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Abstract

Two conjectures concerning the Erdős Ginzburg Ziv theorem were recently confirmed. Reiher
and di Fiore proved independently the two dimension analogue of the EGZ theorem, as
conjectured by Kemnitz, and Grynkiewicz proved the weighed generalization of the EGZ
theorem as conjectured by Caro. These developments trigger some further problems. First,
we will present computer experiments that at least for small numbers reveal very simple
phenomena of zero sum theorems that seem to be difficult to prove. Next, we will examine
the notion of generalization of Ramsey type theorems in the sense of a given zero sum
theorem in view of the new developments.

1. Introduction

We begin by recalling the extended version of the Erdős Ginzburg Ziv theorem known today
as the EGZ theorem.

Theorem 1

(a) Suppose G = (G,+, 0) is an abelian group of order n. Let I be a set of indices and let
{ai}i∈I be an indexed set of elements from G. If |I| = 2n−1, then there exists a subset
J ⊂ I, with |J | = n, such that

∑
j∈J aj = 0.

(b) Furthermore, if |I| = 2n − 2 and there does not exist a subset J ⊂ I, with |J | = n,
such that

∑
j∈J aj = 0, then (b)(i) and (b)(ii) hold:

(i) The group G is cyclic.
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(ii) Half of the ai’s are equal to x ∈ G, the other half of the ai’s are equal to y ∈ G,
where x− y is a generator of G.

Part (a) was originally proved in [20] for cyclic groups only, but it is not difficult to
deduce the proof for any abelian group. Several other proofs appear in [2] and another one
in [35]. Part (b) is known as a solution to an inverse problem. The proofs of parts (b)(i)
and (b)(ii) can be deduced from [7] and [16], respectively. See also [40].

The author is interested mainly in generalizations of extremal theorems from combina-
torics in the sense of a given zero sum theorem. But what is a zero sum theorem? To define
rigorously what is a zero sum theorem, is quite a challenging task, and such an attempt will
require the introduction of some intricate notation. But more disturbing will be that after
our efforts, some new zero sum theorems in the philosophical sense will be discovered that
are not covered by our definition. Thus, we prefer to accept the intuitive notion of a zero
sum theorem. Similarly to Ramsey Theory being philosophically defined as “total disorder
is impossible” we say that “avoiding zero configurations is impossible.” First let’s look at
some zero sum theorems. The following one is known as the cave’s man theorem, [21].

Theorem 2 Suppose G = (G,+, 0) is an abelian group. If S is a sequence of elements from
G of length |G|, then S contains a subsequence all of whose elements add up to zero.

Though, Theorem 2 falls into the category of a zero sum theorem, however in the foregoing
we will be interested in theorems that resemble more the EGZ theorem. Here are three
important characteristics of the EGZ theorem.

Observation 3

(a) The number of elements involved in the “zero sum configuration” is predetermined, say
n. In the EGZ theorem the number n is the order of the group.

(b) If the same element from G appears in the sequence n times, then the conclusion of
the theorem follows trivially.

(c) If the number of distinct elements in the sequence is bounded by some number, then
the conclusion of the theorem follows easily. In the EGZ theorem this number is two,
and in this case the EGZ theorem follows from the pigeon-hole principle.

We will demonstrate another zero sum theorem, Theorem 5, which has the above char-
acteristics. But first we need to introduce some definitions.
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Definition 4 Let n and r be two positive integers. Define Union(Zr
n) to be the union of r

disjoint copies of Zn where addition can be performed within each copy only.

Union(Zr
n) = Zn

.
∪ Zn

.
∪ . . .

.
∪ Zn︸ ︷︷ ︸

r times

and Union+1(Zr
n) = Zn

.
∪ Zn

.
∪ . . .

.
∪ Zn︸ ︷︷ ︸

r times

∪{1},

where 1 ∈ Zn.

Theorem 5

(a) If S is a sequence with elements from Union(Zr
n), of length 2r(n − 1) + 1, then S

contains a subsequence of length n, all whose elements add up to zero.

(b) If S is a sequence with elements from Union+1(Zr
n), of length (2r + 1)(n− 1) + 1, then

S contains a subsequence of length n, all whose elements add up to zero.

The proof of Theorem 5 follows easily from the pigeon-hole principle and the EGZ theo-
rem. Furthermore, if in part (a), r = 1, then we get the EGZ theorem. It is worthwhile to
mention that Theorem 5 generalizes the following form of the pigeon principle: “If 2r(n−1)+1
((2r + 1)(n− 1) + 1) pigeons are distributed into 2r in part (a) ( 2r + 1 in part (b)) holes,
then there are at least n pigeons in one of the holes.”

In Section 2 we focus on three generalizations of the EGZ theorem. Two of them have
been recently proved and the third one is still an open problem, but some recent progress
has been made. In Section 3 we suggest a new line of zero sum theorems and make several
conjectures. In Section 4 we introduce the notion of generalization in the sense of the EGZ
theorem, but with some modification the reader can define the notion of generalization in
the sense of other zero sum theorems.

2. On Three Generalizations of the EGZ Theorem

The general background reference to these kinds of problems in additive number theory is
[39]. Many generalizations of the EGZ theorem have been proved and many others are still
open problems. For example, see [11], [15], [24], [28], [44] and [46]. There have been many
other recent developments of the EGZ theorem, for example see [1], [9], [25], [32], [33], [47]
and [48]. In this section we will focus only on three generalizations, not mentioned above.
We begin with the multiplicity conjecture conjectured in [5].

Conjecture 6 Suppose s and n are two integers, where n ≥ 2. If a1, a2, . . . , as is a sequence

of elements from Zn, then there are at least
(& s

2'
n

)
+

(( s
2)
n

)
subsets I ⊂ {1, . . . , s}, such that

|I| = n and
∑

j∈I aj = 0.
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If in Conjecture 6, we substitute s = 2n− 1, then the EGZ theorem follows. In [37] the
conjecture has been proved if n ∈ {pα, pαq}, where p and q are primes. Furthermore, in [23]
it has been proved asymptotically for a fixed n and s → ∞. And recently it was proved in
[30] for s ≤ 61

3n.

The second generalization of the EGZ theorem Theorem 7, was proved by Grykiewicz in
[31]. The theorem was conjectured by Caro [17].

Theorem 7 (CG) Let w1, w2, . . . , wn ∈ Zn and suppose
∑n

i=1 wi = 0. If a1, a2, . . . , a2n−1 is
a sequence of elements from Zn, then there exists a subset J ⊂ {1, 2, . . . , 2n−1}, with |J | = n,
such that with some rearrangement of the corresponding subsequence we get:

∑n
k∈I,i=1 akwi =

0.

If in Theorem 7 we have wi = 1 for every i, then the EGZ theorem follows.

The third generalization of the EGZ theorem was proved independently by Reiher [41]
and di Fiore as reported in [45]. The theorem was conjectured by Kemnitz [36].

Theorem 8 (KFR) Every sequence of elements from Zn ⊕ Zn of length 4n− 3 contains a
subsequence of length n, such that all of its elements add up to 0.

It is worthwhile to comment that Theorem 8 can be viewed as a two dimensional gen-
eralization of the EGZ theorem. However, the innocent extrapolation for higher dimensions
does not work, [19]. For a unified approach to the EGZ theorem and the KFR theorem see
[18].

We conclude this section with the multiplicity weighted version of Theorem 8.

Conjecture 9 Suppose s and n are two integers, where n ≥ 2, and let s = 4k+r, where r ∈
{0, 1, 2, 3}. Furthermore, suppose w1, w2, . . . , wn ∈ Zn satisfy

∑n
i=1 wi = 0. If a1, a2, . . . , as

is a sequence of elements from Zn⊕Zn, then there are at least (4−r)
(

k
n

)
+r

(
k+1
n

)
subsequences

I ⊂ {1, 2, . . . , s}, such that |I| = n, and
∑n

k∈I,i=1 akwi = 0.

3. Conjectures About Other Zero Sum Theorems

The novelty of Theorem 7 is that we look at Zn as a ring or a module and not just a group
and it suggests many other theorems along the same line. We make the following conjectures.
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Conjecture 10 Let Zn be the ring of all residues modulo n. Define f(n) to be the smallest
positive integer such that every sequence of elements from Zn of length f(n) contains a
subsequence a1, . . . , an and a permutation σ such that

∑n
i=1 ai = 0 and

∑n
i=1 aiaσ(i) = 0.

Then

f(n) =

{
2n + 1 if n = 3 (mod 4)

2n− 1 otherwise
.

If n = 3 (mod 4), then the extremal sequence is 0n−1122n−1. If n .= 3 (mod 4), then the
extremal sequence is 0n−11n−1.

The conjecture was confirmed for n ≤ 13.

Conjecture 11 Let Zn be the ring of all residues modulo n, and let ui and wi, for i =
1, 2, . . . , n be elements of Zn, satisfying

∑n
i=1 ui = 0 and

∑n
i=1 wi = 0. Define f(n) to be the

smallest positive integer such that every sequence of elements from Zn of length f(n) contains
a subsequence a1, a2, . . . , an and two permutations σ and θ such that

∑n
i=1 uiaσ(i) = 0 and∑n

i=1 wiaθ(i) = 0. Then

f(n) =

{
2n + 1 if n is odd

2n− 1 if n is even
.

If n is even, then the extremal sequence is 0n−11n−1. If n is odd, then the extremal sequence
is 0n−11n−121(n− 1)1.

The conjecture was confirmed for n ≤ 7.

Conjecture 12 Let Zn be the ring of all residues modulo n. Define f(n) to be the smallest
positive integer such that every sequence of elements from Zn of length f(n) contains two
disjoint subsequences a1, a2, . . . , an and b1, b2, . . . , bn such that

∑n
i=1 ai =

∑n
i=1 bi = 0 and∑n

i=1 aibσ(i) = 0, for some permutation σ. Then f(n) = 3n − 1. The extremal sequence is
given by 02n−11n−1 and it is unique.

The conjecture was confirmed for n ≤ 12.

Conjecture 13 Let Zn be the ring of all residues modulo n. Define f(n) to be the small-
est positive integer such that every sequence of elements from Zn of length f(n) contains
three pairwise disjoint subsequences a1, a2, . . . , an, b1, b2, . . . , bn, c1, c2, . . . , cn and permuta-
tions α,β, γ,σ, θ such that:

n∑

i=1

ai =
n∑

i=1

bi =
n∑

i=1

ci =
n∑

i=1

aibα(i) =
n∑

i=1

aicβ(i) =
n∑

i=1

bicγ(i) =
n∑

i=1

aibσ(i)cθ(i) = 0.

Then f(n) = 4n − 1. The extremal sequence is given by 03n−11n−1, or by 02n−112n−1 and it
is unique.
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The conjecture was confirmed for n ≤ 9.

Conjecture 14 Let Zn be the ring of all residues modulo n. Suppose a1, a2, . . . , an and
b1, b2, . . . , bn for i = 1, 2, . . . , n are sequences of elements from Zn, satisfying

∑n
i=1 ai =∑n

i=1 bi = 0. If n is even, then there exists a permutation α such that
∑n

i=1 aibα(i) = 0.

The conjecture was confirmed for n ≤ 8.

It is worthwhile to comment that if Conjecture 14 holds true, then for n even it puts
Theorem 7 in a new light. We conclude with Conjecture 15 that may seem obscure at first
glance, but its significance will be seen in the next section.

Conjecture 15 Let Zn denote the additive cyclic group of the set of residues {0, 1, ..., n−1},
with the metric d(x, y) = min{|x− y| , |n− (x− y)|}. Denote by f(n) the smallest integer
such that such that every sequence of elements from Zn of length f(n) contains an n-element
subsequence that can be rearranged as a1, a2, . . . , an (an+1 = a1) to satisfy

∑n
i=1 d(ai+1, ai) =

0. Then

f(n) =

{
3n− 2 if n is odd
3
2n− 1 if n is even.

The lower bound is given by 0n−11n−12n−1 and 0n−11n/2−1 (not unique) for n odd and
even respectively. The conjecture was confirmed for n ≤ 9 and n ≤ 12 for n odd and even
respectively.

4. Generalization in the Sense of a Zero Sum Theorem

In this section, we first introduce the definitions of Ramsey numbers for graphs and gener-
alized Rado numbers, as well as their zero sum counterparts. These definitions enable us
to define generalization in the sence of Theorem 1.5. Similar definitions can be applied to
other extremal numbers, like Turan numbers for example, their zero sum counterparts and
generalizations in the sence of agiven zero sum theorem. The general reference for Ramsey
theory is [26]. However we have a significant interest along the lines of [38]. Ramsey theory
on the integers started by Schur and was developed by Rado in the thirties. It mainly deals
with monochromatic solutions to general systems of linear equations. The interest of inte-
grating linear inequalities into Ramsey theory on the integers is pretty new, [34] and [42].
After introducing the definitions we provide some references to generalizations in the sence
of the Theorem 1.5, (mainly its particular case, the EGZ theorem). We will conclude the
section with the notion of multiplicity Ramsey and Rado numbers, their zero sum counter
parts, and generalizations in the sense of Conjecture 2.1.
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Definition 16 (Ramsey numbers for graphs) Let G be a family of graphs each having

n edges and let t be a positive integer. Denote by R(G, t) (REGZ(G, Union(Zt/2
n )), if t is even

and REGZ(G, Union+1(Z(t−1)/2
n )) if t is odd) the minimum number s such that if the edges

of the complete graph on s vertices, Ks, are colored by t colors, (are colored by Union(Zt/2
n )

if t is even and by Union+1(Z(t−1)/2
n ) if t is odd), then there exists a copy in Ks that is

isomorphic to an element of G, such that it is monochromatic (the colors of its edges add up
to zero).

Definition 17 (Rado numbers) Let x1, x2, . . . , xnk be nk variables partitioned into k sets
Si, where i = 1, 2, . . . , k, and suppose that |Si| = n. Furthermore, let L be a system that
consists of equations or inequalities in the variables x1, x2, . . . , xnk. For a positive integer t
denote by R(L, t) (REGZ(L, Union(Zt/2

n )), if t is even and REGZ(L, Union+1(Z(t−1)/2
n )) if t

is odd) the minimum number s such that if the integers 1, 2, . . . , s are colored by t colors,

(are colored by Union(Zt/2
n ) if t is even and by Union+1(Z(t−1)/2

n ) if t is odd), then there exist
integers x1, x2, . . . , xnk, which satisfy L and each Si is monochromatic, but not necessarily
the same color (the colors of the variables in each Si add up to zero).

In order to convey the ideas clearly, we have limited the scope of our definitions. For
instance our definition does neither include the off diagonal case nor a disjunctive system of
equations and inequalities.

Definition 18 (Generalization in the sense of Theorem 5) We say that a theorem con-
cerning Ramsey numbers, (Rado numbers) admits a generalization in the sense of Theorem

5, if R(G, t) = REGZ(G, Union(Zt/2
n )), if t is even

and R(G, t) = REGZ(G, Union+1(Z(t−1)/2
n )) if t is odd,

(R(L, t) = REGZ(L, Union(Zt/2
n )), if t is even

and R(L, t) = REGZ(L, Union+1(Z(t−1)/2
n )) if t is odd.)

Generalizations in the sense of Theorem 1,( Theorem 1 is included in Theorem 5), that
relate to graph theory appear in [4],[7],[8][22]and [43]. The two most handled systems of
linear equeation are those which follow from the Schur equation x+y = z and the arithmetic
progression, known as the Van der Waerden problem. There have been various variations
and modifications of the Schur equation and the arithmetic progression to inequalities, see
[12], [3], [10], [14] and [29]. Generalizations of some of these systems in the sense of Theorem
5 appear in [6], [13], [10], and [27]. This list is far from being a complete list of references.
However, we do not have general theorems which give sufficient conditions when a system of
equations or inequalities admits a generalization in the sense of a given zero sum theorem.
We Conclude with the notion of multiplicity.

Definition 19 (Multiplicity Ramsey numbers for graphs) Let G be a family of
graphs each having n edges and let r and t be positive integers. Denote by M(G, r, t)
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(MEGZ(G, r, Union(Zt/2
n )), if t is even and MEGZ(G, r, Union+1(Z(t−1)/2

n )) if t is odd) the
minimum number of graphs that are isomorphic to an element of G, and are monochromatic
(the colors of its edges add up to zero), where the minimum is taken over all possible color-

ings of the edges of Ks by t colors. (of the edges of Ks by Union(Zt/2
n ) if t is even and by

Union+1(Z(t−1)/2
n ) if t is odd).

Definition 20 (Multiplicity Rado numbers) Let x1, x2, . . . , xnk be nk variables parti-
tioned into k sets Si, where i = 1, 2, . . . , k, and suppose that |Si| = n. Furthermore, let
L be a system that consists of equations or inequalities in the variables x1, x2, . . . , xnk. For
positive integers t and r denote by M(L, r, t) (MEGZ(L, r, Union(Zt/2

n )), if t is even and

MEGZ(L, r, Union+1(Z(t−1)/2
n )) if t is odd) the minimum number of nk-tuples x1, . . . , xnk

which satisfy L and each Si is monochromatic, but not necessarily the same color (the colors
of the variables in each Si add up to zero), where the minimum is taken over all possi-

ble colorings of 1, 2, . . . , r by t colors. (of 1, 2, . . . , r by Union(Zt/2
n ) if t is even and by

Union+1(Z(t−1)/2
n ) if t is odd.)

Definition 21 We say that a theorem concerning multiplicity Ramsey numbers, (multiplicity
Rado numbers) admits a generalization in the sense of Conjecture 6, if

M(G, r, t) = MEGZ(G, r, Union(Zt/2
n )), if t is even

and M(G, r, t) = MEGZ(G, r, Union+1(Z(t−1)/2
n )) if t is odd,

(M(L, r, t) = MEGZ(L, r, Union(Zt/2
n )), if t is even

and M(L, r, t) = MEGZ(L, r, Union+1(Z(t−1)/2
n )) if t is odd.)
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