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Abstract

We prove that the sum-of-digits function with respect to certain digital expansions (which
are related to linear recurrences) and similarly defined functions evaluated on polynomial
sequences of positive integers or primes satisfy a central limit theorem. These digital
expansions are special cases of numeration systems associated to primitive substitutions
on finite alphabets, the digits of which form Markov chains and induce Markov partitions
of the torus Td. We provide an algorithm to determine the (fractal) boundary of these
partitions.

1. Introduction

Let the sequence G = (Gk)k≥0 be defined by the linear recurrence

Gk = a1Gk−1 + a2Gk−2 + · · ·+ adGk−d for k ≥ d

and
Gk = a1Gk−1 + a2Gk−2 + · · ·+ akG0 for 1 ≤ k < d, G0 = 1,

with non-negative integers ai which satisfy the relations

(aj, aj+1, . . . , ad) ≤ (a1, a2, . . . , ad−j+1) for j = 2, . . . , d

(where “<” denotes the lexicographical order) and ad > 0.

Then every non-negative integer n has a unique (greedy) G-ary digital expansion

n =
∑
k≥0

εk(n)Gk

with integer digits εk(n) ≥ 0 satisfying

(εk(n), εk−1(n), . . . , εk−d+1(n)) < (a1, a2, . . . , ad) for all k ≥ 0. (1)

1This research was supported by the Austrian Science Foundation FWF, grant S8302-MAT.
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Furthermore, let
χ(x) = xd − a1x

d−1 − · · · − ad−1x− ad
be the characteristic polynomial of the linear recurrence. It is easy to show that it has a
unique dominant root α ∈ R+ (e.g. consider its (primitive) companion matrix and apply
the Perron-Frobenius theorem). If χ(x) is irreducible over Z, denote by α2, . . . , αd the
(distinct) algebraic conjugates of α. Then we have, for some constants c1, . . . , cd,

Gk = c1α
k + c2α

k
2 + · · ·+ cdα

k
d. (2)

(c1 = αd−1
α−1

1∏
j>1(α−αj) will be calculated in Section 4 and, for reasons of symmetry, we

have cj =
αdj−1

αj−1
1∏

i6=j(αj−αi)
for all j ≥ 1, where α1 = α.)

(1) and (2) show that these G-ary expansions of integers have essentially the same
properties as α-expansions of real numbers (where α is a simple β-number), which where
first considered by Rényi [24]. The relevant characterization of α-expansions (and the
notion β-number) is due to Parry [21]. Therefore we call these G-ary expansions Parry
expansions. For additional properties, we refer to Grabner and Tichy [16].

We want to study the distribution of G-additive functions f , i.e.

f(n) =
∑
k≥0

f(εk(n)Gk) =
∑
k≥0

fk(εk(n)) for all n ∈ N, f(0) = 0,

on polynomial sequences of non-negative integers and primes.

Drmota and the author proved in [8] the following theorem for sequences G of the
above type with d = 2, a2 = 1:

Theorem 1. Let the sequence G = (Gk)k≥0 be defined by

Gk = aGk−1 +Gk−2 for k ≥ 2, G0 = 1, G1 = a+ 1

for some integer a ≥ 1, α be the dominant root of x2−ax−1 and f a G-additive function
such that fk(e) = O (1) as k →∞ for all e = 0, . . . , a. Then, for all η > 0, the expected
value of f(n), 0 ≤ n < N , is given by

EN =
1

N

∑
n<N

f(n) = M(N) +O ((logN)η) ,

where

M(N) =

[logαN ]∑
k=0

µk with µk =
α

α2 + 1

a−1∑
e=1

fk(e) +
1

α2 + 1
fk(a).

Furthermore, set

D(N)2 =

[logαN ]∑
k,k′=0

σ
(2)
k,k′ with σ

(2)
k,k′ =

 α
α2+1

a−1∑
e=1

fk(e)
2 + 1

α2+1
fk(a)2 − µ2

k if k = k′(
− 1
α2

)|k−k′|
µmin(k,k′)µmax(k,k′) if k 6= k′,
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where

µk = − α

α2 + 1

a−1∑
e=1

fk(e) +
α2

α2 + 1
fk(a)

and assume that there exists a constant c > 0 such that σ
(2)
k,k ≥ c for all k ≥ 0. Then we

have, as N →∞,
1

N

∑
n<N

(f(n)− EN)2 ∼ D(N)2,

and, for polynomials P (n) of degree r with positive leading term,

1

N
#

{
n < N

∣∣∣∣f(P (n))−M(N r)

D(N r)
< x

}
→ Φ(x)

and
1

π(N)
#

{
p ∈ P, p < N

∣∣∣∣f(P (p))−M(N r)

D(N r)
< x

}
→ Φ(x).

(Here and in the sequel Φ(x) denotes the distribution function of the normal law.)

The strategy of the proof is based on a paper by Bassily and Kátai [3] who stud-
ied q-additive functions (i.e. G-additive functions with Gk = qk). Gittenberger and
Thuswaldner [15] used this strategy to prove a similar theorem for b-additive functions
on the Gaussian integers. More generally, the distribution of q-additive functions has
been discussed by several authors (see Drmota [7] for a list of references).

Our aim is to prove a similar theorem for G-additive functions with sequences G
defined by linear recurrences of higher degree. As in [8], we will first prove the following
theorem on the distribution of the sequence f(n), 0 ≤ n < N .

Theorem 2. Let G be as in the first paragraph, f a G-additive function such that
fk(e) = O (1) as k → ∞ for all e = 0, . . . , a1. Then, for all η > 0, the expected value of
f(n), 0 ≤ n < N , is given by

EN =
1

N

∑
n<N

f(n) = M(N) +O ((logN)η) , (3)

where

M(N) =

[logαN ]∑
k=0

µk with µk =

a1∑
e=1

pefk(e)

and the constants pe are the asymptotic probabilities of the digits e, the values of which
are determined by equation (11).

Furthermore, set

D(N)2 =

[logαN ]∑
k,k′=0

σ
(2)
k,k′
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with

σ
(2)
k,k′ =


a1∑
e=1

pefk(e)
2 − µ2

k if k = k′

d∑
i=2

(
αi
α

)|k−k′| a1∑
e=1

a1∑
e′=1

p
(i)
e,e′fmin(k,k′)(e)fmax(k,k′)(e

′) if k 6= k′

and constants p
(i)
e,e′ described on page 10 and assume that there exists a constant c > 0

such that σ
(2)
k,k ≥ c for all k ≥ 0. Then we have, as N →∞,

1

N

∑
n<N

(f(n)− EN)2 ∼ D(N)2, (4)

1

N
#

{
n < N

∣∣∣∣f(n)−M(N)

D(N)
< x

}
→ Φ(x), (5)

1

N

∑
n<N

(
f(n)−M(N)

D(N)

)h
→
∫ ∞
−∞

xh dΦ(x) (6)

for all integers h ≥ 0.

The proof of Theorem 1 (in [8]) relies on the fact that the digits of the possible
G-ary expansions can be represented by random variables which form a Markov chain (of
order 1). In our more general case, this Markov chain would be of order d− 1. By using
a representation of the digital expansions in terms of substitutions, like Dumont and
Thomas [11] (who studied strongly G-additive functions, i.e. f(n) =

∑
k≥0 f(εk(n))), we

obtain a Markov chain of order 1 (see Section 2). Furthermore, this approach permits to
consider more general numeration systems associated to primitive substitutions on finite
alphabets, which is not done in this paper for the sake of readability. As in [8], we will
use Theorem 2 and a method similar to that of Bassily and Kátai to prove Theorem 3.

Unfortunately we have to make some restrictions on the sequence G: α has to be a
Pisot unit with minimal polynomial χ(x), i.e. |αi| < 1 for i = 2, . . . , d and ad = 1, and

Fin(α) = Z[α−1] ∩ R+, (F)

where Fin(α) denotes the set of non-negative real numbers with finite α-expansion, i.e.
{x ∈ R+ : x =

∑M
k=−L εkα

k with (εj, . . . , εj−d+1) < (a1, . . . , ad) for all j ≤M}.

Theorem 3. Let G be as in the first paragraph with irreducible characteristic polynomial
χ(x) and its dominant root α a Pisot unit which satisfies (F). Let f,M,D be as in
Theorem 2 and P (n) a polynomial of degree r with integer coefficients and positive
leading term. Then, as N →∞,

1

N
#

{
n < N

∣∣∣∣f(P (n))−M(N r)

D(N r)
< x

}
→ Φ(x)

and
1

π(N)
#

{
p ∈ P, p < N

∣∣∣∣f(P (p))−M(N r)

D(N r)
< x

}
→ Φ(x).
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A plan of the proof of this theorem is given in Section 3. The difficult part is Lemma 8,
which is proved in Section 6 with the help of Sections 4 and 5. As in [8], the proof uses
tilings of the torus Td = Rd/Zd in order to determine the value of a digit εk(n) without
using the greedy algorithm (Section 4). Whereas these tilings consist of rectangles for
d = 2, the involved sets have fractal boundary for d > 2. The restrictions on G are due
to the problem of finding such tilings. Note that tilings with fractal boundary appear
also in the case of digital expansions of the Gaussian integers (cf. [15]).

For a1 ≥ a2 ≥ · · · ≥ ad > 0, we know from Brauer [4] that α is a Pisot number
with minimal polynomial χ(x). Since (F) has been shown in this case by Frougny and
Solomyak [12], Theorem 3 holds for these sequences. For d = 3, a2 = 0 (and a3 = 1), α2

and α3 are complex numbers and have therefore absolute value 1/
√
α. For these ai, (F)

was shown by Akiyama [1]. Thus Theorem 3 holds for these sequences too and the only
restriction for d = 3 is a3 = 1.

Remark. α may not be a Pisot number (e.g. the dominant root of x6 − x5 − 1). There
are also α which are Pisot units, but do not satisfy (F): let α be the dominant root of
x4 − x3 − 1. Then the α-expansion of 2 is 10.010(00001)∞.

2. Proof of Theorem 2

First we recall the notion of digital expansions associated to substitutions (cf. Dumont
and Thomas [10, 11]). Let σ be the substitution on A = {1, . . . , d} defined by

σ : i→ 1ai(i+ 1) for i = 1, . . . , d− 1

d→ 1ad

and let σ also stand for its extension on the set of words A∗ =
⋃∞
i=1Ai ∪ {Λ} with Λ

being the empty word. Denote by |m| the length of the word m and write m′ < m if m′

is a strict prefix of m.

A sequence of words mj−1mj−2 . . .m0 is said to be b-admissible, if there exist (unique)
letters bj = b, bj−1, . . . , b0 such that mkbk ≤ σ(bk+1). The admissible representation of
an integer n ≥ 1 is the (unique) 1-admissible sequence mj−1(n)mj−2(n) . . .m0(n), with
mj−1(n) 6= Λ, such that

n =
∣∣σj−1(mj−1(n))

∣∣+ · · ·+
∣∣σ0(m0(n))

∣∣ .
Denote by bk(n) the letter bk corresponding to this 1-admissible sequence. It is easy
to show (by induction) that the numbers

∣∣σk(1)
∣∣ are just the Gk defined by the linear

recurrence in the Introduction and mk(n) = 1εk(n).
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The matrix of the substitution

M =
(

#{occurrences of b in σ(b′)}
)
b,b′∈A

=


a1 a2 · · · · · · ad
1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


is the companion matrix of the characteristic polynomial of the linear recurrence.

Our aim is to study the distribution behaviour of f(n), 0 ≤ n < N , i.e. the random
variable YN defined by

Pr[YN ≤ x] =
1

N
#{n < N | f(n) ≤ x}.

If we define Yk,N by

Pr[Yk,N ≤ x] =
1

N
#{n < N | fk(εk(n)) ≤ x},

ξk,N by

Pr[ξk,N = (m, b)] =
1

N
#{n < N | (mk(n), bk(n)) = (m, b)},

and f(m, b) = f(|m|), we have

YN =
∑
k≥0

Yk,N =
∑
k≥0

fk(ξk,N),

i.e. YN is a weighted sum of the ξk,N . Therefore we first have a detailed look at the ξk,N .

Dumont and Thomas [11] showed that, for fixed j, the sequence
(ξj−1,Gj , ξj−2,Gj , . . . , ξ0,Gj) constitutes a Markov chain with transition probabilities

Pr[ξk,Gj = (m, b)|ξk+1,Gj = (m′, b′)] = Pr[ξk,Gj = (m, b)|ξk+1,Gj = (., b′)]

=

{
|σk(b)|
|σk+1(b′)| = p(.,b′),(m,b) + o(ρk) if mb ≤ σ(b′)

0 otherwise,

where (., b) denotes the set of states {(m, b) | m ∈ A∗}, p(.,b′),(m,b) = νb
νb′α

,

(ν1, . . . , νd) = (1, α− a1, α
2 − a1α− a2, . . . , α

d−1 − a1α
d−2 − · · · − ad−1)

is a left eigenvector of M to the eigenvalue α, and ρ < 1 a constant such that all roots of
χ(x) except α have modulus less then αρ. (For Pisot numbers α, we can set ρ = α−1.)
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Furthermore, denote by Pk,j the matrix of transition probabilities
Pr[ξk,Gj = (., b)|ξk+1,Gj = (., b′)]. Then we have Pk,j = P +O

(
ρk
)

with

P =
(
p(.,b′),(.,b)

)
b′,b∈A =



a1

α
a2

α2−a1α
· · · ad−1

αd−1−a1αd−2−···−ad−2α
1

α−a1

α
0 · · · · · · 0

0 α2−a1α−a2

α2−a1α

. . .
...

...
. . . . . . . . .

...

0 · · · 0 αd−1−a1αd−2−···−ad−1

αd−1−a1αd−2−···−ad−2α
0

 .

P is similar to 
a1

α
a2

α2 · · · · · · ad
αd

1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


and its eigenvalues are therefore 1, α2/α, . . . , αd/α. Hence we have

Pr[ξk,Gj = (., b)] = p(.,b) +O
(
ρmin(k,j−k)

)
, (7)

where the probability vector (p(.,1), . . . , p(.,d))
t is the right eigenvector of P to the eigen-

value 1 with
∑d

i=1 p(.,i) = 1:p(.,1)
...

p(.,d)

 =
1

χ′(α)

(
αd−1, αd−1 − a1α

d−2, αd−1 − a1α
d−2 − a2α

d−3, . . . ,
ad
α

)t
Thus

Pr[ξk,Gj = (m, b)] =
∑

b′:mb≤σ(b′)

Pr[ξk,Gj = (m, b), ξk+1,Gj = (., b′)]

= p(m,b) +O
(
ρmin(k,j−k)

)
with p(m,b) =

∑
b′:mb≤σ(b′) p(.,b′),(m,b)p(.,b′).

This suggests to approximate the digital distribution by a stationary Markov chain
(Xk, k ≥ 0), with the stationary probability distribution Pr[Xk = (m, b)] = p(m,b) and
the transition probabilities Pr[Xk = (m, b)|Xk+1 = (., b′)] = p(.,b′),(m,b). The next lemma
shows how this approximation can be quantified for finite-dimensional distributions.

Lemma 1. For every h ≥ 1 and all integers 0 ≤ k1 < k2 < · · · < kh < j, we have

Pr[ξk1,Gj = (., b1), . . . , ξkh,Gj = (., bh)] = qk1,...,kh,(.,b1),...,(.,bh) +O
(
ρmin(k1,j−kh)

)
,

where
qk1,...,kh,(.,b1),...,(.,bh) = Pr[Xk1 = (., b1), . . . , Xkh = (., bh)].
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Proof. For 0 ≤ k < k′ < j, we have

Pk,jPk+1,j · · ·Pk′−1,j = P k′−k +O
(
ρk
)

and consequently

Pr[ξk,Gj = (., b)|ξk′,Gj = (., b′)] = Pr[Xk = (., b)|Xk′ = (., b′)] +O
(
ρk
)
. (8)

Because of

Pr[ξk1,Gj = (., b1), . . . , ξkh,Gj = (., bh)]

= Pr[ξk1,Gj = (., b1)|ξk2,Gj = (., b2)]Pr[ξk2,Gj = (., b2)|ξk3,Gj = (., b3)] · · ·
· · ·Pr[ξkh−1,Gj = (., bh−1)|ξkh,Gj = (., bh)]Pr[ξkh,Gj = (., bh)],

it suffices to apply (7) and (8) and the lemma follows.

Hence we have

Pr[ξk,Gj = (m, b), ξk′,Gj = (m′, b′)] = qk,k′,(m,b),(m′,b′) +O
(
ρmin(k,j−k′)

)
(0 ≤ k < k′ < j) with

qk,k′,(m,b),(m′,b′) =
∑

c:mb≤σ(c)

p(m′,b′)

p(.,b′)
qk+1,k′,(.,c),(.,b′)p(.,c),(m,b) (9)

because of

Pr[ξk,Gj = (m, b)|ξk′,Gj = (m′, b′)]

=
∑

c:mb≤σ(c)

Pr[ξk,Gj = (m, b)|ξk+1,Gj = (., c)]Pr[ξk+1,Gj = (., c)|ξk′,Gj = (., b′)].

For the finite-dimensional distributions, we obtain

Pr[ξk1,Gj = (m1, b1), . . . , ξkh,Gj = (mh, bh)] = qk1,...,kh,(m1,b1),...,(mh,bh) +O
(
ρmin(k1,j−kh)

)
,

(10)

where the qk1,...,kh,(m1,b1),...,(mh,bh) are defined similarly to (9).

The next lemma shows that, for general N , ξk,N is similar to ξk,Gj where Gj is the
largest element of G not exceeding N (j ≈ [logαN ]).

Lemma 2. The probability distribution of ξk,N for Gj ≤ N < Gj+1 with k < j is given
by

Pr[ξk,N = (m, b)] = Pr[ξk,Gj = (m, b)] +O
(
ρ(j−k)/2

)
.
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The joint distribution for 0 ≤ k1 < k2 < · · · < kh < j is given by

Pr[ξk1,N = (m1, b1), . . . , ξkh,N = (mh, bh)]

= Pr[ξk1,Gj = (m1, b1), . . . , ξkh,Gj = (mh, bh)] +O
(
ρ(j−kh)/2

)
The proof is similar to that of Lemma 3 in [8] and therefore omitted.

The above calculations indicate that, in order to obtain uniform estimates, we have
to concentrate on the digits εk(n) with A(N) ≤ k ≤ B(N), where A(N) = [(logN)η],
B(N) = [logαN ]− [(logN)η].

Lemma 3. For every h ≥ 1 and for every λ > 0, we have

1

N
#{n < N | εk1(n) = e1, . . . , εkh(n) = eh} = qk1,...,kh,e1,...,eh +O

(
(logN)−λ

)
uniformly for

A(N) ≤ k1, k2, · · · , kh ≤ B(N),

where
qk1,...,kh,e1,...,eh =

∑
(mi,bi):|mi|=ei

qk1,...,kh,(m1,b1),...,(mh,bh).

This lemma is a direct consequence of Lemma 2 and (10). Note that it is not necessary
that k1, . . . , kh are ordered and that they are distinct.

Now, we turn to the derivation of EN = EYN , i.e. to the proof of (3). We have

EYk,N =
∑
m,b

Pr[ξk,N = (m, b)]fk(|m|) =

a1∑
e=1

pefk(e) +O
(
ρmin(k,(j−k)/2)

)
,

where

pe =
∑

m,b:|m|=e
p(m,b). (11)

Since fk(e) is bounded, we get

EN =

[logαN ]∑
k=0

EYk,N =

B(N)∑
k=A(N)

EYk,N +O ((logN)η) = M(N) +O ((logN)η) .

The variance is given by

Var

[logαN ]∑
k=0

fk(Xk)

 =

[logαN ]∑
k,k′=0

(
E
(
fk(Xk)fk′(Xk′)

)
− E fk(Xk)E fk′(Xk′)

)
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and

E
(
fk(Xk)fk′(Xk′)

)
− E fk(Xk)E fk′(Xk′) =

a1∑
e,e′=1

(qk,k′,e,e′ − pepe′)fk(e)fk′(e′).

Since the eigenvalues of M are α1/α, . . . , αd/α (with α1 = α), we have, for k < k′,

qk,k′,(.,b),(.,b′) =
d∑
i=1

r
(i)
(.,b),(.,b′)

(αi
α

)k′−k
with (easily determined) constants r

(i)
(.,b),(.,b′) and r

(1)
(.,b),(.,b′) = p(.,b)p(.,b′). Since the qk,k′,e,e′

are (weighted) sums of qk,k′,(.,b),(.,b′), we have

qk,k′,e,e′ =
d∑
i=1

p
(i)
e,e′

(αi
α

)k−j
,

where the constants p
(i)
e,e′ are the respective sums of r

(i)
(.,b),(.,b′). Note that p

(1)
e,e′ = pepe′ .

With these p
(i)
e,e′ , we get D(N)2 = Var

(∑[logαN ]
k=0 fk(Xk)

)
.

In Lemma 5, we will need D(N)/(logN)η → ∞. We show that this lower bound
holds for η < 1/2 if the variances of fk(Xk) have a uniform lower bound.

Lemma 4. Suppose that there exists a constant c > 0 such that σ
(2)
k,k ≥ c for all k ≥ 0.

Then we have a constant w such that

Var

(
s′∑
k=s

fk(Xk)

)
≥ w(s′ − s+ 1) (12)

for all s, s′ ≥ 0 with s′ − s ≥ 3d.

Proof. By Dobrušin [5], we have Var
(∑s′

k=s fk(Xk)
)
≥ c(s′ − s + 1)β/100, where β is

the ergodicity coefficient

β = 1− sup
m,b,m′,b′,A

∣∣Pr[Xk ∈ A|Xk+1 = (m, b)]−Pr[Xk ∈ A|Xk+1 = (m′, b′)]
∣∣

(which does not depend on k). Hence the lemma is proved, if we have β > 0.

If all ai are non-zero, we have p(m,b),(Λ,1) > 0 for all possible (m, b). Therefore,
if (Λ, 1) ∈ A, we have Pr[Xk ∈ A|Xk+1 = (m, b)] > 0 for all (m, b) and the dif-
ference cannot be 1. If (Λ, 1) 6∈ A, the difference cannot be 1 because we have
Pr[Xk ∈ A|Xk+1 = (m, b)] < 1 for all (m, b). Since the transition probabilities attain
just finitely many values, we have β > 0.

If ab = 0 for some b (1 < b < d), then Pr[Xk = (Λ, b+ 1)|Xk+1 = (1ab−1 , b)] = 1
and Pr[Xk = (Λ, b + 1)|Xk+1 = (Λ, 1)] = 0, hence β = 0. Nevertheless we have
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Pr[Xk = (m, b)|Xk+d−1 = (m′, b′)] > 0 for all possible (m, b), (m′, b′) and Corollary 6 in
Giesbrecht [13] concludes the lemma (after a tedious consideration of his notation).

Immediately, we get the following corollary.

Corollary 1. Suppose that there exists a constant c > 0 such that σ
(2)
k,k ≥ c for all k ≥ 0.

Then we have
D(N)2 À logN.

In order to prove (6), it suffices, because of the following lemma, to show that the
moments

1

N

∑
n<N

(
f(n)−M(N)

D(N)

)h
with

f(n) =

B(N)∑
k=A(N)

fk(εk(n)) = f(n) +O ((logN)η) ,

M(N) =

B(N)∑
k=A(N)

µk and D(N)2 =

B(N)∑
k,k′=A(N)

σ
(2)
k,k′

converge to the corresponding moments of the normal law. This implies

1

N
#

{
n < N

∣∣∣∣f(n)−M(N)

D(N)
< x

}
→ Φ(x),

and, again by the following lemma, (5).

Lemma 5 (cf. Lemma 5 in [8]). Suppose that D(N)/(logN)η → ∞ for some η > 0.
Then we have

1

N
#

{
n < N

∣∣∣∣f(n)−M(N)

D(N)
< x

}
→ Φ(x)

for all x ∈ R if and only if

1

N
#

{
n < N

∣∣∣∣f(n)−M(N)

D(N)
< x

}
→ Φ(x)

for all x ∈ R.

Furthermore, if for all h ≥ 0

1

N

∑
n<N

(
f(n)−M(N)

D(N)

)h
→
∫ ∞
−∞

xh dΦ(x),

then we also have
1

N

∑
n<N

(
f(n)−M(N)

D(N)

)h
→
∫ ∞
−∞

xh dΦ(x)
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and conversely.

The proof is the same as that of Lemma 5 in [8].

For the convergence of the moments of f(n), we first prove a central limit theorem
(with convergence of moments) for the exact Markov chain Xk and compare f(n) to∑B(N)

k=A(N) fk(Xk) afterwards.

Lemma 6. Suppose that there exists a constant c > 0 such that σ
(2)
k,k ≥ c for all k ≥ 0.

Then the sums of the random variables fk(Xk) satisfy a central limit theorem. More
precisely, ∑B(N)

k=A(N) fk(Xk)−M(N)

D(N)
⇒ N (0, 1)

and, for all h ≥ 0, we have, as N →∞,

E

(∑B(N)
k=A(N) fk(Xk)−M(N)

D(N)

)h

→
∫ ∞
−∞

xh dΦ(x).

Proof. If all ai are non-zero, then β > 0 (see the proof of Lemma 4) and the lemma can
be proved with the help of Theorem 4 of Lif̌sic [18], as in [8]. If β = 0, we have to adapt
this theorem.

An inspection of Lif̌sic’ proof and Dobrušin’s paper [5] (which is used by Lif̌sic) shows
that we get the same result if we replace the ergodicity coefficient β by a constant θ > 0
that satisfies

γj =
1

2
sup
m,b

∑
m′,b′

∣∣Pr[Xk = (m′, b′)|Xk+j = (m, b)]−Pr[Xk = (m′, b′)]
∣∣ ≤ (1− θ)j (13)

for all j ≥ 1 and

Var

(
s′∑
k=s

fk(Xk)

)
≥ c(s′ − s+ 1)θ (14)

for all s, s′ ≥ 0 with s′ − s ≥ s0 for some constant s0.

We have γj > 0 for all j ≥ 1 since the sum in (13) is always less than 1 and the
number of states (m, b) is finite. Dobrušin [5] proved γj ≤ 1− βj, where

βj = 1− sup
m,b,m′,b′,A

∣∣Pr[Xk ∈ A|Xk+j = (m, b)]−Pr[Xk ∈ A|Xk+j = (m′, b′)]
∣∣.

For some j0 with 1 < j0 < d, we have Pr[Xk = (Λ, 1)|Xk+j = (m, b)] > 0 for all
possible (m, b) and all j ≥ j0, which implies βj > 0 for all j ≥ j0. Set

θ = min

(
1− max

1≤k<j0
γ

1/k
k , 1− max

j0≤k<2j0
(1− βk)1/k,

w

c

)
.
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Then (14) holds because of (12) and (13) holds for j < 2j0 because of γj ≤ 1 − βj.
For j ≥ 2j0, we apply the inequality 1 − βi+j ≤ (1 − βi)(1 − βj) (see [5]) and get, by
induction on q,

1− βqj0+t ≤ (1− βj0)(1− β(q−1)j0+t) ≤ (1− θ)j0(1− θ)(q−1)j0+t = (1− θ)qj0+t

for q ≥ 2, t < j0. Hence θ satisfies the required properties, we can apply the (adapted)
theorem of Lif̌sic and the lemma is proved.

The next lemma concludes the proof of Theorem 2. In particular, for h = 2, the
equation implies together with Lemma 5 and (3) the asymptotics for the variance (4).

Lemma 7 (cf. Lemma 7 in [8]). For every h ≥ 1 and every λ > 0, we have

1

N

∑
n<N

(
f(n)−M(N)

D(N)

)h
= E

(∑B(N)
k=A(N) fk(Xk)−M(N)

D(N)

)h

+O
(
(logN)−λ

)
.

The proof is the same as that of Lemma 7 in [8].

3. Plan of the Proof of Theorem 3

Set f as in Section 2 with A(N r) and B(N r) instead of A(N) and B(N). Then, similarly
to Theorem 2, it is enough to prove

1

N
#

{
n < N

∣∣∣∣f(P (n))−M(N r)

D(N r)
< x

}
→ Φ(x) (15)

and

1

π(N)
#

{
p < N

∣∣∣∣f(P (p))−M(N r)

D(N r)
< x

}
→ Φ(x). (16)

We show

1

N

∑
n<N

(
f(P (n))−M(N r)

D(N r)

)h
− 1

N r

∑
n<Nr

(
f(n)−M(N r)

D(N r)

)h
→ 0

and
1

π(N)

∑
p<N

(
f(P (p))−M(N r)

D(N r)

)h
− 1

N r

∑
n<Nr

(
f(n)−M(N r)

D(N r)

)h
→ 0

as N → ∞ by the following lemma. With the results of the previous section and the
Fréchet-Shohat theorem, this proves (15), (16) and thus Theorem 3.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 2 (2002), #A14 14

Lemma 8 (Main Lemma). Let P (n) be an integer polynomial with degree r ≥ 1 and
positive leading term. Then, for every h ≥ 1 and for every λ > 0, we have

1

N
#{n < N | εk1(P (n)) = e1, . . . , εkh(P (n)) = eh} = qk1,...,kh,e1,...,eh +O

(
(logN)−λ

)
and

1

π(N)
#{p < N | εk1(P (p)) = e1, . . . , εkh(P (p)) = eh} = qk1,...,kh,e1,...,eh +O

(
(logN)−λ

)
uniformly for all integers

(logN r)η ≤ k1, k2, . . . , kh ≤ logαN
r − (logN r)η

and e1, e2, . . . , eh ∈ {0, 1, . . . , a1}. (The qk1,...,kh,e1,...,eh are as in Lemma 3.)

The proof of this lemma (Section 6) requires tilings of the torus and exponential sums
which are treated in the next sections.

4. Tilings

For q-ary expansions we have

εk(n) = e⇐⇒
{

n

qk+1

}
∈
[
e

q
,
e+ 1

q

)
,

where {x} denotes the fractional part of x.

In order to get an analogue to this for our expansions, we need a tiling of the torus
Td = Rd/Zd, i.e. a family of sets (Ωe)e∈{0,...,a1} such that

•
⋃a1

e=0 Ωe = Td,

• each of the Ωe is the closure of its interior,

• the intersection of two different Ωe has Lebesgue measure zero,

and vectors v(n, k) ∈ Td such that we have (at least in most cases)

εk(n) = e⇐⇒ v(n, k) ∈ Ωe.

Proposition 1. Let G be as in Theorem 3 and

v(n, k) =
n

αk
α− 1

αd − 1

(
αd−1, . . . , α, 1

)t ∈ Td.
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Then we have a tiling (Ωe)e∈{0,...,a1} of Td with

d(v(n, k),Ωεk(n)) = O
(
α−k

)
for all k, n ∈ N, (17)

where d(x, S) = infy∈S ‖x− y‖∞.

Remark. The distance d(v(n, k),Ωεk(n)) is positive and, equivalently, v(n, k) 6∈ Ωεk(n)

only for a small number of n and k (see Lemma 15). The error term O
(
α−k

)
is not

surprising because we have 1
Gj

#{n < Gj | εk(n) = e} = pe + O
(
α−min(k,j−k)

)
for all

j > k, whereas q-ary expansions satisfy exactly 1
qj

#{n < qj | εk(n) = e} = 1
q
. The

Lebesgue measure of the tilings is λd(Ωe) = pe.

Proof. We regard the linear map

φ =


a1 a2 · · · · · · ad
1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0

 ∈ GL(d,Z)

with eigenvalues α, α2, . . . , αd. Since α is a Pisot unit, φ is a hyperbolic toral auto-
morphism and we have a φ-invariant decomposition of Rd into the unstable eigenspace
Eu = R(αd−1, . . . , α, 1)t and the stable eigenspace Es (of dimension d − 1). Let
eu = πu((1, 0, . . . , 0)t) and es = πs((1, 0, . . . , 0)t) where πu : Rd → Eu is the pro-
jection along Es to Eu and πs : Rd → Es the projection along Eu to Es. Set
eu = c′1(αd−1, . . . , α, 1)t.

Then the sequence (G′j)j≥0 defined by the linear recurrence

G′j = a1G
′
j−1 + · · ·+ adG

′
j−d for j ≥ d

with initial values G′0 = 0, . . . , G′d−2 = 0, G′d−1 = 1 satisfies

G′j = c′1α
j + c′2α

j
2 + · · ·+ c′dα

j
d

for some constants c′2, . . . , c
′
d. By induction on j, the equation

Gj = G′j +G′j+1 + · · ·+G′j+d−1

can be easily proved. Since Gj → c1α
j and G′j → c′1α

j for j →∞, we have

c1 = c′1(1 + α + · · ·+ αd−1).

With

n = c1

∞∑
j=0

εj(n)αj +O (1) ,
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we obtain

v(n, k) =
n

c1αk
eu =

∞∑
j=0

εj(n)αj−keu +O
(
α−k

)
=
∞∑
j=0

εj(n)φj−k(eu) +O
(
α−k

)
.

Clearly we have

φj(eu) + φj(es) = φj((1, 0, . . . , 0)t) ∈ Zd for all j ≥ 0

and hence

v(n, k) ≡
k−1∑
j=0

εj(n)φj−k(eu)−
∞∑
j=k

εj(n)φj−k(es)︸ ︷︷ ︸
v′(n,k)

+O
(
α−k

)
modZd. (18)

Set
Ωe = Clos{v′(n, k) : k, n ∈ N with εk(n) = e}.

Then we know by Praggastis [22] that (Ωe)e∈{0,...,a1} is a tiling of Td if Fin(α) = Z[α]∩R+.
Since α is an algebraic integer and a unit, we have Z[α] = Z[α−1]. Thus (F) implies that
(Ωe)e∈{0,...,a1} is a tiling and (17) holds because of (18).

Example. Figure 1 shows the sets Ωe for the Tribonacci expansion (d = 3,
a1 = a2 = a3 = 1). Ω0 is the largest of the three prisms and Ω1 is the union of the
two smaller ones. πs(Ω0) is the Rauzy fractal (for details on the Rauzy fractal see Mes-
saoudi [19, 20] and Rauzy [23] for the original work). Figure 2 illustrates how (Ω0,Ω1)
tiles R3. These figures were drawn by Siegel, who obtained in [25] tilings for substitutions
of Pisot type by different methods than Praggastis.

Figure 1. Figure 2.
Ω0,Ω1 for the Tribonacci expansion Tiling of R3 for the Tribonacci expansion
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Remark. Akiyama [2] obtained tilings of Rd−1 for Pisot units α satisfying the condition

Z[α−1] ∩ R+ ⊂ Fin(α)− Fin(α) ∩ [0, ε) for all ε > 0, (W)

which is weaker then (F) and conjectured to hold for all Pisot numbers α, but this
improvement is not important for this work because we need (F) for the proof of Propo-
sition 2 too.

In Section 6, we will need a covering of Ωe and its boundary by convex sets. Since
the boundary of Ωe has fractal structure for d > 2, we approximate it by parallelepipeds.

Each Ωe is the union of sets

Ωe0,...,ed−2
= Clos {v′(n, k) : k, n ∈ N with (εk(n), . . . , εk+d−2(n)) = (e0, . . . , ed−2)}

(with e0 = e) which are prisms:

Ωe0,...,ed−2
= πs(Ωe0,...,ed−2

)⊕ [0, sup
k,n as above

k−1∑
j=0

εj(n)αj−k]eu.

Therefore we study the boundary of πs(Ωe0,...,ed−2
).

The problem of determining all points on the boundary is equivalent to determining
all points with more than one φ-representation, which can be done with the help of a
finite automaton. This method is adapted from Messaoudi [20] who examined the Rauzy
fractal. Siegel [25] studied similar problems with similar automata.

Let N be the set of sequences (bj)j∈Z with

(bj, bj−1, . . . , bj−d+1) < (a1, a2, . . . , ad) for all j ∈ Z

and an integer K such that bj = 0 for j ≥ K. Let Nf be the set of sequences (bj)j∈Z ∈ N
with an integer J so that bj = 0 for j ≤ J . With E =

{∑∞
j=1 εjφ

j(es) : (εj)j≥1 ∈ Nf
}

,

we get the following proposition.

Proposition 2 (cf. Théorème 1 in Messaoudi [20]). Let x =
∑∞

j=−L bjφ
j(es) and

y =
∑∞

j=−L b
′
jφ

j(es), where (bj)j≥−L ∈ N and (b′j)j≥−L ∈ N , then x = y if and only if
we have, for all i ≥ −L,

xi − yi ∈ S

where xi = φ−i
(∑i

j=−L bjφ
j(es)

)
, yi = φ−i

(∑i
j=−L b

′
jφ

j(es)
)

and

S =

{
±

0∑
j=−s

εjφ
j(es)

∣∣∣∣∣(εj)−s≤j≤0 ∈ Nf , E ∩
(
E ±

0∑
j=−s

εjφ
j(es)

)
6= ∅

}
.

for some (fixed) integer s.
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For the proof of Proposition 2, two small lemmata are used.

Lemma 9. For all integers j ≥ d− 1, we have

αj = αd−1G′j + αd−2(a2G
′
j−1 + a3G

′
j−2 + · · ·+ adG

′
j−d+1)

+ · · ·+ α(ad−1G
′
j−1 + adG

′
j−2) + adG

′
j−1, (19)

where the sequence (G′j)j≥0 is defined in the proof of Proposition 1.

Proof. Induction on j.

Lemma 10. Define the linear map

κ :

{
±

∞∑
j=−∞

εjφ
j(es)

∣∣∣∣∣ (εj)j∈Z ∈ Nf
}
→ ±Fin(α)

by κ(φj(es)) = αj for all j ∈ Z. Then κ is well defined and a bijection.

Proof. We have to show that all elements on the left side are distinct. Suppose that two
representations ε

∑∞
j=−∞ εjφ

j(es) and ε′
∑∞

j=−∞ ε
′
jφ

j(es) with (εj)j∈Z, (ε
′
j)j∈Z ∈ Nf and

ε, ε′ ∈ {±1} represent the same vector. Hence we have Q(φ)(es) = 0 for some polynomial
Q = qmx

m + · · ·+ q1x+ q0 6≡ 0.

The proof of Proposition 1 shows φj(es) =
∑d

i=2 c
′
iα
j
i (α

d−1
i , . . . , αi, 1)t. Hence∑m

j=0 qj
∑d

i=2 c
′
iα
j
i (α

d−1
i , . . . , αi, 1)t = 0. By easy calculations (solution of a linear equa-

tion system), we obtain c′i =
(∏

k 6=i(αi − αk)
)−1

6= 0. If αi ∈ R for all i = 2, . . . , d, then

the (αd−1
i , . . . , αi, 1)t are linearly independent vectors of Rd and we must have Q(αi) = 0

for all i = 2, . . . , d. For αi 6∈ R, we obtain Q(αi) = 0 similarly.

This implies Q(α) = 0 and ε
∑∞

j=−∞ εjα
j = ε′

∑∞
j=−∞ ε

′
jα

j. Therefore ε = ε′ and,
since finite α-representations are unique, (εj)j∈Z = (ε′j)j∈Z.

Thus, κ is well defined and clearly bijective.

Proof of Proposition 2. Since φ|Es is contracting, we have

x− y = lim
i→∞

φi−d+1(xi − yi) = 0,

if xi − yi ∈ S.

Now, suppose x = y. Hence φ−i(x) = φ−i(y) and

xi − yi =
∞∑

j=i+1

(b′j − bj)φj−i(es) =
∞∑
j=1

(b′j+i − bj+i)φj(es).

On the other hand, we have

xi − yi = φ−i

(
i∑

j=−L
(bj − b′j)φj(es)

)
= φ−L−i−d+1

(
L+i+d−1∑
j=d−1

gjφ
j(es)

)
,
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where gj = bj−L−d+1 − b′j−L−d+1. We apply κ and get, by (19),

κ(xi − yi) = α−L−i−d+1
(
g′d−1α

d−1 + · · ·+ g′1α + g′0
)

with integers g′j which are easily seen to be all positive if

(bi, bi−1, . . . , b−L) > (b′i, b
′
i−1, . . . , b

′
−L)

and all negative for “<”. Hence we have κ(xi − yi) ∈ Z+[α−1] and κ(xi − yi) ∈ Z−[α−1]
respectively. (F) implies

κ(xi − yi) = ±
m∑

j=−s
εjα

j with (εj)−s≤j≤m ∈ Nf . (20)

Assume, w.l.o.g., κ(xi) = κ(yi) +
∑m

j=−s εjα
j. Again, (F) implies

κ(xi) =
m′∑

j=−s′
ε′jα

j with (ε′j)−s′≤j≤m′ ∈ Nf and m′ ≥ m.

Since κ(xi) =
∑i

j=−L bjα
j−i and finite α-expansions are unique, we have m′ = 0 and thus

m ≤ 0.

By applying κ−1 to (20), we obtain

∞∑
j=1

(b′j+i − bj+i)φj(es) = ±
0∑

j=−s
εjφ

j(es)

and
∞∑
j=1

bj+iφ
j(es) ∈ E ∩

(
E ±

0∑
j=−s

εjφ
j(es)

)
.

Lemma 2.10 of Praggastis [22] shows that there is an integer s such that(
E ±

∑0
j=−∞ εjφ

j(es)
)

= ∅ if εj 6= 0 for some j < −s. This concludes the proof of

the proposition.

If we set zi = xi − yi, then

zi+1 = φ−1(zi) + (bi+1 − b′i+1)es.

Therefore the points with two representations are determined by a finite automaton, the
states of which are the elements of S and two states z, z′ are connected by an edge labeled
by (b, b′) if z′ = φ−1(z) + (b− b′)es or, equivalently, κ(z′) = κ(z)/α+ b− b′. (The starting
point is 0.)
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As Gilbert [14] for the twin dragon, we obtain a ν-th approximation to the boundary
by determining all paths of length ν in the automaton and drawing for each such path p
a parallelepiped that contains the image of all paths which start with p. This is the idea
of the following lemma.

Lemma 11. For all ν ∈ N and e = 0, . . . , a1, the boundary of Ωe is contained in sets Ue,ν
which are the union of O (γν) parallelepipeds of size cα−ν for some constants γ < α and c,
with edges parallel to a1, . . . , ad, where ai = (αd−1

i , . . . , αi, 1)t for the real eigenvalues αi
(α1 = α) and ai = (<αd−1

i , . . . ,<αi, 1)t, ai+1 = (=αd−1
i , . . . ,=αi, 0)t for the pairs of

complex eigenvalues (αi, αi+1 = αi).

Proof. A point can be on the boundary of Ωe if its πs-image has at least two
φ-representations

∑∞
j=0 bjφ

j(es) =
∑∞

j=−L b
′
jφ

j(es) with (b0, . . . , bd−2) 6= (b′0, . . . , b
′
d−2),

b0 = e and j0 the smallest integer with bj0 6= b′j0 . Denote by Bν the number of different
initial sequences (b0, . . . , bν) of points on the boundary. We show that these sequences
cannot have 2s+ 2 subsequent zeros.

Suppose on the contrary that (bj1+1, . . . , bj1+2s+2) = (0, . . . , 0) for some j1 ≥ j0 and
set zi =

∑i
j=j0

(bj − b′j)φj−i(es). We have zj0 6= 0 by definition and zi 6= 0 for all i > j0,
because κ(zi) = 0 would imply that two different finite α-expansions are equal.

Assume κ(zj1) < 0. Then we have κ(zi) < 0 for all i = j1 + 1, . . . , j1 + 2s+ 2 too and
the uniqueness of finite α-expansions implies zi 6∈ S for some i ∈ {j1 + 1, . . . , j1 + s+ 1},
which contradicts Proposition 2. If κ(zj1) > 0, then we get either κ(zi) < 0 or zi 6∈ S
for some i ∈ {j1 + 1, . . . , j1 + s + 1} and, as above, κ(zi) < 0 implies zi′ 6∈ S for some
i′ ≤ i+ s+ 1.

Therefore 2s+ 2 subsequent zeros are not possible and Bν = O (γν) for some γ < α.

The ai are the real eigenvectors of φ and the real and imaginary parts of the complex
eigenvectors respectively. Let c be the size of the parallelepiped that covers E and all its
images of rotations in the planes spanned by the complex eigenvectors. (E is a bounded
set.) Then all points on the boundary with same initial sequence (b0, . . . , bν) are covered
by a parallelepiped of size c|α2|ν . . . |αd|ν = cα−ν and we have Bν of these parallelepipeds.
This concludes the proof.

5. Exponential sums

In order to prove Lemma 8, we have to study exponential sums of the form

1

N

∑
n<N

e

(
S
α− 1

αd − 1
P (n)

)
,
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with

S =
m

(1)
1 αd−1 + · · ·+m

(1)
d

αk1
+ · · ·+ m

(h)
1 αd−1 + · · ·+m

(h)
d

αkh
(21)

=
αkh−k1+d−1m

(1)
1 + · · ·+m

(1)
d αkh−k1 + · · ·+m

(h)
1 αd−1 + · · ·+m

(h)
d

αkh
.

We use the following well known lemma in order to get bounds for S.

Lemma 12. Suppose 1, β1, β2, . . . , βv are linearly independent over Q, and they generate
an algebraic number field of degree d. Then

|β1q1 + · · ·+ βvqv − p| > cq−d+1

for arbitrary integers q1, . . . , qv, p having q = max(|q1|, . . . , |qv|) > 0 and some constant c.

Lemma 13. Let |m(i)
j | ≤ (logN)2δ for all i, j,

(logN r)η ≤ k1 < k2 < · · · < kh ≤ logαN
r − (logN r)η

and arbitrary constants δ > 0, η > 0. Then S defined by (21) satisfies

S = 0 or
α(logN)η

′

N r
¿ |S| ¿ 1

α(logN)η′

for all η′ < η.

Proof. Assume S 6= 0. Because of Lemma 9, we have

S =
m̂1α

d−1 + · · ·+ m̂d−1α + m̂d

αkh

with integers m̂j which satisfy

|m̂j| ¿ (logN)2δαkh−k1 (1 ≤ j ≤ d).

Therefore we have

|S| ¿ (logN)2δαkh−k1

αkh
≤ (logN)2δ

α(logN)η
¿ 1

α(logN)η′
.

To obtain the lower bound, start by setting ε = η/h. Then there exists an integer K,
0 ≤ K ≤ h− 1, such that

ki+1 − ki 6∈
[
(logN)Kε, (logN)(K+1)ε

)
for all i. Fix K with this property.
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If ki+1 − ki ≤ (logN)Kε for all j, we apply Lemma 12 and get

|S| À 1

max
j∈{1,...,d}

|m̂j|d−1αkh
À 1

(logN)2(d−1)δαkh+(d−1)(h−1)(logN)Kε

À α(logN)η−(d−1)(h−1)(logN)
hη
h+1

N r(logN)2(d−1)δ
À α(logN)η

′

N r
.

Otherwise, there is an i < h such that ki+1 − ki ≥ (logN)(K+1)ε and
ki − k1 ≤ (i− 1)(logN)Kε. Then split up the sum into two terms

S =
αki−k1+d−1m

(1)
1 + · · ·+m

(1)
d αki−k1 + · · ·+m

(i)
1 α

d−1 + · · ·+m
(i)
d

αki

+
αkh−ki+1+d−1m

(i+1)
1 + · · ·+m

(i+1)
d αkh−ki+1 + · · ·+m

(h)
1 αd−1 + · · ·+m

(h)
d

αkh

= S1 + S2.

If S1 = 0, then S = S2 and we are concerned with a problem containing less terms. By
using induction on h (which is not made explicit here), we may assume that this case
has already been treated. Otherwise, we have

|S1| À
1

(logN)2(d−1)δαki+(d−1)(i−1)(logN)Kε
,

whereas

|S2| ¿
(logN)2δαkh−ki+1

αkh
≤ (logN)2δ

αki+(logN)(K+1)ε
.

Hence

|S| À α(logN)η−(i−1)(d−1)(logN)Kε

N r(logN)2δ
À α(logN)η

′

N r

and the lemma is proved.

The next lemma on exponential sums, which can also be found in [8], contains adapted
versions of results due to Hua and Vinogradov.

Lemma 14 (cf. Lemma 6.2 and Theorem 10 in Hua [17]). Let P (n) be a polynomial of
degree r with leading coefficient β. For every τ0 > 0, we have a τ > 0 such that

N−r(logN)τ < β < (logN)−τ

implies

1

N

∑
n<N

e(P (n)) = O
(
(logN)−τ0

)
1

π(N)

∑
p<N

e(P (p)) = O
(
(logN)−τ0

)
as N →∞.
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6. Proof of the Main Lemma

Denote by Ue,ν the union of parallelepipeds of Lemma 11 containing the boundary
of Ωe. Let 1Ωe∪Ue,ν the characteristic function of Ωe ∪ Ue,ν on the torus Td and∑

m∈Zd cm,e,νe(m · x) its Fourier expansion. Clearly we have c0,e,ν = λd(Ωe ∪ Ue,ν). In
order to calculate the other cm,e,ν , split up Ωe ∪Ue,ν into parallelepipeds with edges par-
allel to a1, . . . , ad. The m-th Fourier coefficient of such a parallelepiped is, by Lemma 1
of Drmota [6],

∑
x∈V

∣∣det(x− y)y∈Γ(x)

∣∣∏
y∈Γ(x)(−2πi)m · (x− y)

e(−m · x) =
∑
x∈V

|det(±aj)1≤j≤d|∏d
j=1(−2πi)m · (±aj)

e(−m · x),

where V denotes the set of vertices of the parallelepiped and Γ(x) the set of vertices
adjacent to x. As in Gittenberger and Thuswaldner [15], the contributions of the inner
parallelepipeds cancel out and only the O (γν) corners of the boundary of Ωe ∪ Ue,ν play
a role. By Lemma 2 of Drmota [6], the contribution of a corner can be bounded by∣∣∣∣∣ |det(±aj)1≤j≤d|∏d

j=1(−2πi)m · (±aj)

∣∣∣∣∣¿
d∏
j=1

1

(1 + |m · aj|)2

uniformly for all m. Hence we define m̃j = m · aj and obtain

|cm,e,ν | ¿ γν
d∏
j=1

min

(
1,

1

|m̃j|

)
.

Now, consider the function

ψe,ν,∆(x) =
1

∆d

∫ ∆
2

−∆
2

· · ·
∫ ∆

2

−∆
2

1Ωe∪Ue,ν (x + z1a1 + · · ·+ zdad)dz1 . . . dzd.

By enlarging the parallelepipeds of Ue,ν , we obtain sets Qe,ν which are again unions of
O (γν) parallelepipeds with λd(Qe,ν) = O

((
γ
α

)ν)
such that

ψe,ν,∆(x) =

{
1 if x ∈ Ωe \Qe,ν

0 if x 6∈ Ωe ∪Qe,ν

for ∆ < α−ν . For the Fourier expansion ψe,ν,∆(x) =
∑

m∈Zd dm,e,ν,∆e(m · x), we get

dm,e,ν,∆ = cm,e,ν

d∏
j=1

e
(
m̃j∆

2

)
− e

(
− m̃j∆

2

)
−2πim̃j∆

, (22)

|dm,e,ν,∆| ¿ γν
d∏
j=1

min

(
1,

1

|m̃j|
,

1

∆m̃2
j

)
.
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If we set
t(n) = ψe1,ν,∆(v(n, k1)) . . . ψeh,ν,∆(v(n, kh)),

then t(n) = 1 if v(n, ki) ∈ Ωei\Qei,ν for all i = 1, . . . , h and t(n) = 0 if v(n, ki) 6∈ Ωei∪Qei,ν

for some i. Therefore we estimate the number of integers with v(n, ki) ∈ Qei,ν by the
following lemma.

Lemma 15. Let

Ek,e,ν = # {n < N |v(P (n), k) ∈ Qe,ν } , Fk,e,ν = # {p < N |v(P (p), k) ∈ Qe,ν }

and λ an arbitrary positive constant. Then, uniformly in k for (logN r)η ≤ k ≤
logαN

r − (logN r)η, we have

Ek,e,ν ¿
(γ
α

)ν
N +N(logN)−λ, Fk,e,ν ¿

(γ
α

)ν
π(N) +N(logN)−λ.

The lemma can be proved similarly to Lemma 13 in [8] by the help of the isotropic
discrepancy and the Erdős-Turán-Koksma inequality (see e.g. Drmota and Tichy [9]).

Define

Σ1 = #{n < N | εk1(P (n)) = e1, . . . , εkh(P (n)) = eh},
Σ2 = #{n < N | εk1(P (n)) = e1, . . . , εkh(P (n)) = eh}.

Since, for ν ¿ log logN and (logN r)η ≤ k ≤ logαN
r−(logN r)η, the error term O

(
α−k

)
of Proposition 1 is negligible compared to the size of each parallelepiped in Qe,ν , we have∣∣∣∣∣Σ1 −

∑
n<N

t(P (n))

∣∣∣∣∣ ≤ Ek1,e1,ν + · · ·+ Ekh,eh,ν ,∣∣∣∣∣Σ2 −
∑
n<N

t(P (p))

∣∣∣∣∣ ≤ Fk1,e1,ν + · · ·+ Fkh,eh,ν .

We will consider only Σ1, since Σ2 can be treated in the same way.

Let M be the set of vectors M = (m1, . . . ,mh) with integer vectors

mi = (m
(i)
1 , . . . ,m

(i)
d ). Then we have∑

n<N

t(P (n)) =
∑

M∈M
TM,ν,∆

∑
n<N

e
((

m1 · v(1, k1) + · · ·+ mh · v(1, kh)
)
P (n)

)
,

with
TM,ν,∆ = dm1,e1,ν,∆ · · · dmh,eh,ν,∆.

Since the ai form a basis of Rd, we have

1

|m1|
· · · 1

|md|
¿ 1

|a1 ·m|
. . .

1

|ad ·m|
¿ 1

|m1|
· · · 1

|md|
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and therefore

∑
M∈M

|TM,ν,∆| ¿
( ∞∑
m1=−∞

· · ·
∞∑

md=−∞
γν

d∏
j=1

min

(
1,

1

|m̃j|
,

1

m̃2
j∆

))h

¿
( ∞∑
m1=−∞

· · ·
∞∑

md=−∞
γν

d∏
j=1

min

(
1,

1

|mj|
,

1

m2
j∆

))h

¿ γhν
(

log
1

∆

)dh

If |m(i)
j | > (logN)2δ for some i, j, then

∑
∃i,j with |m(i)

j |>(logN)2δ

|TM,ν,∆| ¿ γhν

 ∞∑
m=[(logN)2δ ]

1

m2∆

( ∞∑
m=1

min

(
1

|m| ,
1

m2∆

))dh−1

¿ γhν
(
log(logN)δ

)dh−1

(logN)δ
,

if we set ∆ = (logN)−δ. For M with |m(i)
j | ≤ (logN)2δ for all i, j, the exponential sums

can be estimated by Lemma 14 with the help of Lemma 13 if
∑h

i=1 mi · v(1, ki) 6= 0.

Hence we have

Σ1 =
∑

M∈M:
∑

mi·v(1,ki)=0

TM,ν,∆ +O
(
γhνN(logN)−τ0 + γhνN(logN)−δ/2 +N

(γ
α

)ν)
.

Set
T ′M,ν = cm1,e1,ν · · · cmh,eh,ν

and compare TM,ν,∆ to T ′M,ν . (22) implies

TM,ν,∆ = T ′M,ν +O
(
γν max

i,j

∣∣∣m̃(i)
j

∣∣∣∆)
and ∑

M∈M:|m̃(i)
j |<(logN)

δ
2dh for all i,j

∣∣TM,ν,∆ − T ′M,ν

∣∣¿ γν(logN)−δ/3.

For the other M which satisfy
∑h

i=1 mi · v(1, ki) = 0, we obtain by the same methods as
in Lemma 14 in [8], ∑

M∈M:
∑

mi·v(1,ki)=0,|m̃(i)
j |≥(logN)

δ
2dh for some i,j

T ′M,ν ¿ (logN)−
δ

2dh(dh−1) .
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If we set
q′k1,...,kh,e1,...,eh,ν

=
∑

M∈M:
∑

mi·v(1,ki)=0

T ′M,ν ,

we get

Σ1 = Nq′k1,...,kh,e1,...,eh,ν
+O

(
γνN(logN)−

δ
2dh(dh−1)

)
+O

(
N
(γ
α

)ν)
Remark. In case h = 1, we have m · v(1, k1) = 0 only for m = 0. Hence
q′k,e,ν = c0,e,ν → λd(Ωe) = pe = qk,e as ν →∞.

Set ν = [C log logN ] for some constant C which satisfies
(
γ
α

)ν ¿ (logN)−λ, choose δ

such that (logN)−
δ

2dh(dh−1) ¿ α−ν and τ0 large enough. Then

Σ1 = Nq′k1,...,kh,e1,...,eh,[C log logN ] +O
(
N(logN)−λ

)
.

For P (n) = n and (logN)η ≤ k1, . . . , kh ≤ logαN − (logN)η, Lemma 3 implies

Σ1 = Nqk1,...,kh,e1,...,eh +O
(
N(logN)−λ

)
and therefore

q′k1,...,kh,e1,...,eh,[C log logN ] = qk1,...,kh,e1,...,eh +O
(
(logN)−λ

)
.

For (logN r)η ≤ k1, . . . , kh ≤ logαN
r− (logN r)η, we obtain this result by considering Σ1

for P (n) = n and N r.

As already noted, we get the corresponding result for primes by the same arguments.
This concludes the proofs of Lemma 8 and Theorem 3.
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Théor. Nombres Bordx. 10 (1998), 135–162.

[21] W. Parry, On the β-expansion of real numbers, Acta Math. Acad. Sci. Hung. 11
(1960), 401-416.

[22] B. Praggastis, Numeration Systems and Markov Partitions from Self Similar
Tilings, Trans. Am. Math. Soc. 351 (8) (1999), 3315–3349.
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