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Abstract

We determine the sharp lower bound for the cardinality of the restricted sumset A+′B =
{a + b | a ∈ A, b ∈ B, a 6= b}, where A,B run over all subsets of size r = s = 1 + 3h

in a vector space over F3. This solves a conjecture stated in an earlier paper of ours on
sumsets and restricted sumsets in finite vector spaces.

The analogous problem for an arbitrary prime p remains open. However, we do prove
some partial results concerning more generally special pairs of the form r = s = 1 + aph.

We also provide alternate proofs for the formulas satisfied by our general lower bounds
βp(r, s) and γp(r, s) for the cardinality of the ordinary sum and restricted sum of sets of
size r, s in a vector space over Fp.

1. Introduction

Let V be a vector space over the finite field Fp. If A,B ⊂ V are two non-empty subsets
of V , we define their restricted sumset A+′ B by

A+′ B = {a+ b | a ∈ A, b ∈ B, a 6= b}.

If r, s ≤ |V |, we define
µ′V (r, s) = min |A+′ B|,

where A,B run over all subsets of V of cardinality r, s respectively.

Erdős and Heilbronn conjectured in 1964 that if A is a subset of cardinality r in
V = Fp, then |A +′ A| ≥ min{p, 2r − 3}. This conjecture was solved 30 years later by
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Dias da Silva and Hamidoune in [DH]. Using a different method, Alon, Nathanson and
Ruzsa subsequently strengthened this result by establishing the equality

µ′Fp(r, s) =

{
min{p, 2r − 3} if r = s,
min{p, r + s− 2} if r 6= s.

(See [ANR1, ANR2].)

The determination of µ′V (r, s) for an arbitrary vector space V over Fp was taken up
and completed for most pairs r, s in [EK1]. In summary, we have determined the value
of µ′V (r, s) for all r, s if p = 2, and for all non-special pairs (r, s) is p an odd prime. (See
Section 2.) The problem of determining µ′V (r, s) remains open for special pairs (r, s).

A pair of natural numbers (r, s) is said to be special for the odd prime p if r and s
have p-adic expansions of the form{

r = 1 + aph +
∑n
i=h+1 rip

i,
s = 1 + aph +

∑n
i=h+1 sip

i,
(1)

with h ≥ 1 and coefficients a, ri, si satisfying the conditions{
1 ≤ a ≤ p−1

2
, and

ri + si ≤ p− 1 for h+ 1 ≤ i ≤ n.
(2)

We do know that for a special pair (r, s), we have either µ′V (r, s) = r + s− 3 or else
µ′V (r, s) = r + s− 2. (See Corollary (7.5) in [EK1].) However resolving this alternative
seems to be quite difficult.

The case r = s = 1 + p has been treated in our previous paper [EK2]. With the
notation µ′p(r, s) = min

V
{µ′V (r, s)}, we proved that
µ′p(1 + p, 1 + p) = 2(1 + p)− 2 = 2p,

for p ≥ 5. (See [EK2], Theorem (1.1).)

Although we have some partial results for certain special pairs with an arbitrary prime
p, we do not have any complete treatment beyond the case r = s = 1 + p, at least for
p ≥ 5.

For p = 3, there is the example A = B = {0, e1, e2, e1 + e2} in the plane V =
F3e1⊕F3e2 with |A| = |B| = 4 and |A+′B| = |{e1, e2, e1 +e2, 2e1 +e2, e1 +2e2}| = 5
realizing the lower bound µ′3(4, 4) = 5 = r + s− 3 for r = s = 4.

We know from Theorem (7.10) in [EK1] that the existence of this simple example
implies that if r, s have 3-adic expansions of the form

{
r = 1 + 3 +

∑
i≥2 ri3

i,
s = 1 + 3 +

∑
i≥2 si3

i,
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where ri + si ≤ 2 for all i ≥ 2, then µ′3(r, s) = r + s− 3.

In the present paper, we solve the question of determining the value of µ′V (r, s) at
p = 3 for the particular special pairs (r, s) of the form

r = s = 1 + 3h,

where h ≥ 2. The corresponding problem for p ≥ 5 remains open.

Our main result, which was conjectured in [EK1] at least for h = 2, is :

Theorem. Let A,B ⊂ V be subsets of cardinality 1 + 3h with h ≥ 2 in a vector space V
over F3. Then,

|A+′ B| ≥ 2 · 3h.

This lower bound 2 · 3h is sharp, i.e., µ′3(1 + 3h, 1 + 3h) = 2 · 3h.

The above examples of special pairs (r, s) with r ≡ s ≡ 4 mod 32 happen in fact to
be the only examples we know of special pairs (r, s) for which µ′p(r, s) attains the lower
bound r + s− 3.

Although (1 + 3h, 1 + 3h) is a special pair (for the prime 3), the proof of the above
result requires lower bounds for the cardinalities of sumsets and restricted sumsets for
sets X, Y ⊂ V whose cardinalities do not necessarily form a special pair.

Formulas for these lower bounds βp(r, s) and γp(r, s), for arbitrary odd prime p, were
given in [EK1]. In the next section we provide a somewhat different treatment of their
proof and recall some needed basic facts.

Also, our proof of the Theorem (stated as Theorem (5.1) in Section 5) requires aux-
iliary statements which may as well be stated and proved for an arbitrary odd prime p.
These will be discussed in Sections 3 and 4.

It does not seem unreasonable to conjecture that, except for the case p = 3 and
|A| ≡ |B| ≡ 4 mod 9 we have mentioned above, the cardinality of a restricted sumset
A+′B, with (|A|, |B|) = (r, s) forming a special pair, is bounded below by r+ s− 2. We
have no clue of a method strong enough to prove this statement for an arbitrary special
pair.

Right from the start of the proof (see Proposition (3.1) in Section 3 below), we need
the assumption that A and B have cardinality |A| = |B| = 1 + aph. This assumption is
maintained throughout Section 4.

The case p = 3 proper is dealt with in Section 5.
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2. Basic results and explicit formulas for βp(r, s) and γp(r, s)

Given an odd prime p and positive integers r, s, let

βp(r, s) = min {n ∈ N | (x+ y)n ∈ (xr, ys)Fp[x, y]}

be the smallest natural number n such that (x+y)n belongs to the ideal I(r, s) = (xr, ys)
generated by xr, ys in the polynomial ring Fp[x, y].

We have proved in [EK1] that for any A,B ⊂ V of cardinalities |A| = r and |B| = s,
one has the inequality

|A+B| ≥ βp(r, s),(3)

using the usual notation A+B = {a+ b | a ∈ A, b ∈ B}.

Moreover, this lower bound is sharp, i.e., if µV (r, s) denotes the smallest possible
value of |A + B| for all A,B ⊂ V of cardinalities |A| = r, |B| = s then µV (r, s) =
βp(r, s), provided r, s ≤ |V |.

We also obtained in [EK1], by a similar method, a lower bound γp(r, s) for the size
of the restricted sumset A+′ B = {a+ b | a ∈ A, b ∈ B, a 6= b}. More precisely, let

γp(r, s) = min{n ∈ N | (x− y)(x+ y)n ∈ (xr, ys)Fp[x, y]},

then we have
|A+′ B| ≥ γp(r, s).(4)

However, the lower bound γp(r, s) need not be sharp if (r, s) is a special pair for the
odd prime p. It is indeed sharp, i.e., µ′p(r, s) = γp(r, s) if (r, s) is not a special pair.

We now produce explicit formulas for these lower bounds βp(r, s) and γp(r, s).

Given positive integers r and s, let r − 1 =
∑n
i=0 rip

i, s− 1 =
∑n
i=0 sip

i be the p-adic
expansions of r − 1 and s− 1, i.e., 0 ≤ ri ≤ p− 1 and 0 ≤ si ≤ p− 1 for all i ∈ [0, n].

Define the integer m ∈ Z by the formula
m = max({−1} ∪ {i ∈ [0, n] | ri + si ≥ p}).

In other words, m = −1 if for all i ∈ [0, n] we have ri + si ≤ p − 1. Else, m is
characterized by the inequalities rm + sm ≥ p and ri + si ≤ p− 1 for i ∈ [m+ 1, n]. (This
last interval being of course empty if m = n, i.e., if rn + sn ≥ p.)

With this notation, the function βp(r, s) is given by

βp(r, s) = pm+1 +
∑n
i=m+1(ri + si)p

i

= s+
∑n
i=m+1 rip

i + (pm+1 − 1−∑m
i=0 sip

i).
(5)

Note that βp(r, s) = r + s− 1 if m = −1, i.e., if ri + si ≤ p− 1 for all i ∈ [0, n].
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The formula for γp(r, s) involves a somewhat more complicated case distinction.

If r = s = 1, then γp(1, 1) = 0. If r + s ≥ 3, then

γp(r, s) =


βp(r, s) if

(
r+s−2
r−1

)
≡ 0 mod p,

r + s− 3 if
(
r+s−2
r−1

)
6≡ 0 and

(
r+s−3
r−1

)
≡
(
r+s−3
s−1

)
mod p,

r + s− 2 if
(
r+s−2
r−1

)
6≡ 0 and

(
r+s−3
r−1

)
6≡
(
r+s−3
s−1

)
mod p.

(6)

The conditions on binomial coefficients in formula (6) can equivalently be formulated
in terms of the respective p-adic expansions r − 1 =

∑
i≥0 rip

i and s − 1 =
∑
i≥0 sip

i of
r − 1 and s− 1, as follows :

If r + s ≥ 3 as above, then

γp(r, s) =



βp(r, s) if there exists an index j
such that rj + sj ≥ p,

r + s− 3 if ri + si ≤ p− 1 for all i, and
νp(r − 1) = νp(s− 1) = v, say,
with rv = sv,

r + s− 2 otherwise, i.e., still with ri + si ≤ p− 1
for all i, but either νp(r − 1) 6= νp(s− 1)
or, with v as above, rv 6= sv,

(7)

where νp(r − 1) is the p-valuation of r − 1, i.e., νp(r − 1) = v if the p-adic expansion of
r − 1 has the form r − 1 = rvp

v +
∑
i>v rip

i with rv 6= 0.

Note that the definition of a special pair (given in the Introduction) corresponds
exactly to the second case in formula (7), with the further condition νp(r−1) = νp(s−1) ≥
1.

Hence, the statement “µ′V (r, s) = r + s − 3 or else µ′V (r, s) = r + s − 2” in the
Introduction amounts for special pairs to the inequalities

γp(r, s) ≤ µ′V (r, s) ≤ γp(r, s) + 1

which are true in general. (Compare also the version of the definition of a special pair
given in [EK1], Definition (7.8).) It is a theorem in [EK1] (see Theorem (7.9)) that
µ′V (r, s) = γp(r, s) for non-special pairs.

The proof of the equivalence of (6) and (7) is easy and left to the reader. Part of it
is reproduced below and the rest is an immediate consequence of Lemma (7.7) in [EK1].

In this section, we provide a direct proof of the formulas (5) and (6) which is partially
independent of [EK1]. However, we use but do not reprove a couple of easy lemmas from
our previous paper.
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We begin with a remark on the binomial coefficient
(
r+s−2
r−1

)
which is the content of

Lemma (7.2) in [EK1].

Let r − 1 =
∑
i≥0 rip

i and s − 1 =
∑
i≥0 sip

i be the p-adic expansions of r − 1 and
s− 1. If r + s− 2 =

∑
i≥0 tip

i is the p-adic expansion of r + s− 2, the well known Lucas
formula for binomial coefficients modulo p, namely here,(

r + s− 2

r − 1

)
≡

∏
i≥0

(
ti
ri

)
mod p,

shows easily that
(
r+s−2
r−1

)
6≡ 0 mod p if and only if 0 ≤ ri + si ≤ p− 1 for all i.

By definition, βp(r, s) = min{n ∈ N | (x + y)n ∈ I(r, s)}, where I(r, s) is the ideal
(xr, ys) generated by xr and ys in the polynomial ring Fp[x, y].

Since (x+ y)r+s−1 =
∑r+s−1
i=0

(
r+s−1

i

)
xiyr+s−1−i, and either i ≥ r, or if i ≤ r − 1, then

r + s− 1− i ≥ s, it follows that (x+ y)r+s−1 ∈ I(r, s) and βp(r, s) ≤ r + s− 1.

Furthermore, the congruence (x+y)r+s−2 ≡
(
r+s−2
r−1

)
xr−1ys−1 mod I(r, s) gives βp(r, s) =

r + s− 1 if
(
r+s−2
r−1

)
6≡ 0 mod p.

Thus,
βp(r, s) = r + s− 1, if ri + si ≤ p− 1 for all i ≥ 0.

If, on the other hand, there exists an index m such that rm+sm ≥ p and ri+si ≤ p−1
for i ≥ m+ 1, then we write {

r − 1 = a0 + a1p
m+1,

s− 1 = b0 + b1p
m+1,

where a0 =
∑m
i=0 rip

i , and b0 =
∑m
i=0 sip

i, and of course, a1, b1 are non-negative integers.

Note for further use that pm+1 = p · pm ≤ (rm + sm)pm ≤ a0 + b0.

We claim that, using the above notation, βp(r, s) is given by

βp(r, s) = pm+1 +
∑

i≥m+1

(ri + si)p
i = pm+1(1 + a1 + b1).

In order to prove this, we calculate

(x+ y)p
m+1(a1+b1+1) ≡ (xp

m+1
+ yp

m+1
)a1+b1+1 mod p

=
∑a1+b1+1
i=0

(
a1+b1+1

i

)
xp

m+1iyp
m+1j,

where i+ j = a1 + b1 + 1.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 1 (2001), #A02 7

For i ≤ a1, we have j ≥ b1 + 1 and since

s− 1 = b0 + pm+1b1 ≤ pm+1 − 1 + pm+1b1 ≤ pm+1j − 1

it follows that pm+1j > s and yp
m+1j ∈ (xr, ys).

Similarly, if i ≥ a1 + 1, then j ≤ b1. As above, we have pm+1i > r and xp
m+1i ∈

I(r, s) = (xr, ys).

Therefore (x+y)p
m+1(1+a1+b1) ∈ I(r, s), and βp(r, s) ≥ pm+1(1+a1 +b1) by definition.

We now calculate

(x+ y)p
m+1(a1+b1+1)−1 ≡ (xp

m+1
+ yp

m+1
)a1+b1 · (xp

m+1
+yp

m+1

x+y
) mod p

≡ ∑a1+b1
i=0

(
a1+b1
i

)
xp

m+1iyp
m+1j ·∑pm+1−1

k=0 (−1)kxky` mod p,

where i+ j = a1 + b1 and k + ` = pm+1 − 1.

For i > a1, we have pm+1i > pm+1−1+pm+1a1 ≥ r−1. It follows that xp
m+1i ∈ I(r, s).

Similarly, yp
m+1j ∈ I(r, s) for j > b1. Hence,

(x+ y)p
m+1(a1+b1+1)−1 ≡

(
a1 + b1

a1

)
xp

m+1a1yp
m+1b1 ·

pm+1−1∑
k=0

(−1)kxky`,

modulo I(r, s), with ` = pm+1 − k − 1.

As noted above, a0 + b0 ≥ (rm + sm)pm ≥ pm+1. For k in the interval pm+1− b0− 1 ≤
k ≤ a0, we have ` = pm+1 − k − 1 ≤ b0. Therefore, still modulo I(r, s), we have

(x+ y)p
m+1(a1+b1+1)−1 ≡

∑
pm+1−b0−1≤k≤a0

(−1)k
(
a1 + b1

a1

)
xk+pm+1a1y`+p

m+1b1 ,

and the monomials xk+pm+1a1y`+p
m+1b1 , for the indicated interval of values of k and ` are

part of an Fp-basis of Fp[x, y]/I(r, s).

Now, certainly, (−1)k 6≡ 0 mod p, and using again the Lucas formula and the inequal-
ities ri + si ≤ p− 1 for i ≥ m+ 1, we have(

a1 + b1

a1

)
≡

∏
i≥m+1

(
ri + si
ri

)
6≡ 0 mod p.

Hence,
(x+ y)p

m+1(a1+b1+1)−1 6∈ I(r, s).

It follows that βp(r, s) = pm+1(1 + a1 + b1) as asserted.
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We now prove the formula (6) for γp(r, s). Let γ = γp(r, s), β = βp(r, s), to simplify
notation.

Suppose first that there exists an index n for which rn+sn ≥ p in the p-adic expansions
r − 1 =

∑
i≥0 rip

i and s − 1 =
∑
i≥0 sip

i of r − 1 and s − 1, then
(
r+s−2
r−1

)
≡ 0 mod p.

Indeed, taking n such that ri + si ≤ p − 1 for i < n, we have the p-adic expansion
r + s− 2 =

∑
i≥0 tip

i with tn = rn + sn − p < rn, and by the Lucas formula(
r + s− 2

r − 1

)
≡

∏
k≥0

(
tk
rk

)
≡ 0 mod p,

because the factor
(
tn
rn

)
, where tn < rn, is congruent to 0 mod p.

It follows from

(x+ y)β =
∑
i

(
β

i

)
xiyβ−i ≡

r−1∑
i=β−s+1

(
β

i

)
xiyβ−i ≡ 0 mod I(r, s) = (xr, ys),

that
(
β
i

)
≡ 0 mod p in the range i = β − s+ 1, . . . , r − 1.

Now,
(
β
i

)
=
(
β−1
i−1

)
+
(
β−1
i

)
implies that all coefficients

(
β−1
i

)
for i = β − s, . . . , r − 1

are mutually congruent modulo p, up to sign, and thus are simultaneously ≡ 0 or 6≡ 0
mod p.

We must have
(
β−1
i

)
6≡ 0 mod p, for i = β − s, . . . , r − 1 since (x+ y)β−1 6∈ I(r, s).

It follows that

(x− y)(x+ y)β−1 = (x+ y)β − 2y(x+ y)β−1

≡ −2
∑r−1
i=β−s+1

(
β−1
i

)
xiyβ−i 6≡ 0 mod(xr, ys),

and thus γp(r, s) = βp(r, s) in the case
(
r+s−2
r−1

)
≡ 0 mod p.

Suppose now that ri+si ≤ p−1 for all i ≥ 0 in the p-adic expansions r−1 =
∑
i≥0 rip

i

and s− 1 =
∑
i≥0 sip

i of r − 1 and s− 1.

An easy calculation shows that, modulo I(r, s) = (xr, ys)Fp[x, y], and for r + s ≥
3, r ≥ s, we have the congruence

(x− y)(x+ y)r+s−3 ≡ {
(
r + s− 3

r − 2

)
−
(
r + s− 3

r − 1

)
}xr−1ys−1.

It follows easily that γp(r, s) = r + s− 2 if
(
r+s−2
r−1

)
6≡ 0 mod p and

(
r+s−3
s−1

)
6≡
(
r+s−3
r−1

)
mod p.

Moreover, we see that γp(r, s) ≤ r+ s−3 if
(
r+s−2
r−1

)
6≡ 0 mod p and

(
r+s−3
s−1

)
≡
(
r+s−3
r−1

)
mod p.
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To prove that in this last case we have γp(r, s) = r + s− 3, it suffices to show that
(x− y)(x+ y)r+s−4 6≡ 0 modulo the ideal I(r, s) = (xr, ys)Fp[x, y].

This is obvious for r = s = 2, and for r ≥ 3, s ≥ 2 an easy calculation shows that
(x− y)(x+ y)r+s−4 is congruent modulo I(r, s) to

{
(
r + s− 4

r − 3

)
−
(
r + s− 4

r − 2

)
}xr−2ys−1 + {

(
r + s− 4

r − 2

)
−
(
r + s− 4

r − 1

)
}xr−1ys−2.

By a simple lemma on binomial coefficients, Lemma (6.5) of [EK2], the two coefficients
in this expression could only both vanish if we had(

r + s− 4

r − 3

)
≡
(
r + s− 4

r − 2

)
≡
(
r + s− 4

r − 1

)
≡ 0 mod p.

This would imply
(
r+s−2
r−1

)
≡ 0 mod p, contrary to the hypothesis. This finishes our

discussion of formulas (5) and (6).

As an application of the formulas, note that

γp(1 + aph, 1 + aph) = 2aph − 1, βp(1 + aph, 1 + aph) = 2aph + 1

if 1 ≤ a ≤ p−1
2

. We shall use these values in the next section.

3. The case of unequal sets

Let A,B ⊂ V be subsets of a vector space V over Fp, of cardinality |A| = |B| = 1 + aph.

The first step in our study of µ′p(1+aph, 1+aph) is to show that it suffices to consider
the instance in which A = B.

Indeed, we prove

Proposition (3.1) Let the subsets A,B ⊂ V both have cardinality 1 + aph, where h ≥ 1
and 1 ≤ a ≤ p−1

2
. If A 6= B then

|A+′ B| ≥ γp(1 + aph, 1 + aph) + 1 = 2aph.

Proof. Let X = A ∩B and Y = A ∪B. If X = ∅, then A+′ B = A+B and

|A+′ B| = |A+B| ≥ βp(1 + aph, 1 + aph) = 2aph + 1.

Assume now that X 6= ∅. Set r = |X| ≥ 1, and thus |Y | = 2aph + 2 − r. We have
X +′ Y ⊂ A+′ B. Therefore |A+′ B| ≥ |X +′ Y | ≥ γp(r, 2ap

h + 2− r).

We claim that for 1 ≤ r ≤ aph we have γp(r, 2ap
h + 2− r) = 2aph.
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We set
R = r , S = 2aph + 2− r

and write the p-adic expansions

{
R + S − 2 = 2aph,

R− 1 = r0 + r1p+ . . .+ rh−1p
h−1 + rhp

h,

where rh < a, since X = A ∩B ⊂ A and A ∩B 6= A.

We have (
R + S − 2

R− 1

)
=

(
2aph

r − 1

)
≡
(

0

r0

)
· · ·

(
0

rh−1

)
·
(

2a

rh

)
mod p.

The only case where this number is 6≡ 0 mod p is when r0 = r1 = . . . = rh−1 = 0, and
thus r = 1 + cph, with 0 ≤ c ≤ a− 1.

Let us begin with this case. If r = 1 + cph, with 0 ≤ c ≤ a− 1, then, by formula (6),
the value of γp(R, S) = γp(r, 2ap

h + 2− r) depends on whether the binomial coefficients(
R+S−3
R−1

)
and

(
R+S−3
S−1

)
are congruent mod p or not.

We examine the p-adic expansions of R + S − 3, R− 1 and S − 1.


R + S − 3 =

∑h−1
i=0 (p− 1)pi + (2a− 1)ph,

R− 1 = cph,
S − 1 = (2a− c)ph.

By the formula of Lucas,(
R+S−3
R−1

)
≡
(

2a−1
c

)
and

(
R+S−3
S−1

)
≡
(

2a−1
2a−c

)
mod p.

Now, since c < a ≤ p−1
2

, we have c 6≡ a mod p, and therefore

γp(r, 2ap
h + 2− r) = r + (2aph + 2− r)− 2 = 2aph,

in accordance with the claim.

There remains to examine the case where

r − 1 = r0 + r1p+ . . .+ rh−1p
h−1 + rhp

h,

with 0 ≤ rh ≤ a− 1 and (r0, r1, . . . , rh−1) 6= (0, 0, . . . , 0). We then have(
R + S − 2

R− 1

)
=

(
2aph

r − 1

)
≡ 0 mod p.

Hence γp(r, 2ap
h + 2− r) = βp(r, 2ap

h + 2− r).
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We claim that βp(r, 2ap
h + 2− r) = 2aph.

Let 0 ≤ m ≤ h− 1 be the index defined by r0 = . . . = rm−1 = 0 and rm 6= 0.

The p-adic expansions of R− 1 and S − 1 have the form{
R− 1 = rmp

m+
∑h−1
i=m+1 rip

i+ rhp
h,

S − 1 = (p− rm)pm+
∑h−1
i=m+1(p− 1− ri)pi+ (2a− 1− rh)ph.

Therefore, we have βp(R, S) = (1 + [ R−1
pk+1]

] + [ S−1
pk+1 ])pk+1, where k is the largest index

for which the sum of the coefficients of the p-adic expansions is larger than or equal to p.

It is easy to see that k = m. It follows that

βp(R, S) = pm+1 + (p− 1)pm+1 + . . .+ (p− 1)ph−1 + (2a− 1)ph = 2aph.

This finishes the proof of the proposition. 2

Henceforth, we shall be dealing with the restricted sumset of a single subset A ⊂ V
with itself, i.e., A+′ A.

4. Slicing the set A by hyperplanes

Our approach in order to get the sharp lower bound for |A +′ A| will consist in keeping
track of the classes of elements of A and A +′ A modulo a chosen hyperplane H ⊂ V
and slicing the set A by the translates of H. Let e 6= 0 be a vector outside H, so that
V = Fpe ⊕ H. For c ∈ Fp, we denote by Hc the (affine) hyperplane c · e + H and let
Ac = A ∩ Hc. A translation of A does not change |A +′ A|. Hence, we may assume
that the size of A0 = A ∩H is maximal in the collection of sizes {|Ac|, c ∈ Fp}. We set
r = |A0|.

Let C = {0, c1, . . . , c`} denote the set of classes c ∈ Fp such that Ac 6= ∅. We may
also assume that the classes c1, . . . , c` are ordered so that |A0| ≥ |Ac1| ≥ . . . ≥ |Ac`| ≥ 1.

We use the notation si = |Aci| for 1 ≤ i ≤ ` and therefore we have the inequalities
r ≥ s1 ≥ . . . ≥ s` ≥ 1.

Note that, changing A to a homothetic set if necessary, we may also assume that
c1 = 1, so that s1 = |A1|.

We call (r, s1, . . . , s`) the partition of |A| (or of A, by abuse of language) corresponding
to the choice of H.

Since we may assume that A is not contained in any hyperplane of V , we may assume
1 ≤ ` ≤ p− 1.
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The case where ` = 1, when |A| = 1 + aph, with 1 ≤ a ≤ p−1
2
, h ≥ 1, can be treated

at once. This special case will be used in the next section.

Proposition (4.1) Suppose that the subset A ⊂ V with cardinality |A| = 1 + aph has a
partition (r, s) of length 2. Then, unless p = 3, a = 1, h = 1, we have

|A+′ A| ≥ 2aph = γp(1 + aph, 1 + aph) + 1.

Proof. By hypothesis, A = A0
∐
A1, using the notational convention specified above.

Let r = |A0|, s = |A1|.

We first take care of the case where s = 1.

We have A +′ A = (A0 +′ A0)
∐

(A0 + A1) and therefore |A +′ A| ≥ γp(ap
h, aph) +

βp(ap
h, 1).

The p-adic expansion of aph − 1 is

aph − 1 =
h−1∑
i=0

(p− 1)pi + (a− 1)ph.

Therefore, γp(ap
h, aph) = βp(ap

h, aph) = ph + 2(a− 1)ph.

Since βp(ap
h, 1) = aph, it follows that

|A+′ A| ≥ ph + 2(a− 1)ph + aph = 2aph + (a− 1)ph ≥ 2aph,

with equality if and only if a = 1.

Suppose now that s ≥ 2. We have

A+′ A = (A0 +′ A0)
∐

(A0 + A1)
∐

(A1 +′ A1),

where the sets are disjoint because they belong to distinct hyperplanes, namely H, H1 =
e+H and H2 = 2e+H respectively.

We shall evaluate the right-hand side of the resulting inequality

|A+′ A| ≥ γp(r, r) + βp(r, s) + γp(s, s).

Let r− 1 =
∑h
i=0 rip

i be the p-adic expansion of r− 1. Since 1 + aph = r+ s, we have
s− 1 = (aph − 1)− (r − 1). This yields the p-adic expansion of s− 1 as follows:

s− 1 =
h∑
i=0

sip
i =

h−1∑
i=0

(p− 1− ri)pi + (a− 1− rh)ph,

where 0 ≤ a− 1− rh because r − 1 < aph and hence rh ≤ a− 1.
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As a first consequence, we get βp(r, s) = r+s−1 by formula (5). Indeed, ri+si = p−1,
for i = 0, . . . , h− 1 and rh + sh = a− 1 < p− 1. Thus βp(r, s) = aph.

By the formula (6) above, we have for t = r or s and ti = ri or ti = si, respectively,

γp(t, t) =

{
2t− 3 if 2ti ≤ p− 1 for all i ∈ [0, h]
pm+1 + 2

∑h
i=m+1 tip

i otherwise,

where m = max({−1} ∪ {i ∈ [0, h] | 2ti ≥ p}).

We want to evaluate τ = γp(r, r) + βp(r, s) + γp(s, s).

There are 2 cases for each of r and s, and thus 4 cases altogether.

• If 2ri ≤ p−1 and 2si ≤ p−1 for all i ∈ [0, h], then γp(r, r) = 2r−3 and γp(s, s) = 2s−3.

Note that this case occurs only if r = 1 + ph−1
2

+ rhp
h and s = 1 + ph−1

2
+ (a− 1− rh)ph.

Then, τ = γp(r, r) + βp(r, s) + γp(s, s) = 2r − 3 + aph + 2s− 3 = 2aph + (aph − 4).

Thus, τ > 2aph except for a = 1, p = 3, h = 1 as we already know.

• If 2ri ≤ p− 1 for all i = 0, . . . , h, but rj <
p−1

2
for at least one index j, then necessarily

j ≤ h− 1, and 2sj = 2(p− 1− rj) ≥ p. Therefore

γp(s, s) = s+
∑h−1
i=m+1(p− 1− ri)pi + (a− 1− rh)ph + (pm+1 − 1−∑m

i=0 sip
i),

and so

γp(s, s) ≥ s+ (a− 1− rh)ph.

Hence,
τ ≥ 2r − 3 + aph + s+ (a− 1− rh)ph
≥ (r − 2) + 2aph + (a− 1− rh)ph
≥ 2aph.

• The case where there exists an index m ∈ [0, h− 1] such that 2rm ≥ p and 2ri ≤ p− 1
for i ∈ [m + 1, h], and where 2si ≤ p− 1 for all i = 0, . . . , h− 1, h is quite symmetrical.
Then, τ ≥ r +

∑h
i=m+1 rip

i + aph + 2s− 3. Thus, τ ≥ 2aph + (s− 2) +
∑h
i=m+1 rip

i. This
is strictly larger than 2aph, even if s = 2.

• Finally, if there exist m and n such that 2rm ≥ p and 2sn ≥ p, and m,n are the
maximal indices with this property, then

τ ≥ r +
h∑

i=m+1

rip
i + aph + s+

h∑
i=n+1

sip
i.

Thus, clearly, τ ≥ 2aph + 1. 2
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5. The value of µ′3(1 + 3h, 1 + 3h)

In this section we take p = 3 and since µ′3(4, 4) = γ3(4, 4) = 5, we assume h ≥ 2.

Theorem (5.1) For h ≥ 2, we have µ′3(1 + 3h, 1 + 3h) = 2 · 3h.

Proof.

Step 1. Unequal sets A and B.

Let A,B be subsets of cardinality 1 + 3h in some vector space V over F3. We claim
that |A+′ B| ≥ 2 · 3h. If A 6= B, this is just Proposition (3.1) with p = 3, and a = 1.

Thus, from now on, we assume that B = A.

Let (r, s, t) be the partition of 1+3h associated with some decomposition V = F3·e⊕H,
i.e., r = |A∩H|, s = |A∩H1|, t = |A∩H2|, where Hi = i · e+H. We may assume that
e ∈ A and r ≥ s ≥ t. As above, we set Ai = A ∩ Hi. Of course A = A0

∐
A1

∐
A2.

Step 2. Partitions of length 2.

If t = 0, it follows from Proposition (4.1) that

|A+′ A| ≥ 2 · 3h,

as desired.

The proof in the case where r ≥ s ≥ t ≥ 1 involves an induction on h in the case of
a flat partition. In this section, we call flat partition a partition with r = 1 + 3h−1. Note
that this is the smallest possible value of r since r ≥ s ≥ t and r+ s+ t = 1 + 3h. There
are two flat partitions for h = 2, namely (4, 4, 2) and (4, 3, 3). They will be treated in
step 4.

Step 3. Not too flat partitions of length 3.

Suppose that the partition (r, s, t) of 1 + 3h satisfies

2 + 3h−1 ≤ r ≤ 3h − 1,

and of course r ≥ s ≥ t ≥ 1.

We have
A+′ A ⊃ (A0 +′ A0)

∐
(A0 + A1)

∐
(A0 + A2)

and therefore,
|A+′ A| ≥ |A0 +′ A0|+ |A0 + A1|+ |A0 + A2|

≥ γ(r, r) + β(r, s) + β(r, t),

where we write γ and β for γ3 and β3 respectively to simplify notation.
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Assertion. In the above range for the parameters (r, s, t), namely 2+3h−1 ≤ r ≤ 3h−1,
and r ≥ s ≥ t ≥ 1, we have γ(r, r) + β(r, s) + β(r, t) ≥ 2 · 3h + 1.

We first write the 3-adic expansions of r − 1, s− 1 and t− 1 :

r − 1 = r0 + r13 + . . .+ rh−23h−2 + 3h−1,
s− 1 = s0 + s13 + . . .+ sh−23h−2 + sh−13h−1,
t− 1 = t0 + t13 + . . .+ th−23h−2 + th−13h−1.

In order to calculate β(r, s) and β(r, t) using formula (5) in Section 2, we set m =
max({−1} ∪ {i ∈ [0, h− 1] | ri + si ≥ 3}). Similarly, we also need n = max({−1} ∪ {i ∈
[0, h− 1] | ri + ti ≥ 3}).

Note that m ≤ h− 2 and n ≤ h− 2 because s, t ≤ r.

By formulas (5) and (6) or (7), we have

γ(r, r) =



(a) 2r − 3,
if ri ≤ 1 for all i = 0, . . . , h− 2

(b) 3`+1 + 2(
∑h−2
i=`+1 ri3

i) + 2 · 3h−1,
if r` = 2 and ri ≤ 1 for i ≥ `+ 1

and

β(r, s) + β(r, t) = 3m+1 +
h−1∑

i=m+1

(ri + si)3
i + 3n+1 +

h−1∑
i=n+1

(ri + ti)3
i,

where rh−1 = 1.

We set σ = γ(r, r) + β(r, s) + β(r, t) and claim that σ ≥ 1 + 2 · 3h.

Suppose first that ri ≤ 1 for all indices i = 0, . . . , h − 1 in the 3-adic expansion of
r − 1, so that case (a) prevails in the formula above for γ(r, r). Then,

σ ≥ 2r − 3 + s+
∑h−1
i=m+1 ri3

i + t+
∑h−1
i=n+1 ri3

i

≥ (r − 2) + (r + s+ t− 1) + 2 · 3h−1 = r − 2 + 3h + 2 · 3h−1.

Since r ≥ 2 + 3h−1, we get σ ≥ 2 · 3h.

Note however that for r = 2 + 3h−1, the only possibilities for the pair (s, t) are
(2 + 3h−1,−3 + 3h−1) if h ≥ 3, and (1 + 3h−1,−2 + 3h−1), (3h−1,−1 + 3h−1), for h ≥ 2.

For h = 2, we have the partitions (5, 4, 1) and (5, 3, 2) which give respectively σ =
20 = 2 + 2 · 3h and σ = 19 = 1 + 2 · 3h.

For h = 3, the three partitions (2+3h−1, 2+3h−1,−3+3h−1), (2+3h−1, 1+3h−1,−2+
3h−1), (2 + 3h−1, 3h−1,−1 + 3h−1), give respectively σ = 1 + 2 · 3h, 2 + 2 · 3h, and 1 + 2 · 3h.
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Hence, in case (a), we have indeed σ ≥ 2 · 3h.

Suppose now that we are in case (b) in the formula above for γ(r, r). Then, still with
σ = γp(r, r) + βp(r, s) + γp(s, s), we have

σ = γ(r, r) + β(r, s) + β(r, t)

= 3`+1 + 2(
∑h−1
i=`+1 ri3

i) + 3m+1 +
∑h−1
i=m+1(ri + si)3

i + 3n+1 +
∑h−1
i=n+1(ri + ti)3

i

where as before rh−1 = 1.

Replacing one copy of
∑h−1
i=`+1 ri3

i in the first summation by the equal quantity r−1−∑`
i=0 ri3

i, and similarly,
∑h−1
i=m+1 si3

i by s−1−∑m
i=0 si3

i and
∑h−1
i=n+1 ti3

i by t−1−∑n
i=0 ti3

i,
we get

σ = r + s+ t− 3 +
∑h−1
i=`+1 ri3

i + (3`+1 −∑`
i=0 ri3

i)

+
∑h−1
i=m+1 ri3

i + (3m+1 −∑m
i=0 si3

i)

+
∑h−1
i=n+1 ri3

i + (3n+1 −∑n
i=0 ti3

i).

Now, r+s+t = 3h+1. Since `,m, n ≤ h−2, the three summations
∑h−1
i=`+1 ri3

i,
∑h−1
i=m+1 ri3

i

and
∑h−1
i=n+1 ri3

i each actually contain rh−13h−1 = 3h−1, and their sum is not smaller than
3h. Finally, all three terms of the form 3k+1−∑k

i=0 ui3
i, with (k, ui) = (`, ri), (m, si) and

(n, ti) respectively, are at least 1.

Summarizing, we get γ(r, r) + β(r, s) + β(r, t) ≥ 2 · 3h + 1 also in the case encoded
as (b).

Step 4. Flat partitions.

The argument will proceed by induction on h, starting with h = 2.

The induction step is very simple. The main difficulty will consist in the analysis of
the case h = 2. As already noted above, for h = 2 there are two flat partitions, namely
(4, 4, 2) and (4, 3, 3). Unfortunately, we do not have a more conceptual treatment of these
two cases than brute force calculation.

We begin with the partition (4, 4, 2).

Since
A+′ A ⊃ (A0 +′ A0)

∐
(A0 + A1)

∐
(A0 + A2),

and γ3(4, 4) = 5, β3(4, 4) = 7, β3(4, 2) = 5 with sum 17, the assertion |A +′ A| ≥ 18
follows if any of the three sets A0 +′A0, A0 +A1, A0 +A2 has a cardinality exceeding its
lower bound γ3(4, 4), β3(4, 4), β3(4, 2) respectively.

We will show that if |A0 +′ A0| = 5, then |A0 + A2| ≥ β3(4, 2) + 1 = 6. We express
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this in a slightly more general statement :

Lemma (5.2) Let X, Y be subsets of a vector space over F3. Assume |X| = 4, |Y | = 2
and |X +′ X| = 5. Then, |X + Y | ≥ 6.

Proof. We may assume that 0 ∈ X by translating X if necessary. Note that X, being
of cardinality 4, must contain two linearly independent vectors e1, e2. Thus, X has the
form X = {0, e1, e2, v}.

We now show that by proper choice of e1, e2, we may assume v = e1 + e2. Indeed,

X +′ X = {e1, e2, e1 + e2, v, e1 + v, e2 + v},

and |X +′ X| = 5 implies that exactly two of these vectors must coincide, i.e., one of
them is redundant.

If e2 + v is redundant, we must have e2 + v = e1. Equality with any one of the
other vectors leads to a contradiction with v 6= 0, v 6= e1, e2 6= 0, or e1 6= e2. We
set e′1 = v = e1 − e2, e′2 = e2. Then, X = {0, e′1, e′2, e′1 + e′2}. Similarly, if e1 + v is
redundant, i.e., e1 + v ∈ {e1, e2, e1 + e2, v, e2 + v}, then e1 + v = e2 and X can be written
as X = {0, e′1, e′2, e′1 + e′2} with e′1 = e1, and e′2 = v. If v is redundant, we must have
v = e1 + e2. In all cases we can rename the elements of X so that X = {0, e1, e2, e1 + e2}.
Thus,

X +′ X = {e1, e2, e1 + e2, 2e1 + e2, e1 + 2e2}.

Now, we may also assume 0 ∈ Y , as Y may be translated independently of X.

Set Y = {0, y}. If y were linearly independent of the plane [e1, e2], the set X + Y
would obviously have cardinality 8.

Without loss of generality, we may assume that y = e1 + λe2, for some λ ∈ F3.
Indeed, we may interchange e1, e2 and may change the sign of y by a translation of Y ,
since {0, y}+ {−y} = {0,−y}.

But now, X + Y contains the six distinct elements 0, e1, e2, e1 + e2, −e1 + λe2,
−e1 + (λ+ 1)e2. 2

This finishes the case of a partition of type (4,4,2).

Suppose now that the partition of A is of type (4, 3, 3), i.e., |A0| = 4, |A1| = |A2| = 3.
We have

A+′ A ⊃ ((A0 +′ A0) ∪ (A1 + A2))
∐

(A0 + A1)
∐

(A0 + A2)

and thus |A+′ A| ≥ 18 except perhaps if |(A0 +′ A0) ∪ (A1 +A2)| = 5, and |A0 +A1| =
|A0 + A2| = 6.

Assuming |A0 +′ A0| = 5, the same argument as in the lemma above shows that
A0 = {0, e1, e2, e1 + e2}. Furthermore, we may assume the inclusion A1 +A2 ⊂ A0 +′ A0.
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Keeping the same notation as above, we assume V = F3 · e⊕H, where e ∈ A1.

Set A2 = 2e + {x, y, z} with distinct x, y, z ∈ H. Since x, y, z ∈ A1 + A2, e.g.,
x = e+ (2e+ x) ∈ A1 + A2, we must have

x, y, z ∈ A0 +′ A0 = {e1, e2, e1 + e2, e1 + 2e2, 2e1 + e2}.

Each of the
(

5
3

)
= 10 choices for the triple (x, y, z) furnishes a set A0+A2 of cardinality

8 except the 2 choices x = e1, y = e1 +e2, z = e1 +2e2 and x = e2, y = e1 +e2, z = 2e1 +e2.
The two choices are in fact equivalent, up to interchange of e1 and e2.

The choice x = e1, y = e2, z = e1 + e2 for example, produces

A0 + A2 = {e1, e2, e1 + e2, 2e1, 2e2, 2(e1 + e2), e1 + 2e2, 2e1 + e2}.

The exceptional choice x = e1, y = e1 + e2, z = e1 + 2e2 on the other hand, yields
A0 = {0, e1, e2, e1 + e2}
A1 = e0 + {0, u, v}
A2 = 2e0 + {e1, e1 + e2, e1 + 2e2}.

We must have A1 +A2 ⊂ A0 +′ A0 = {e1, e2, e1 + e2, e1 + 2e2, 2e1 + e2}. We see then, by
examining the possible candidates for u+ e1 and v+ e1, that u and v must belong to the
set {e2, 2e1 + e2, e1 + e2, 2e2}. In fact, neither u nor v can be equal to 2e1 + e2 or e1 + e2,
since then e1 + e2 + u or e1 + e2 + v would be equal to 2e2 or 2(e1 + e2), none of which
belongs to A0 +′ A0.

The only remaining possibility is {u, v} = {e2, 2e2}. But, since u 6= v, this would
imply u+ v = 0 and 2e ∈ A1 +′ A1. However, A0 + A2 does not contain 2e.

Hence, if A ⊂ V , a vector space over F3, has cardinality 10 and possesses a partition
of type (4, 4, 2) or (4, 3, 3), then |A+′ A| ≥ 18.

We now finish up the case of flat partitions for h ≥ 3 by induction on h. Suppose H
is a hyperplane such that A0 = A ∩ H has cardinality r = 1 + 3h−1 and r ≥ s ≥ t, where
as before r, s, t are the cardinalities of the intersections of A with the various translates
of H.

Claim. Suppose by induction on h ≥ 3 that |A0 +′ A0| ≥ 2 · 3h−1. Then, we have
|A+′ A| ≥ 2 · 3h.

Proof. Since we assume r = 1 + 3h−1 and |A| = 1 + 3h there are only two possible
partitions:

(1) (r, s, t) = (3h−1 + 1, 3h−1, 3h−1),
(2) (r, s, t) = (3h−1 + 1, 3h−1 + 1, 3h−1 − 1),

and we have
|A+′ A| ≥ |A0 +′ A0|+ β(r, s) + β(r, t).
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Using the 3-adic expansions of r − 1, s− 1, and t− 1, we get in both cases β(r, s) =
r + s− 1 and β(r, t) = r + t− 1.

Of course, in both cases s+ t = 2 · 3h−1 since r + s+ t = |A| = 1 + 3h.

Therefore, the induction assumption on |A0 +′ A0| yields

|A+′ A| ≥ 2 · 3h−1 + 4 · 3h−1 = 2 · 3h.

This finishes the proof of the claim and of Theorem (5.1). 2

Summarizing our knowledge of µ′3(r, s), if r = 1+3+
∑
i≥2 ri3

i and s = 1+3+
∑
i≥2 si3

i

form a special pair (i.e., ri + si ≤ 2 for all i ≥ 2), we have µ′3(r, s) = r + s− 3.

If (r, s) is a special pair for p = 3 but r ≡ s ≡ 1 mod 9, then the only case for which
we know µ′3(r, s) is r = s = 1 + 3h, namely µ′3(r, s) = r+ s−2 as proved in this paper. In
all other cases, r = 1+3h+

∑
i≥h+1 ri3

i and s = 1+3h+
∑
i≥h+1 si3

i forming a special pair
with h ≥ 2 and (r, s) 6= (1 + 3h, 1 + 3h), it remains an open problem to decide whether
µ′3(r, s) equals r + s− 3 or r + s− 2.

If, still with p = 3, (r, s) is not a special pair at p = 3, then µ′3(r, s) = γ3(r, s) as given
by formula (6) or (7).
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