ON THE PROBLEM OF UNIQUENESS FOR THE MAXIMUM STIRLING NUMBER(S) OF THE SECOND KIND

E. Rodney Canfield
Department of Computer Science, University of Georgia
Athens, GA 30602 USA
erc@cs.uga.edu
Carl Pomerance
Fundamental Mathematics Department, Bell Laboratories/Lucent Technologies
Murray Hill, NJ 07974-0636
carlp@research.bell-labs.com

Received: 9/10/01, Accepted: 1/15/02, Published: 1/16/02

Abstract

Say that an integer n is exceptional if the maximum Stirling number of the second kind $S(n, k)$ occurs for two (of necessity consecutive) values of k. We prove that the number of exceptional integers less than or equal to x is $O\left(x^{3 / 5+\epsilon}\right)$, for any $\epsilon>0$.

1. Introduction

Let $S(n, k)$ be the Stirling number of the second kind, that is, the number of partitions of an n-set into k non empty, pairwise disjoint blocks. (Detailed definitions appear in the next section.) Using the initial value $S(0, k)=\delta_{0 k}$ and the recursion

$$
\begin{equation*}
S(n+1, k)=k S(n, k)+S(n, k-1) \tag{1}
\end{equation*}
$$

one may show by induction on n that

$$
\begin{equation*}
S(n, k)^{2} \geq\left(1+\frac{3}{k}\right) S(n, k-1) S(n, k+1), \quad 1 \leq k \leq n . \tag{2}
\end{equation*}
$$

It follows that the ratio $S(n, k+1) / S(n, k)$ is strictly decreasing, and so there is either a unique maximum Stirling number

$$
S(n, k)<S\left(n, K_{n}\right), \text { for all } k \neq K_{n}
$$

or else there are two consecutive peaks

$$
S(n, k)<S\left(n, K_{n}\right)=S\left(n, K_{n}+1\right), \text { for all } k \notin\left\{K_{n}, K_{n}+1\right\} .
$$

Define the exceptional set E to be those n for which the second alternative holds. Based on computation through $n=10^{6}$ reported in the final section, it is possible that $E=\{2\}$. Let $E(x)$ denote the associated counting function

$$
E(x)=\#\{n: n \leq x \text { and } n \in E\} .
$$

The purpose of this paper is to prove

Theorem 1. For any $\epsilon>0$,

$$
E(x)=O\left(x^{3 / 5+\epsilon}\right)
$$

Our proof of this theorem depends on the fact that, when $n \in E$, the quantity e^{r}, where r is the unique real solution of the equation $r e^{r}=n$, must be unusually close to an integer plus $1 / 2$. (See equation (5) in Section 3.) Starting from (5) and using only elementary arguments, we will prove in Section 4 a result slightly weaker than Theorem 1, namely with the exponent $3 / 5$ replaced by $2 / 3$. Then, in Section 5 , we will prove Theorem 1 by invoking recent work of Huxley [9] on counting integer points near curves. In Section 6, we give a heuristic argument for why E should be a finite set. Finally, in Section 7, we report on the computation and supporting lemma that proves $E \cap\left(1,10^{6}\right]=\emptyset$.

2. Definitions and Background

A partition of the set $[n]=\{1,2, \ldots, n\}$ is a collection of non empty pairwise disjoint subsets of [n], called blocks, whose union equals $[n]$. For example, $\{\{1,4\},\{2,3,5,7\},\{6\}\}$ is a partition of [7] into 3 blocks. The Stirling number of the second kind, $S(n, k)$, is the number of partitions of $[n]$ into k blocks. Every partition of $[n+1]$ into k blocks can be obtained either by adjoining $\{n+1\}$ as a singleton block to an existing partition of $[n]$ into $k-1$ blocks, or by adding the element $n+1$ to one of the blocks of an existing partition of $[n]$ into k blocks. This construction proves the recursion (1). Here is a table of the first few rows of the Stirling numbers of the second kind:

$n \backslash k$	1	2	3	4	5
1	1				
2	1	1			
3	1	3	1		
4	1	7	6	1	
5	1	15	25	10	1

As explained in the Introduction, for each $n \geq 1$ there is a unique integer K_{n} satisfying

$$
S(n, 1)<\cdots<S\left(n, K_{n}\right) \geq S\left(n, K_{n}+1\right) .
$$

In words, K_{n} is the location of the maximum Stirling number of the second kind, with the proviso that should there be two consecutive maxima, K_{n} is the location of the "leftmore." The exceptional set E consists of n such that $S\left(n, K_{n}\right)=S\left(n, K_{n}+1\right)$, and $E(x)$ is the number of $n \leq x$ belonging to E.

There is a vast literature on the Stirling numbers to which many people have contributed, and many properties have been independently rediscovered. Harper's [6] contributions are particulary noteworthy. He shows that the polynomials $\sum_{k} S(n, k) x^{k}$ have only real roots, a property called total positivity, which is stronger than log concavity. He articulates the unique-or-double peak property (3), and proves the asymptotic relation $K_{n} \sim n / \log n$, (His formula contains a superflous factor e which was later corrected.) The asymptotic formula was obtained by others, for example [18]. Citing Harper's work, Lieb [13] derives an inequality similar to (2), based on the general Newton Inequality for coefficients of polynomials whose roots are all real and negative. The very nice fact that K_{n+1} equals either K_{n} or $K_{n}+1$ appears in [4] and [16]. Using (1) and (2), it can be shown that a necessary condition for $n \in E$ is $K_{n+1}=K_{n}+1$. Thus, the growth condition $K_{n+1}-K_{n} \in\{0,1\}$ plus the asymptotic relation $K_{n} \sim n / \log n$ together imply that $E(x)=O(x / \log x)$, as first pointed out by Wegner [19]. The latter paper of Wegner makes the explicit conjecture that $E=\{2\}$. Prior to the general adoption of more powerful analytic tools, in a series of papers $[1,8,10,11,12]$ the authors Bach, Harborth, and Kanold employ clever elementary arguments to prove many interesting, sharp inequalities about K_{n}.

The fact that the signless Stirling numbers of the first kind do indeed have always a unique maximum is due to Erdős [5].

The status of the "duplicate maximum" problem has been misstated in the literature more than once. A source of misunderstanding might be the one line abstract, perpetuated in the Mathematical Reviews, of [4] which states, "For fixed n, Stirling numbers of the second kind, $S(n, r)$, have a single maximum." Reading the paper, one sees clearly that the intended meaning is precisely (3); but certainly the statement can be easily misconstrued when read in isolation.

Canfield [2] and Menon [14] independently showed that K_{n} is always equal to $\lfloor\kappa(n)\rfloor$ or $\lceil\kappa(n)\rceil$, where $\kappa(n)$ is a certain transcendentally defined function. It will follow from what we say in Section 3 that for sufficiently large n a simpler definition of $\kappa(n)$ also satisfies the latter theorem, namely $\kappa(n)=e^{r}-1$, where $r e^{r}=n$. Throughout the paper, we shall always use $r(x)$ for the implicitly defined function

$$
r(x) e^{r(x)}=x,
$$

and the symbol r, with no argument, denotes $r(n)$. For $1 \leq n \leq 1200$ there is no exception to the relation

$$
\begin{equation*}
K_{n} \in\left\{\left\lfloor e^{r}-1\right\rfloor,\left\lceil e^{r}-1\right\rceil\right\}, \tag{4}
\end{equation*}
$$

although it has been proven true only for n sufficiently large.

3. Asymptotics of the Stirling Numbers $S(n, k)$

We will neglect polylog factors in our estimates, and so it is convenient to define

$$
F_{1}(x)=O_{*}\left(F_{2}(x)\right)
$$

to mean that for a sufficiently large constant C we have

$$
\left|F_{1}(x)\right| \leq C(\log x)^{C} F_{2}(x), \quad \text { for } x \geq C
$$

This given, we may state the lemma that will be of central importance.
Lemma 1. For all sufficiently large $n \in E$ we have

$$
e^{r}=\left\lfloor e^{r}\right\rfloor+\frac{1}{2}+\frac{1 / 2}{1+r}
$$

where as usual $r e^{r}=n$.
Proof. The exponential generating function in the letter n for $S(n, k)$ is [3]

$$
\sum_{n=k}^{\infty} S(n, k) \frac{x^{n}}{n!}=\frac{\left(e^{x}-1\right)^{k}}{k!}
$$

The Cauchy integral formula thus asserts

$$
\frac{S(n, k)}{n!}=\frac{1}{2 \pi i k!} \oint_{|z|=R} \frac{\left(e^{z}-1\right)^{k}}{z^{n+1}} d z
$$

for any $R>0$. If we take the radius R of the circle of integration to be the quantity r, and restrict attention to integers k which satisfy the relations

$$
e^{r}-1=k+\theta, \quad \theta=O(1)
$$

while making estimates such as those found in [15], we arrive at

$$
S(n, k)=\frac{\left(e^{r}-1\right)^{k}}{k!} \frac{n!}{r^{n}}(2 \pi k B)^{-1 / 2}\left(1-\frac{6 r^{2} \theta^{2}+6 r \theta+1}{12 r e^{r}}\right)
$$

where

$$
B=B(r)=\frac{r e^{2 r}-\left(r^{2}+r\right) e^{r}}{\left(e^{r}-1\right)^{2}}
$$

depends on r only.
This is very similar to the formula (1) in [2], although the latter was unnecessarily conservative in the error estimate. Now, with k and θ as above, we find

$$
\frac{S(n, k+1)}{S(n, k)}=1+\frac{(r+1) \theta-\frac{1}{2} r-1}{e^{r}}+O_{*}\left(n^{-2}\right)
$$

It is this equation which gives us the assertion (4), for all n large, mentioned earlier, and by setting the right side equal to 1 , we obtain the lemma.

Remark. The asymptotic formula for $S(n, k)$, and the more detailed one appearing in the proof of Lemma 2 in Section 6, are obtained by using the circle method. We do not include any details about how to use this method, which is a very standard and widely used technique for obtaining asymptotic estimates of the coefficients of analytic functions. The reader for whom this is a new topic should study [20, Section 4.5] before moving on to other papers. A very good account of the circle method particularly useful for asymptotic enumeration is [7]. The paper of Moser and Wyman [15] contains a lot of useful information about the particular case of the Stirling numbers. Another good source for this topic is [17].

4. The Elementary Proof

Our goal in this section is to prove that for any $\epsilon>0$

$$
E(x)=O\left(x^{2 / 3+\epsilon}\right)
$$

Let $\epsilon>0$ be given. It suffices to show that for all sufficiently large X

$$
\begin{equation*}
\left|\left[X, X+X^{1 / 3-\epsilon}\right] \cap E\right| \leq 2 \tag{6}
\end{equation*}
$$

If (6) fails, then we have infinitely many n such that $n, n+\ell_{1}, n+\ell_{2} \in E$ with $0<\ell_{1}<\ell_{2} \leq$ $n^{1 / 3-\epsilon}$. For each such n, we have r with $r e^{r}=n$, and also r_{i} with $r_{i} e^{r_{i}}=n+\ell_{i}$. Note that

$$
\log x-\log \log x \leq r(x) \leq \log x
$$

whence

$$
r_{i} \sim r
$$

Since $r(x) e^{r(x)}=x$, it follows that

$$
e^{r_{i}} \sim e^{r} .
$$

By Taylor's theorem and the facts that

$$
\frac{d}{d x} e^{r(x)}=\frac{1}{r(x)+1}, \quad \frac{d^{2}}{d x^{2}} e^{r(x)}=\frac{-1}{(r(x)+1)^{3} e^{r(x)}}, \quad \frac{d^{3}}{d x^{3}} e^{r(x)}=\frac{r(x)+4}{(r(x)+1)^{5} e^{2 r(x)}},
$$

we have

$$
\begin{aligned}
e^{r_{i}} & =e^{r}+\frac{\ell_{i}}{r+1} \frac{1}{r_{i}+1} \\
& =\frac{1}{r+1}-\frac{\ell_{i}}{(r+1)^{3} e^{r}}
\end{aligned}
$$

Thus,

$$
\left(\ell_{1}-\ell_{2}\right) e^{r}+\ell_{2} e^{r_{1}}-\ell_{1} e^{r_{2}}=-\frac{\ell_{2} \ell_{1}^{2}-\ell_{1} \ell_{2}^{2}}{2(r+1)^{3} e^{r}}+O_{*}\left(\frac{\ell_{2} \ell_{1}^{3}+\ell_{1} \ell_{2}^{3}}{n^{2}}\right)
$$

Similarly,

$$
\frac{\ell_{1}-\ell_{2}}{1+r}+\frac{\ell_{2}}{1+r_{1}}-\frac{\ell_{1}}{1+r_{2}}=O_{*}\left(\frac{\ell_{2} \ell_{1}^{2}+\ell_{1} \ell_{2}^{2}}{n^{2}}\right)
$$

Let us refer to the assertions of Lemma 1, namely,

$$
e^{r_{i}}=m_{i}+1 / 2+\frac{1 / 2}{r_{i}+1}
$$

as equation i, with $0 \leq i \leq 2$, taking $r_{0}=r$. If we form $\left(\ell_{1}-\ell_{2}\right)$ times equation 0 plus ℓ_{2} times equation 1 minus ℓ_{1} times equation 2 , and substitute the above expansions, we find

$$
-\frac{\ell_{2} \ell_{1}^{2}-\ell_{1} \ell_{2}^{2}}{2(r+1)^{3} e^{r}}+O_{*}\left(\frac{\ell_{2} \ell_{1}^{3}+\ell_{1} \ell_{2}^{3}}{n^{2}}\right)=\text { INTEGER }+O_{*}\left(\frac{\ell_{2} \ell_{1}^{2}+\ell_{1} \ell_{2}^{2}}{n^{2}}\right)
$$

In the previous equation, every term except the one labeled "INTEGER" goes to 0 as $n \rightarrow \infty$; thus, for all sufficiently large n that term itself must be 0 . Dividing through by $\ell_{1} \ell_{2}$ and collecting big-oh's,

$$
\frac{\ell_{2}-\ell_{1}}{2(r+1)^{3} e^{r}}=O_{*}\left(\frac{\ell_{1}^{2}+\ell_{2}^{2}}{n^{2}}\right)
$$

Since, however, $\ell_{2}-\ell_{1} \geq 1$, this last equality is impossible. Our initial assumption that (6) does not hold is contradicted, and the proof is complete.

5. The Proof of Theorem 1

The theorem due to Huxley which we shall apply, [9, (1.7)], bounds the number of integer pairs (n, m) which satisfy $|m-f(n)| \leq \delta$ for $n \in[X, 2 X]$. We shall apply this result to the function

$$
f(x)=e^{r(x)}-1 / 2-\frac{1 / 2}{1+r(x)},
$$

with $\delta=X^{\epsilon-1}$. With these choices, by Lemma 1 , for X sufficiently large, we include all members of $E \cap[X, 2 X]$ in the count.

The hypotheses required of $f(x)$ are that there be numbers $C \geq 1, \Delta<1$ such that

$$
\begin{gathered}
C \Delta \leq 1 \\
\frac{\Delta}{C} \leq\left|f^{\prime \prime}(x)\right| \leq C \Delta, \quad x \in[X, 2 X]
\end{gathered}
$$

and

$$
\left|f^{(3)}(x)\right| \leq \frac{C \Delta}{X}, \quad x \in[X, 2 X] .
$$

The conclusion of Huxley's theorem is that the number of integer pairs (n, m) is no greater than an unspecified constant times

$$
1+\frac{1}{b} \sqrt{\frac{C \delta}{\Delta}}+C^{2} \delta X(\log X-\log 2 C)^{c_{i}} \delta^{d_{i}}
$$

where b is the least positive integer such that for some $x \in[X, 2 X]$ we have $b f^{\prime}(x)$ within distance δ of an integer, and the exponents $\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$ in the sum assume the four values $\left(\frac{2}{5}, 1, \frac{1}{10}, 0\right),\left(\frac{1}{5}, \frac{4}{5}, \frac{1}{10}, 0\right),\left(\frac{2}{7}, 1, \frac{1}{7}, \frac{1}{7}\right)$, and $\left(\frac{1}{7}, \frac{6}{7}, \frac{1}{7}, \frac{1}{7}\right)$.

If we take $\Delta=X^{-1}$, then the quantity C satisfying the hypotheses of Huxley's Theorem may be taken as $O\left(X^{\epsilon}\right)$, and we obtain the result that between X and $2 X$ there are $O\left(X^{3 / 5+\epsilon}\right)$ elements of E. This estimate suffices to prove the Theorem. (By being a bit more careful, one may use Huxley's Theorem to show that the number of members of E up to X is at most $X^{3 / 5}(\log X)^{\mathrm{O}(1)}$. $)$

6. A Heuristic

In this section we give a strengthening of Lemma 1 that leads to a heuristic argument that the set E is finite. Note that already the estimate of Lemma 1 heuristically supports the conclusion that $E(x)=O\left(x^{\epsilon}\right)$, and with more care, $E(x) \leq(\log x)^{\mathrm{O}(1)}$. To push this heuristic further we need a more precise version of Lemma 1.

Lemma 2. For $n \in E$ and $r e^{r}=n$, we have

$$
e^{r}=\left\lfloor e^{r}\right\rfloor+\frac{1}{2}+\frac{1 / 2}{1+r}+\frac{A_{r}}{e^{r}}+O_{*}\left(n^{-2}\right),
$$

where A_{r} is a rational function in r with rational coefficients.

Proof. With the same meaning for k, θ, B as in the proof of Lemma 1 , it is possible to show that uniformly for $|\theta|=O(1)$, we have

$$
S(n, k)=\frac{\left(e^{r}-1\right)^{k}}{k!} \frac{n!}{r^{n}}(2 \pi k B)^{-1 / 2}\left(1-\frac{F_{1}}{e^{r}}+\frac{F_{2}}{e^{2 r}}+O\left(\frac{r^{3}}{e^{3 r}}\right)\right),
$$

where

$$
\begin{aligned}
F_{1}(\theta)= & \frac{1+6 r \theta+6 r^{2} \theta^{2}}{12 r} \\
F_{2}(\theta)= & \frac{1}{288 r^{2}}\left(r^{4}\left(-36-144 \theta-144 \theta^{2}+36 \theta^{4}\right)\right. \\
& +r^{3}\left(96+144 \theta-288 \theta^{2}-24 \theta^{3}\right)+r^{2}\left(-144 \theta-24 \theta^{2}\right)
\end{aligned}
$$

Returning to the proof, it follows from the above formula that

$$
\begin{equation*}
\frac{S(n, k+1)}{S(n, k)}=\frac{e^{r}-1}{k+1}\left(\frac{k}{k+1}\right)^{1 / 2}\left(\frac{1-F_{1}(\theta-1) e^{-r}+F_{2}(\theta-1) e^{-2 r}}{1-F_{1}(\theta) e^{-r}+F_{2}(\theta) e^{-2 r}}+O_{*}\left(n^{-3}\right)\right) . \tag{7}
\end{equation*}
$$

Suppose now that $n \in E$, so that $S(n, k+1) / S(n, k)=1$. Write

$$
\theta=u+\frac{1}{2}+\frac{1 / 2}{r+1},
$$

so that Lemma 1 implies that $u=O_{*}\left(n^{-1}\right)$. Hence, if $g(x, y) \in \mathbf{Q}[x, y]$, then

$$
g(r, \theta)=g\left(r, \frac{1}{2}+\frac{1 / 2}{r+1}\right)+O_{*}\left(n^{-1}\right) .
$$

Thus,

$$
\frac{e^{r}-1}{k+1}=\frac{e^{r}-1}{e^{r}-\theta}=1+\frac{\theta-1}{e^{r}}+\frac{\theta^{2}-\theta}{e^{2 r}}+O_{*}\left(n^{-3}\right)=1+\frac{\theta-1}{e^{r}}+\frac{a_{r}}{e^{2 r}}+O_{*}\left(n^{-3}\right),
$$

where a_{r} is a rational function of r with rational coefficients. Also

$$
\left(\frac{k}{k+1}\right)^{1 / 2}=1-\frac{1 / 2}{e^{r}}+\frac{1 / 8-\theta / 2}{e^{2 r}}+O_{*}\left(n^{-3}\right)=1-\frac{1 / 2}{e^{r}}+\frac{b_{r}}{e^{2 r}}+O_{*}\left(n^{-3}\right),
$$

where again, b_{r} is in $\mathbf{Q}(r)$. And

$$
\begin{aligned}
& \frac{1-F_{1}(\theta-1) e^{-r}+F_{2}(\theta-1) e^{-2 r}}{1-F_{1}(\theta) e^{-r}+F_{2}(\theta) e^{-2 r}}= \\
& 1-\frac{F_{1}(\theta-1)-F_{1}(\theta)}{e^{r}}+\frac{F_{2}(\theta-1)-F_{2}(\theta)+\left(F_{1}(\theta-1)-F_{1}(\theta)\right) F_{1}(\theta)}{e^{2 r}}+O_{*}\left(n^{-3}\right) \\
& =1+\frac{1 / 2-r / 2+r \theta}{e^{r}}+\frac{c_{r}}{e^{2 r}}+O_{*}\left(n^{-3}\right),
\end{aligned}
$$

where $c_{r} \in \mathbf{Q}(r)$.
Thus (7) and the above estimates imply that

$$
1=\left(1+\frac{\theta-1}{e^{r}}+\frac{a_{r}}{e^{2 r}}\right)\left(1-\frac{1 / 2}{e^{r}}+\frac{b_{r}}{e^{2 r}}\right)\left(1+\frac{1 / 2-r / 2+r \theta}{e^{r}}+\frac{c_{r}}{e^{2 r}}\right)+O_{*}\left(n^{-3}\right) .
$$

Subtracting 1 from both sides and multiplying by e^{r}, we get

$$
\begin{aligned}
(r+1) \theta & -\frac{1}{2}-\frac{1}{2}(r+1) \\
& =-e^{-r}\left(a_{r}+b_{r}+c_{r}-\frac{1}{2}(\theta-1)+\left(\theta-\frac{3}{2}\right)\left(\frac{1}{2}-\frac{1}{2} r+r \theta\right)\right) \\
& =d_{r} e^{-r}+O_{*}\left(n^{-2}\right)
\end{aligned}
$$

where $d_{r} \in \mathbf{Q}(r)$. Thus, we have Lemma 2 .

We now give a heuristic argument, based on Lemma 2, that the set E is finite. With $r e^{r}=x$, let

$$
g(x)=e^{r}-\frac{1}{2}-\frac{1 / 2}{r+1}-\frac{A_{r}}{e^{r}}=\frac{x}{r}-\frac{1}{2}-\frac{1 / 2}{r+1}-\frac{r A_{r}}{x} .
$$

The function $g(x)$ is smooth with

$$
g^{\prime}(x) \sim \frac{1}{\log x}, \quad g^{\prime \prime}(x) \sim \frac{-1}{x \log ^{2} x}, \quad g^{(3)}(x) \sim \frac{1}{x^{2} \log ^{2} x}
$$

There is no reason to believe that $g(n)$ has a prediliction to be close to an integer over any other transcendental number. But Lemma 2 implies that for $n \in E$, we have $\|g(n)\|=O_{*}\left(n^{-2}\right)$, where $\|\|$ denotes the distance to the nearest integer. Heuristically, the number of such integers n is $\sum O_{*}\left(n^{-2}\right)=O(1)$. (One might view the expression $O_{*}\left(n^{-2}\right)$ as an upper bound for the "probability" that $n \in E$, and the sum of these probabilities is $O(1)$.)

7. Numerics

To verify that $E \cap\left(1,10^{6}\right]=\emptyset$, we wrote a program to compute $S(n, k) \bmod 2^{31}-1$. We computed all such residues for $2 \leq n \leq 10^{6}$ and $2 \leq k \leq \min \{87890, n\}$, finding 33 pairs (n, k) satisfying the conditions:

$$
\begin{aligned}
& 2 \leq n \leq 10^{6} \\
& 2 \leq k<\min \{87890,2 n / \log (n), n\} \\
& S(n, k)=S(n, k+1) \bmod 2^{31}-1
\end{aligned}
$$

We may impose the stated bounds on k for these reasons: (1) by Lemma 3, stated and proven below, $K_{n}<2 n / \log (n)$ for $n \geq 151$; (2) an independent computation of exact values of $S(n, k)$, using maple, had already shown $E \cap(1,1200]=\emptyset$; (3) $S\left(10^{6}, 87848\right)>S\left(10^{6}, 87890\right)$.

The third of these facts was established by making rigorous numerical estimates, with considerable help from maple. The basis for these estimates is the pair of inequalities

$$
\begin{equation*}
\frac{k^{n}}{k!} \sum_{j=0}^{\mathcal{O}}\binom{k}{j}(-1)^{j}(1-j / k)^{n} \leq S(n, k) \leq \frac{k^{n}}{k!} \sum_{j=0}^{\mathcal{E}}\binom{k}{j}(-1)^{j}(1-j / k)^{n} \tag{8}
\end{equation*}
$$

for any positive odd integer \mathcal{O} and nonnegative even integer \mathcal{E}. These are the Bonferroni inequalities ([3], Section 4.7). We used $\mathcal{O}=5$ and $\mathcal{E}=4$ to prove

$$
\begin{aligned}
\log S\left(10^{6}, 87848\right) & >10471198 \\
\log S\left(10^{6}, 87890\right) & <10471197.992
\end{aligned}
$$

Later, by taking $\mathcal{E}=10$ and $\mathcal{O}=11$ we were able to show conclusively that

$$
K_{10^{6}}=87846
$$

For anyone wishing to duplicate the computation, we provide these checkpoints:

- the first of the 33 pairs is $(n, k)=(124322,16581)$
- the last of the 33 pairs is $(n, k)=(965756,12911)$
- $S\left(10^{6}, 87890\right)=1111899618 \bmod 2^{31}-1$
- $S(124322,16581)=1636672468 \bmod 2^{31}-1$
- $S(965756,12911)=897942184 \bmod 2^{31}-1$

The program was modified to compute $S(n, k) \bmod 2^{19}-1$, and run a second time. This second modulus was able to distinguish 31 of the pairs found in the first run; for example,

$$
S(124322,16581)=31493 \bmod 2^{19}-1 \quad \text { and } \quad S(124322,16582)=504717 \bmod 2^{19}-1 .
$$

However, all four of the numbers $S(n, k)$ for $n=526314, k=51889,51890$ and $n=559358, k=$ 52358,52359 are $0 \bmod 2^{19}-1$. To distinguish among these a further calculation was needed. Note that the bounds given in equation (8) are in fact equalities if \mathcal{E}, or as appropriate \mathcal{O}, is equal to k. For a prime $p>k$ this provides a way to compute $S(n, k) \bmod p$ directly, without computing any other Stirling numbers in the process. This identity shows, as shown in [19, (4.1)], that $S(n, k) \equiv S(A, k) \bmod p$ for prime $p>k$ and $n \equiv A \not \equiv 0 \bmod (p-1)$. For the first few primes p larger than k, we have $0<A<k$, so for these primes $S(n, k)$ is congruent to 0 . The first prime larger than 51889 for which $S(526314,51889)$ is not congruent to 0 is $p=52639$. We have

$$
S(526314,51889)=4890 \bmod 52639, \quad \text { and } \quad S(526314,51890)=43718 \bmod 52639
$$

In a similar manner, the pair for $n=559358$ is distinguished by the prime $p=55949$. In this way, then, we prove there are no duplicate maxima for $1<n \leq 10^{6}$.

We now conclude with the above referenced lemma.
Lemma 3. For all integers $n \geq 151$ we have $K_{n}<2 n / \log n$.
Proof. For any positive integer k with $1 \leq k \leq n$, we have

$$
\begin{equation*}
\frac{k^{n}}{k!}-\frac{(k-1)^{n}}{(k-1)!} \leq S(n, k) \leq \frac{k^{n}}{k!} \tag{9}
\end{equation*}
$$

These inequalities are the case $\mathcal{E}=0$ and $\mathcal{O}=1$ of equation (8). We include a from-scratch proof since it is not difficult. Indeed, the number of assignments of the integers $1, \ldots, n$ into
k labeled boxes with no box remaining empty is at most k^{n}, and each set partition of $[n]$ corresponds to k ! such assignments. Thus, we have the upper bound in (9). Further, the number of assignments without the restriction that no box remain empty is exactly k^{n}, and the number of assignments where box i remains empty is exactly $(k-1)^{n}$. Thus, the number of assignments with no box remaining empty is at least $k^{n}-k(k-1)^{n}$. From this, the lower bound in (9) follows easily.

We now let $k=\lfloor n / \log n\rfloor$. We will show that for $n \geq 151$,

$$
\begin{equation*}
\frac{(2 k)^{n}}{(2 k)!}<\frac{k^{n}}{k!}-\frac{(k-1)^{n}}{(k-1)!} . \tag{10}
\end{equation*}
$$

Note that (9) and (10) show that $S(n, k)>S(n, 2 k)$, and so from (3), we must have $K_{n}<2 k$. To see (10), let

$$
\alpha=\frac{(2 k)^{n} /(2 k)!}{k^{n} / k!}, \quad \beta=\frac{(k-1)^{n} /(k-1)!}{k^{n} / k!} .
$$

We will show that for $n \geq 151$ we have $\alpha, \beta<1 / 2$, so that (10) follows for these values of n.
We have

$$
\begin{aligned}
\beta=k(1-1 / k)^{n} \leq k e^{-n / k} & =\lfloor n / \log n\rfloor e^{-n /\lfloor n / \log n\rfloor} \\
& \leq(n / \log n) e^{-\log n}=1 / \log n
\end{aligned}
$$

Thus, for $n \geq 151$, we have $\beta \leq 1 / \log 151<1 / 5$. The estimation for α is a little more difficult. We have

$$
\alpha^{-1}=\frac{(2 k)!}{k!} 2^{-n}=k!\binom{2 k}{k} 2^{-n}
$$

Using the inequalities $k!>(k / e)^{k},\binom{2 k}{k} \geq 2^{2 k} /(2 k)$, which are both easy to see, we have

$$
\alpha^{-1}>k^{k-1} e^{-k} 2^{2 k-1-n},
$$

so that

$$
\log \left(\alpha^{-1}\right)>(k-1)(\log k+\log 4-1)-((n-1) \log 2+1)
$$

An elementary check shows that this last expression exceeds 1 for all integers $n \geq 151$, so that $\alpha<1 / e$ in this range. This completes the proof of (10) and the lemma.

References

1. Bach, Günter, Über eine Verallgemeinerung der Differenzengleichung der Stirlingschen Zahlen【 2 Art und Einige damit zusammenhngende Fragen, J. Reine Angew. Math. 233 (1968) 213-220.
2. Canfield, E. R., Location of the maximum Stirling number(s) of the second kind, Studies in Appl. Math. 59 (1978) 83-93.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 2 (2002), \#A01 12
3. Comtet, Louis, Advanced Combinatorics; The art of finite and infinite expansions, Reidel, Boston, 1974.
4. Dobson, A. J., A note on Stirling numbers of the second kind, J. Combinatorial Theory 5 (1968) 212-214.
5. Erdős, Paul, On a conjecture of Hammersley, Journal of the London Mathematical Society 28 (1953) 232-236.
8. Harborth, Heiko, Über das Maximum bei Stirlingschen Zahlen 2. Art, J. Reine Angew. Math. 230 (1968) 213-214.
6. Harper, L. H., Stirling behavior is asymptotically normal, Ann. Math. Stat. 31 (1967) 410-414.
7. Hayman, Walter K., A generalisation of Stirling's formula, Journal für die reine und angewandte Mathematik 196 (1956) 67-95.
9. Huxley, M. N., The integer points close to a curve, III, in Number Theory in Progress (K. Győry, H. Iwaniec, and J. Urbanowicz, editors), Walter de Gruyter, Berlin, 1999, pages 911-940.
10. Kanold, Hans-Joachim, Über Stirlingsche Zahlen 2. Art, J. Reine Angew. Math. 229 (1968) 188-193.
11. Kanold, Hans-Joachim, Über eine asymptotische Abschätzung bei Stirlingschen Zahlen 2. Art, J. Reine Angew. Math. 230 (1968) 211-212.
12. Kanold, Hans-Joachim, Einige neuere Abschtzungen bei Stirlingschen Zahlen 2. Art, J. Reine Angew. Math. 238 (1969) 148-160.
13. Lieb, E. H., Concavity properties and a generating function for Stirling numbers, J. Combinatorial Theory 5 (1968) 203-206.
14. Menon, V. V., On the maximum of Stirling numbers of the second kind, J. Combinatorial Theory, A 15 (1973) 11-24.
15. Moser, L. and M. Wyman, Stirling numbers of the second kind, Duke Math. J. 25 (1957) 29-43.
16. Mullin, R., On Rota's problem concerning partitions, Aequationes Mathematicae $\mathbf{2}$ (1969) 98-104.
17. Odlyzko, Andrew, Asymptotic enumeration methods, in Handbook of Combinatorics, volume

II (R. L. Graham, M. Grötschel, L. Lovász, editors), The MIT Press, North-Holland, 1995, pages 1063-1229.
18. Rennie, B. C., and A. J. Dobson, On Stirling numbers of the second kind, J. Combinatorial Theory 7 (1969) 116-121.
19. Wegner, Horst, Über das Maximum bei Stirlingschen Zahlen zweiter Art, J. Reine Angew. Math. 262/263 (1973) 134-143.
20. Wilf, Herbert S., Generatingfunctionology, Academic Press, San Diego, 1990.

