1

2
+ o(1) and σ2

n =
25n

12
+ o(1) as n→∞ .
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Zhang [16] proved a conjecture of Brenti [3; p. 1140] by showing that Qn(x) has degree
of Qn(x) distinct nonpositive real zeros for n ∈ P. Hence, Mn ≤ 1 and the coefficients of
Qn(x) are log-concave with no internal zeros for n ∈ P.

Now Qn(x) =
∑n−1

k=0 b(n, k)xk where b(n, k) is the number of σ ∈ D[n] with e(σ) = k.
Let Zn(σ) = e(σ) where σ is chosen randomly from D[n] according to a uniform distribution.

Then Pr (Zn = k) = b(n, k)/|D[n]| (0 ≤ k ≤ n− 1) so that Xn
d
= Zn. Hence, E(Zn) = µn

and Var(Zn) = σ2
n where σn → ∞ as n → ∞. As a consequence of Theorem 1 and

Lemma 2, we have the following results for the number of excedances of σ ∈ D[n] which
can be expressed in terms of the b(n, k), Xn, Yn or Zn.

Theorem 4. The array {b(n, k) : n ≥ 1, 0 ≤ k ≤ n− 1} satisfies both a central limit
theorem and a local limit theorem on R with the above µn and σ2

n.

For n ∈ P, we note for completeness that

An(x)

x
=
∑
σ∈S[n]

xe(σ) :=
n−1∑
k=0

b(n, k)xk ∈ N[x] .

Hence, we have a central limit theorem for the array {b(n, k) : n ≥ 1, 0 ≤ k ≤ n − 1}
with µn = (n − 1)/2 and σ2

n = (n + 1)/12. Since the coefficients of An(x)/x are log-
concave with no internal zeros, we also have a local limit theorem on R. (Compare with
the analogous results of [6] for An(x) with µn = (n+ 1)/2 and σ2

n = (n+ 1)/12.)

Acknowledgment. I wish to thank the referee for comments and suggestions which
have led to an improved version of this paper.
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