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Abstract

Güntzer and Paul introduced a number system with base 2 and digits −1, 0, 1 which is char-
acterized by separating nonzero digits by at least one zero. We find an explicit formula that
produces the digits of the expansion of an integer n which leads us to many generalized situa-
tions. Syntactical properties of such representations are also discussed.

1. A binary number system

Integers n can be written in many ways as n =
∑

k≥0 ak2
k, where the “digits” ak are taken

from the set {−1, 0, 1} (see Section 10 for a more precise statement). Let us write 1̄ = −1 for
convenience. Güntzer and Paul have shown [6], however, that the representation is unique if
the product of any two adjacent digits must be zero, or, in other words, if any nonzero digits
are separated by (at least one) zero. (For more historical background, see Section 10.)

In this paper we want to understand this system (and some generalizations) in more detail.

It turns out that the Paul system is obtained by writing 3n/2 in binary and subtracting
(bitwise) the binary representation of n/2. For example, 25 = (11001)2, and 3

2 · 25 = 37.5 =
(100101.1)2, 1

2 · 25 = 12.5 = (1100.1)2, and the bitwise difference is (101̄001)P , which is the
representation of 25 in the Paul system.

Clearly, the result is a representation of n in base 2 using digits −1, 0, 1. An obvious
generalization is to consider n = (α+ 1)n−αn. We analyzed only the case when α is either an
integer or an integer divided by a power of 2 (a dyadic rational number).

1I started this work when standing in (a long!) line, waiting for a visa for the U.S. When I arrived at Purdue
in February, Prof. Szpankowski kindly allowed me to go on with this. Thanks, Wojtek!
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2. Experimental mathematics

Let us write n in the Paul system as (n)P = . . . a2(n)a1(n)a0(n). Empirically we find that

(
a0(n)

)
= (0101̄)ω,(

a1(n)
)

= (0010001̄0)ω,(
a2(n)

)
= (000111000001̄1̄1̄00)ω,(

a3(n)
)

= (00000011111000000000001̄1̄1̄1̄1̄00000)ω,

etc., which suggests that

ak(n) = 1⇐⇒
⌊
n− 1

2 + (−1)k

6

2k+2
+

5
6

⌋
−
⌊
n− 1

2 + (−1)k−1

6

2k+2
+

4
6

⌋
= 1

and

ak(n) = 1̄⇐⇒
⌊
n− 1

2 + (−1)k

6

2k+2
+

2
6

⌋
−
⌊
n− 1

2 + (−1)k−1

6

2k+2
+

1
6

⌋
= 1.

These forms are modelled to achieve the jump between the different integers. They would give
the correct digits, even for n being an arbitrary real number. However, for integers, the simpler

ak(n) = 1⇐⇒
⌊

n

2k+2
+

5
6

⌋
−
⌊

n

2k+2
+

4
6

⌋
= 1

and

ak(n) = 1̄⇐⇒
⌊

n

2k+2
+

2
6

⌋
−
⌊

n

2k+2
+

1
6

⌋
= 1

also work! (If the expressions on the right hand sides are not 1, they must be 0.)

Consequently we have the formula

n =
∑
k≥0

(⌊
n

2k+2
+

5
6

⌋
−
⌊

n

2k+2
+

4
6

⌋
−
⌊

n

2k+2
+

2
6

⌋
+
⌊

n

2k+2
+

1
6

⌋)
2k.

It would be possible to turn these results into a (clumsy) formal proof.
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3. The explanation

The key formula (see [9, 1.2.4, Ex. 38]) is

bxc+ bx+ 1
q c+ · · ·+ bx+ q−1

q c = bqxc, (1)

where q is an integer ≥ 1 and x a real number.

We can now consider the binary representation of λn, for a natural number λ: The kth digit
is given by

ak(λn) =
2λ−1∑
i=0

⌊
n

2k+1
+

i

2λ

⌋
(−1)i−1;

this follows from

λn =
∑
k≥0

2k
(⌊

λn

2k

⌋
− 2

⌊
λn

2k+1

⌋)

and the formula (1).

From that one can get the digits for the n = (α + 1)n − αn representation. We explain it
for α = 3, from which the general instance should be clear. Multiplication by 4 involves the
additive terms in the floor brackets

7
8
,
6
8
,
5
8
,
4
8
,
3
8
,
2
8
,
1
8
,
0
8
,

while multiplication by 3 involves the terms

5
6
,
4
6
,
3
6
,
2
6
,
1
6
,
0
6
.

These two sequence must now be merged, so that the numbers are in decreasing order. Then
appropriate signs are attached (which e. g., makes the terms with additive term 0 disappear).
The sequence is

7
8
,
5
6
,
6
8
,
4
6
,
5
8
,
4
8
,
3
6
,
3
8
,
2
6
,
2
8
,
1
6
,
1
8
.

Thus the digits are given by

ak(4n)− ak(3n) =
⌊

n

2k+1
+

7
8

⌋
−
⌊

n

2k+1
+

5
6

⌋
−
⌊

n

2k+1
+

6
8

⌋
+
⌊

n

2k+1
+

4
6

⌋
+
⌊

n

2k+1
+

5
8

⌋
−
⌊

n

2k+1
+

4
8

⌋
−
⌊

n

2k+1
+

3
6

⌋
+
⌊

n

2k+1
+

3
8

⌋
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+
⌊

n

2k+1
+

2
6

⌋
−
⌊

n

2k+1
+

2
8

⌋
−
⌊

n

2k+1
+

1
6

⌋
+
⌊

n

2k+1
+

1
8

⌋
.

This principle works also for α = λ
2s , a positive dyadic fraction. The kth digit is given by

ak(n) =
2λ−1∑
i=0

⌊
n

2k+1+s
+

i

2λ

⌋
(−1)i−1.

Observe that now there are also digits after the binary point; we don’t need them, however,
since we take appropriate differences, these digits will necessarily cancel out.

Thus the kth digit of the (α+1)n−αn representation is obtained by taking the difference of
them, once for λ′ = 2s +λ, and once for λ. If one want to count digits separately, it is required
to arrange the terms

±
⌊ n

2k+1+s
+ d
⌋

is decreasing order (w.r.t. d).

In the Paul case, λ = s = 1, λ′ = 3, and thus the kth digit is given by

ak(n) =
5∑
i=0

⌊
n

2k+2
+
i

6

⌋
(−1)i−1 −

1∑
i=0

⌊
n

2k+2
+
i

2

⌋
(−1)i−1,

which upon simplification is

ak(n) =
⌊

n

2k+2
+

5
6

⌋
−
⌊

n

2k+2
+

4
6

⌋
−
⌊

n

2k+2
+

2
6

⌋
+
⌊

n

2k+2
+

1
6

⌋
.

4. Syntactical properties

As mentioned in the introduction, the Paul system is characterized by the property that two
nonzero digits are always separated.

In [6] the rewriting rules

11̄ −→ 01 1̄1 −→ 01̄ 011 −→ 101̄ 01̄1̄ −→ 1̄01

are presented, that can be (repeatedly) applied in any order to transform the standard binary
representation of n ∈ N into the Paul representation. We say “repeatedly” because of a problem
with carries; the following example explains what happens:

01111 −→ 101̄11 −→ 1001̄1 −→ 10001̄.
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A more “algorithmic” version is by the following transducer. It reads the binary represen-
tation of n from right to left (leading zeros must be added if needed). Of course, the output is
also produced from right to left. The basic idea is to transform 01k into 10k−11̄ (for k ≥ 2)2.
However, if the next group (to the left) starts immediately with 1, then we can’t output the
leading 1; it is then a carry, belonging to the next group. To make sure that the transduction
ends in the starting state (as it should), we can add two leading zeros (see Figure 3).

���

���

���

���

0 | 0

0 | 01

1 | ε
0 | 01

1 | 01̄

1 | 01̄

0 | ε

1 | 0

−→

Figure 1: The binary → Paul transducer

When dealing with number systems, it is usually very instructive to see how the number
1 can be added. This can normally be done by an automaton. Here it is (see Figure 2). The
word is processed from right to left. If no continuation is defined, the rest of the word is left
unchanged. Again, possibly leading zeros are needed to lead to one of the two states to the
right. The output is also recorded from right to left, usually replacing only a suffix of the word
(representation of a number), when reaching one of the two states to the right.

���bb
""

��� ��� ���bb
""

�
�
�
�
�
�
�
�
��

T
T
T
T
T
T
T
T
TT

DD�� ��bb

SS
��

((
SS

1 | ε
0 | ε

0 | 0

1 | 1̄

1̄ | 0

0 | 01

1̄ | 01̄

���−→

Figure 2: Adding 1 in the Paul representation

Now let us consider a few properties of the system induced by writing n = 5n/4− n/4:
2In a previous version, I did that also for k = 1; thanks to a referee this error has been removed.
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First, we describe the syntactically correct words. There are special sequences of nonzero
digits, separated by at least two zeros, except perhaps for the right border. A bit more formally,
if

B = 1 + 1̄ + 11(1̄1)∗(ε+ 1̄) + 1̄1̄(11̄)∗(ε+ 1),

then the possible representations are given by

ε+ (B000∗)∗B0∗.

Here are rewriting rules (that should be applied from the rightmost possible position) to obtain
the representation in question:

101 −→ 111̄

101̄ −→ 011

1̄01̄ −→ 1̄1̄1

1̄01 −→ 01̄1̄

011̄ −→ 001

01̄1 −→ 001̄

01k −→ 10k−11̄ k ≥ 3

1̄1k −→ 0k1̄ k ≥ 3

01̄k −→ 1̄0k−11 k ≥ 3

11̄k −→ 0k1 k ≥ 3

We also show an automaton, producing this transformation, by processing the word from
right to left. Input are natural numbers, written in ordinary binary notation. The computation
ends in the starting state.

Instead of giving the automaton to add 1 in this case, we give a complete list of possible
situations. A few rules are recursive, which is caused by carries. Notation: w is the admissible
representation of an integer n, and T (w) the the admissible representation of n+ 1.

T (w000) = w001

T (w11(1̄1)k00) = w11(1̄1)k−100, k ≥ 1

T (w11(1̄1)k1̄00) = w11(1̄1)k−10001̄1̄, k ≥ 1

T (w1̄1̄(11̄)k00) = w1̄1̄(11̄)k11̄, k ≥ 0

T (w1̄1̄(11̄)k100) = w1̄1̄(11̄)k−11001̄1̄, k ≥ 1

T (w1̄1̄100) = w1̄001̄1̄

T (w111̄00) = w111̄11̄
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��� ���

��� ���

0 | 0 1 | 0

1 | ε 0 | ε

0 | 001

0 | ε 1 | ε
1 | 001̄

0 | 1

1 | 1̄

e
e
e
e
e
e
e
e
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�
�
�
�� @

@
@

@
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@
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�
�
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��

E
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XX

XX
��

���
↗

Figure 3: The binary → “1 = 5/4− 1/4” transducer

T (w1100) = T (w)001̄1̄

T (w00100) = w00111̄

T (w001̄00) = w0001̄1̄

T (w11(1̄1)k0) = w11(1̄1)k−1001̄, k ≥ 1

T (w110) = T (w)001̄

T (w11(1̄1)k1̄0) = w11(1̄1)k+1, k ≥ 0

T (w1̄1̄(11̄)k0) = w1̄1̄(11̄)k1, k ≥ 0

T (w1̄1̄(11̄)k10) = w1̄1̄(11̄)k−11001̄, k ≥ 1

T (w1̄1̄10) = w1̄001̄

T (w0010) = w0011

T (w001̄0) = w0001̄

T (w11(1̄1)k) = w11(1̄1)k−100, k ≥ 1

T (w11) = T (w)00

T (w11(1̄1)k1̄) = w11(1̄1)k0, k ≥ 0

T (1̄1̄(11̄)k) = w1̄1̄(11̄)k−110, k ≥ 1

T (w1̄1̄) = w1̄0

T (w001) = T (w00)0

T (w001̄) = w000
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5. Path length

Let us first reconsider the Paul case with generating functions. Güntzer and Paul arranged all
numbers with length ≤ n in the tree, where the length means the number of digits, starting
with no leading zeros. The number 0 is also in the tree, and its length is zero; it serves as the
root. Node y is a child3 of node x, if the least significant nonzero digit in y is replaced by 0,
resulting in x. Thus, the depth of a node is the number of nonzero digits. Now consider

ε+ (X0+)∗X0∗, where X = 1 + 1̄,

which describes the set of admissible representations in a unique way. Translating accordingly
(we mark the digits 1̄, 0, 1 by a variable z, and also each X by u, to keep track of the depth), we
obtain a generating function such that the coefficient of znuk is the number of representations
(words) of length n and depth k, viz.

1 +
1

1− 2z2u
1−z

2zu
1− z .

We must divide by 1− z, because we need the number of representations (words) of length
≤ n and depth k. So we get

1
1− z +

2zu
(1− z)(1− z − 2z2u)

;

differentiate with respect to u and set u = 1 to get the generating function of the total path
lengths:

2z
(1 + z)2(1− 2z)2

.

The coefficient of zn in that is

1
9
n2n+2 +

1
27

2n+3 − 2
9
n(−1)n − 8

27
(−1)n,

which is a result of [6].

In this way, we also get the number of nodes in the tree; we must consider (simply replace
u by 1)

1
1− z +

2z
(1− z)(1− z − 2z2)

=
1 + 2z

(1 + z)(1− 2z)
=

4
3

1
1− 2z

− 1
3

1
1 + z

,

whence we get 2n+2/3− 1/3(−1)n; this was already reported in [6].

Dividing by the total number of nodes, we see that from the n digits approximately n
3 are

nonzero digits. In fact, it was proved in [6] that this representation has the least number of
nonzero digits of any possible representation!

3The recent third edition of [9] has already this politically correct form.
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Now let us consider the next (the n = 5n/4− n/4) case; from

ε+ (B000∗)∗B0∗ with B = 1 + 1̄ + 11(1̄1)∗(ε+ 1̄) + 1̄1̄(11̄)∗(ε+ 1)

we find

1 +
2z

(1 + z2)(1− 2z)
,

which is the generating function of admissible words of length n.

The generating function of all numbers with a representation of length ≤ n is thus given by
1

1− z +
2z

(1 + z2)(1− 2z)(1− z) =
8
5
· 1

1− 2z
− 1

5
· 3 + z

1 + z2

and the coefficients (of zn) are

2n+3

5
−
{

3
5(−1)n/2 n even
1
5(−1)(n−1)/2 n odd

or

2
⌊

2n+2

5

⌋
+ 1.

This form has the advantage that the “+1” is responsible for the number 0, and then
everything comes twice, because of positive and negative numbers.

This time, the depth of the node is the length of the number except for the trailing zeros.

We get the generating function for the total path length as

2z(1− 2z + z2 + 4z3 − 2z4)
(1− z)2(1− 2z)2(1 + z2)2

;

the coefficients are given by
n

5
2n+3 − 1

5
2n+4 +O(n2).

Dividing this by the number of nodes in the tree we get approximately n, which means that
the tree is not at all useful. A related question is the total number of nonzero digits in all
numbers with a representation of length ≤ n: We start from the generating function

1 +
2z

(1− 2z)2(1 + z2)2

and get coefficients
1
25
n2n+4 − 1

125
2n+6 +O(n2).

Therefore, roughly speaking, from the n letters there are 2n
5 nonzero digits and 3n

5 zeros.
We will however see more precise statements in the next section.

Here, we have a proportion of 2
5 , which is higher that the 1

3 from [6].
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6. Counting digits

We want to count the number of nonzero digits in the representations produced by n = (1 +
1/2t)n − n/2t, since this can be done it a clean and attractive way and leave more general
instances as a problem for the interested readers. It is possible (and advisable) to count digits
1 and 1̄ separately.

The representation of n in this number system is given by

n =
∑
k≥0

2k
2(2t+1)∑
i=1

2t+1-i

⌊
n

2k+t+1
+

i

2(2t + 1)

⌋
(−1)i−1

=
∑
k≥0

2k
2t∑
i=1

⌊
n

2k+t+1
+

i

2(2t + 1)

⌋
(−1)i−1 +

∑
k≥0

2k
2t+1+1∑
i=2t+2

⌊
n

2k+t+1
+

i

2(2t + 1)

⌋
(−1)i−1

We want to count the average number of digits 1 (resp. 1̄) in all the integers n = 0, 1, . . . ,
m− 1.

To give a flavour of what is going on we note that a term like⌊
x+

i+ 1
q

⌋
−
⌊
x+

i

q

⌋
is responsible for the digit 1, and

−
⌊
x+

i+ 1
q

⌋
+
⌊
x+

i

q

⌋
for the digit 1̄. The pattern of signs is like +−+− . . . , but because there is one index missing,
it switches to −+−+ . . . . So the counting function for the digit 1 in the number n is given by

∑
k≥0

2t+1+1∑
i=2t+2

⌊
n

2k+t+1
+

i

2(2t + 1)

⌋
(−1)i−1,

and the counting function for the digit 1̄ is given by

∑
k≥0

2t∑
i=1

⌊
n

2k+t+1
+

i

2(2t + 1)

⌋
(−1)i.

We are not repeating derivations that apply here and can be found in [8]; they are based
on a method due to Delange [5].

A typical result is this:

m−1∑
n=0

∑
k≥0

(⌊
n

2k+2
+

5
6

⌋
−
⌊

n

2k+2
+

4
6

⌋)
=

1
6
m log2m+mδ(log2m) + E,
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where δ(x) is a certain periodic function of period 1 that could be computed explicitly, as well
as its Fourier coefficients, and E is a certain error term, that could also be computed explicitly.
(We use δ and E as generic names; they usually vary with the parameters.)

A bit more generally, we have

m−1∑
n=0

∑
k≥0

(⌊
n

2k+t+1
+

i+ 1
2(2t + 1)

⌋
−
⌊

n

2k+t+1
+

i

2(2t + 1)

⌋)

=
1

2(2t + 1)
m log2m+mδ(log2m) + E.

Now since in our digit counting problem we have 2t such terms, the average number of nonzero
digits amongst the numbers 0, 1, . . . ,m− 1 is given by

2t−1

2t + 1
log2m+ δ(log2m) +

E

m
.

Note that t = 1 produces the factor 1
3 from the Paul fame [6]; t = 2 gives 2

5 , which we have seen
previously, and so on; the factor in front of the logarithmic term approaches 1

2 as t gets large.

7. More examples

Consider the system α = 1, i. e. n = 2n− n. Then the admissible words are

ε+ (10∗1̄0∗)∗,

and the digits are produced by

ak(n) =
⌊

n

2k+1
+

3
4

⌋
−
⌊

n

2k+1
+

2
4

⌋
−
⌊

n

2k+1
+

2
4

⌋
+
⌊

n

2k+1
+

1
4

⌋
.

(The first two terms are responsible for the digit 1, the remaining ones for 1̄.) The average
number of nonzero digits in the integers 0, 1, . . . ,m− 1 is thus given by (leading term only)

1
2

log2m.

For α = 2 the digits are given by

ak(n) =
⌊

n

2k+1
+

5
6

⌋
−
⌊

n

2k+1
+

3
4

⌋
−
⌊

n

2k+1
+

2
3

⌋
+
⌊

n

2k+1
+

1
2

⌋
+
⌊

n

2k+1
+

1
2

⌋
−
⌊

n

2k+1
+

1
3

⌋
−
⌊

n

2k+1
+

1
4

⌋
+
⌊

n

2k+1
+

1
6

⌋
;
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we get the Paul digits (shifted by one position) minus the digits from the system α = 2. After
all, this is not too unexpected, regarding what multiplication by 3 (resp. 3/2) does to a binary
representation of an integer.

The average number of nonzero digits in the integers 0, 1, . . . ,m−1 is thus given by (leading
term only)

1
2

log2m.

Observe that the constant 1
2 is computed here as

1
2

=
(

5
6
− 3

4

)
+
(

2
3
− 1

2

)
+
(

1
2
− 1

3

)
+
(

1
4
− 1

6

)
.

Our last example is the instance α = 3
4 . The digits are given by

ak(n) =
⌊

n

2k+1
+

13
14

⌋
−
⌊

n

2k+1
+

12
14

⌋
−
⌊

n

2k+1
+

5
6

⌋
+
⌊

n

2k+1
+

11
14

⌋
−
⌊

n

2k+1
+

10
14

⌋
+
⌊

n

2k+1
+

4
6

⌋
+
⌊

n

2k+1
+

9
14

⌋
−
⌊

n

2k+1
+

8
14

⌋
−
⌊

n

2k+1
+

6
14

⌋
+
⌊

n

2k+1
+

5
14

⌋
+
⌊

n

2k+1
+

2
6

⌋
−
⌊

n

2k+1
+

4
14

⌋
+
⌊

n

2k+1
+

3
14

⌋
−
⌊

n

2k+1
+

1
6

⌋
−
⌊

n

2k+1
+

2
14

⌋
+
⌊

n

2k+1
+

1
14

⌋
.

The average number of nonzero digits in the integers 0, 1, . . . ,m−1 is thus given by (leading
term only)

10
21

log2m.

8. Coquet

Coquet [4] dealt with the sum–of–digits function of 3n. Probably it was never noted that the
digits of 3n are given by

ak(3n) =
⌊

n

2k+1
+

5
6

⌋
−
⌊

n

2k+1
+

4
6

⌋
+
⌊

n

2k+1
+

3
6

⌋
−
⌊

n

2k+1
+

2
6

⌋
+
⌊

n

2k+1
+

1
6

⌋
−
⌊

n

2k+1
+

0
6

⌋
.

However, it is not clear whether one can derive his main theorem from that.
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9. Conclusion

We have demonstrated that an idea about an exotic data structure (jump interpolation search
trees) leads to interesting problems in elementary number theory.

Further research could concentrate on more general values of α, as well as the general
(syntactical) study of admissible representations. Also, one could start from different systems
than the binary one, and replace the simple difference (α+1)n−αn by more fancy expressions.

10. Shallit

After this paper was finished, I learnt about an unfinished and unpublished draft of Shallit4 [12]
that is of some relevance here. For instance, it shows that each natural number n has infinitely
many representations as

∑
k ak2

k with ak ∈ {−1, 0, 1}.

This draft contains also a substantial list of references that are otherwise not easy to find;
the subset of the more relevant ones is [2, 3, 7, 11]. In particular, the Paul system goes back at
least to Reitwiesner [11]. Some more recent references are [13, 10].

The draft also contains a transducer from “binary” to “Paul” and recursion formulæ for
the sum–of–digits function, connecting it with k–regular sequences in the sense of Allouche and
Shallit [1].

Furthermore, it also has the 2n−(−1)n

3 formula, which relates to the number of nodes in the
tree, see Section 5, as well as an algorithm to generate the Paul representation.

References

[1] J.-P. Allouche and J. Shallit. The ring of k–regular sequences. Theoretical Computer
Science, 98:163–197, 1992.

[2] A. Avizienis. Signed–digit number representation for fast parallel arithmetic. IRE Trans.
Electron. Comput., 10:389–400, 1961.

[3] A. Booth. A signed binary multiplication technique. Quart. J. Mech. Appl. Math., 4:236–
240, 1951.

[4] J. Coquet. A summation formula related to the binary digits. Inventiones Mathematicæ,
73:107–115, 1983.

4Thanks, Jeffrey for providing it and for several helpful remarks.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A08 14

[5] H. Delange. Sur la fonction sommatoire de la fonction somme des chiffres. Enseignement
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