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Abstract

Let kα be the least positive integer such that 2αkα is not a value of Euler’s phi-function. In
the 1960s P. Bateman and J. Selfridge showed that kα exists for all positive integers α and
computed kα for α ≤ 2312. Bateman also formulated a certain conjecture concerning the
numbers kα. We show that Bateman’s conjecture does not hold and prove that a modified
version of the conjecture holds.

Also, let vα be the least positive integer such that 2αvα is not a value of the σ function.
We show that vα ≤ 509203 for all α, and establish a connection between a certain property
of the Mersenne primes and the behavior of the sequence {vα}.

1. Introduction

In 1961, Oystein Ore [7] posed the following problem in the American Mathematical Monthly:

“Prove that for each exponent α there is a smallest odd integer kα such that the
equation ϕ(x) = 2αkα has no solution. Determine k2, k3, k4. Try to find bounds
for kα.”

(It is well-known and easy to check that k1 = 7.) Solutions by John Selfridge [9] and Paul
Bateman [2] appeared in the journal.

1supported by NSF DMS Grant #9970455



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A06 2

Definition 1. Let k ∈ N. Define the Sierpinski exponent, s(k) to be the least positive
integer n such that k · 2n + 1 is prime, if such an n exists. If k · 2n + 1 is composite for all
n ∈ N, we define s(k) = +∞ and we call k a Sierpinski number.

Bateman’s solution is based on the two lemmas below:

Lemma 1. (Bateman) Suppose α is a given positive integer. Let lα be the smallest odd
prime number such that s(lα) > α and lα $= 2t + 1 for t = 1, 2, · · · ,α. Then there is no
integer x such that ϕ(x) = 2αlα. Thus kα exists and kα ≤ lα.

By definition, {lα} is a non-decreasing sequence.

Also, in [10] Sierpinski showed that N = 271129 ·2n +1 is composite for any n ∈ N. That
is, 271129 is a Sierpinski number. Moreover, 271129 is prime number and 271129 $= 2k + 1,
so lα ≤ 271129 for any α ∈ N.

Lemma 2. (Bateman) Suppose α is a given positive integer. Let hα be the smallest odd
positive integer whose Sierpinski exponent is greater than α. Then kα ≥ hα.

Bateman proves the above lemma by showing

s(kα) > α. (1)

Again, the definition of hα implies that the sequence {hα} is non-decreasing.

In 1962 John Selfridge showed that 78557 is a Sierpinski number. Thus, hα ≤ 78557 for
all α. Note that 78557 is composite, 78557 = (17)(4621).

So, Bateman showed hα ≤ kα ≤ lα for all α, and by direct computation he obtained h1 =
k1 = l1 = 7, h2 = k2 = l2 = 17, hα = kα = lα = 19 for 3 ≤ α ≤ 5, and hα = kα = lα = 31 for
6 ≤ α ≤ 7. Furthermore, Selfridge [9] showed kα = 47 for 8 ≤ α ≤ 582, and kα = 383 for
583 ≤ α ≤ 2312 and computations show that hα = kα = lα for all α ≤ 2312.

Bateman wrote [2]: “It is conceivable that hα = lα for all values of α but this would be
difficult to decide.”

We will show that, hα = kα = lα for all α ≤ 33287. However, hα $= lα for 33288 ≤
α ≤ 50010. Thus, Bateman’s hypothesis does not hold. However, a modified version of the
hypothesis holds:

Theorem 1. For all α ∈ N, kα = lα.

We also consider the version of Ore’s problem where one replaces Euler’s phi-function by
σ (the sum of divisors function).

Definition 2. Let α ∈ N. Define vα to be smallest positive odd integer such that the
equation σ(n) = 2αvα has no solution, if such an integer exists.
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We prove

Lemma 3. For all α ∈ N, vα is well-defined and vα ≤ 509203.

There is a significant difference between the original Ore problem and its modified form.
It stems from the fact that the equation ϕ(m) = 2n has a solution for all n ∈ N, while this
is not the case for the equation σ(m) = 2n. It is easy to show (and we do in Section 3) that
the equation σ(m) = 2n has a solution if and only if there exist distinct Mersenne primes
p1 = 2q1 − 1, p2 = 2q2 − 1, · · · , ps = 2qs − 1 such that q1 + q2 + · · ·+ qs = n.

If the Wagstaff-Pomerance-Lenstra [11] heuristic holds, then there exist infinitely many
“sufficiently large” gaps between Mersenne numbers, so that the following hypothesis is true:

Hypothesis 1. There exist infinitely many positive integers n such that the equation σ(m) =
2n has no solution.

The validity of Hypothesis 1 determines the behavior of the the sequence {vα}.

Definition 2. Let r ∈ N. We say that r is a Riesel number if r2n − 1 is composite for all
n ∈ N.

Theorem 2. (i) If Hypothesis 1 holds, then there exist infinitely many positive integers α
such that vα = 1. (ii) If Hypothesis 1 does not hold, then there exist n0 ∈ N such that vα = r
for all α ≥ n0 where r is the smallest prime Riesel number.

The paper is organized as follows: Section 2 is on Bateman’s conjecture and Section 3
deals with the numbers vα.

2. Bateman’s Conjecture

Recall that lα is the smallest odd prime number such that s(lα) > α and lα $= 2t + 1 for
t = 1, 2, · · · ,α. First, we show that the requirement lα $= 2t + 1 can be dropped.

Indeed, lα is prime and if lα = 2t + 1 then it is a Fermat prime. As noted in Section
1, we know lα ≤ 271129 for all α. Thus, if lα = 2t + 1 then lα is one of the numbers
3, 5, 17, 257, 65537. Now, the sequence {lα} is non-decreasing and its first six distinct values
are 7, 17, 19, 31, 47, 383. Also, s(65537) = 287 and s(47) = 583, and thus 65537 $∈ {lα}. Since
17 is the smallest prime whose Sierpinski exponent is > 2, the requirement 17 $= 2t + 1 for
t = 1, 2 is unnecessary.

So, lα is the smallest prime whose Sierpinski exponent is > α, and hα is the smallest
positive odd integer whose Sierpinski exponent is > α.

Next, we list the first ten positive integers k such that s(k) > 1000. This list is due to
Jaeshke [6], Buell and Young [3], and the project “Seventeen or Bust” [5]. (Note: in the
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following tables, each composite is marked with the symbol ∗.)

k 383 881 ∗ 1643 2897 3061 ∗ 3443 ∗ 3829 ∗ 4847 4861 5297
s(k) 6393 1027 1465 9715 33288 3137 1230 3321063 2429 50011

Using the list we get

hα = kα = lα = 383 for 583 ≤ α ≤ 6392;

hα = kα = lα = 2897 for 6393 ≤ α ≤ 9714;

and hα = kα = lα = 3061 for 9715 ≤ α ≤ 33287.

However, for 33288 ≤ α ≤ 50010, hα = 4847 = (37)(131) but lα = 5297, so hα $= lα
in this range. Thus, Bateman’s conjecture does not hold. What is the value of kα when
33288 ≤ α ≤ 50010? Is it 4847 or 5291? We can determine it by using the following lemma.

Lemma 4. Let n = d1d2 where d1 and d2 are distinct integers greater than 1. If s(d1) +
s(d2) ≤ α, then kα $= n.

Proof. Let A = s(d1) and B = s(d2). Then p1 = d12A + 1 and p2 = d22B + 1 are distinct
primes (d1 $= d2), and ϕ

(
2α−A−B+1p1p2

)
= 2αd1d2, completing the proof of the lemma.

Since s(37) + s(131) < 2000, kα $= 4847 for α > 2000. We obtain kα = lα = 5297 for
33288 ≤ α ≤ 50010.

Let us determine the next few values of kα and lα. We use the list of the first five positive
integers k such that s(k) > 50011 (again from [12], [3], and [5]).

k ∗ 4847 ∗ 5359 7013 8423 10223
s(k) 3321063 5054502 126113 55157 > 8× 106

Recall that s(kα) > α. Since 5359 = (23)(233), using Lemma 4 we get kα = lα = 7013 for
50011 ≤ α ≤ 126112. Next, 10223 is prime, so kα = lα = 10223 for 126113 ≤ α ≤ s(10223)−
1, and s(10223) > 8 × 106. So, we have shown kα = lα for all α ≤ s(10223). To finish the
proof of Theorem 1 we need to show kα = lα for all α such that 8× 106 < α ≤ s(10223).

If kα is prime for some α, the simplified definition of lα implies lα = kα. Next, we show
that kα is prime for all α > 8× 106. Say that kα is composite for some α > 8× 106. First,
consider the case in which kα has at least three prime divisors. In this case kα = p1p2l, with
p1 ≤ p2 ≤ l. If p2 ≥ 5, set d1 = p2, d2 = p1l; otherwise set d1 = p1p2 = 9 and d2 = l. So,
kα can be represented as kα = d1d2 with 5 ≤ d1 < d2 < 271129/5 < 78557. Taking into
account Lemma 4 we get that s(d1) + s(d2) > 8 × 106. Thus, either s(d1) > 4 × 106, or
s(d2) > 4× 106.

In the quest to prove that 78557 is the smallest Sierpinski number, bounds for the Sier-
pinski exponents of all but 8 odd integers less than 78557 have been found. It is known [5]
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that the only odd integers < 78557, which could have a Sierpinski exponent > 4× 106, are
in the set A = {5359, 10223, 19249, 21181, 22699, 24737, 27653, 28433, 33661, 55459, 67607}.

Let us deal with the multiples of 5359 that do not exceed 271129. These are 5359·(2j−1),
j = 1, . . . , 25. Well, 5359 = (23)(233), so 5359 · (2j− 1) = (233) · (23 · (2j− 1)). Now, 233 <
5359 and 23·(2j−1) < 5359, so Lemma 4 implies that kα is never a multiple of 5359. We deal
similarly with the multiples of 21181 = (59)(359), 24737 = (29)(853), 33661 = (41)(821),
and 55459 = (31)(1789). Next we deal with the odd, composite multiples of the members
of the set B = {10223, 19249, 22699, 27653, 28433, 67607} that do not exceed 271129 (all
numbers in B are prime). There are 32 such multiples. The Sierpinski exponents of all but
two of these multiples do not exceed 20. The two exceptions are 235129 = (10223)(23) and
249689 = (22699)(11). But s(235129) = 26 and s(249689) = 25.

Thus, kα always has at most two prime divisors.

Now, consider the case when kα = p1p2 where p1 and p2 are primes. If 5 ≤ p1 < p2 the
above argument still holds (set d1 = p1 and d2 = p2). The argument also holds if p1 = 3 and
p2 < 78557. Thus, either p1 = 3 and p2 ∈ [78557, 90373], or p1 = p2.

First, let kα = 3p with p a prime in [78559, 90373]. Direct computation shows that for all
but two of the primes in the above range either s(p) ≤ 30 or s(3p) ≤ 30. The two exceptions
are 82891 and 88951. However s(3 · 82891) = 40 and s(3 · 88951) = 80.

The final opportunity for kα being composite is kα = p2 with p prime. Since kα ≤ 271129,
p ≤ 509. Direct computation shows that for all but six primes in the above range s(p2) <
200. The six exceptions are 61, 83, 149, 379, 433, 509. However s(612) = 444, s(832) = 326,
s(1492) = 396, s(3792) = 1212, s(4332) = 466, and s(5092) = 384.

We have exhausted all possibilities for kα being composite and have completed the proof
of Theorem 1.

There are still many open problems on inverting the Euler function. We refer the inter-
ested reader to the exciting paper [4] on this subject which appeared recently.

3. The Numbers vα

First we state a well-known lemma and provide a short proof.

Lemma 5. Suppose σ(pa) = 2t for some prime p and some positive integers a, t. Then
a = 1 and p is a Mersenne prime.

Proof. Clearly p must be an odd prime, so a is odd, say a = 2k − 1, k ∈ N. Then we have

σ (pa) =
pk − 1

p− 1

(
pk + 1

)
= 2t. Since gcd

(
pk − 1, pk + 1

)
= 2 and pk−1

p−1 $= 2, we get pk−1
p−1 = 1
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and k = 1.

Lemma 5 implies the following corollary which we mentioned in the introduction:

Corollary 1. Let t ∈ N. The equation σ(n) = 2t has a solution if and only if there
exist distinct Mersenne primes p1 = 2q1 − 1, p2 = 2q2 − 1, · · · , ps = 2qs − 1 such that
q1 + q2 + · · ·+ qs = t.

Recall that r is a Riesel number if r · 2n− 1 is composite for all n ∈ N. In 1956 H. Riesel
[8] showed that 509203 is a Riesel number.

Next, we prove the following lemma:

Lemma 6. Let r be a prime Riesel number such that 2r−1 is not the square of a Mersenne
prime. Also, assume that the equation σ(pk) = r has no solutions with k ∈ N and p prime.
Thus, the equation σ(m) = r · 2α has no solutions with m,α ∈ N and p prime.

Proof. Since r is prime, it is is sufficient to show that

σ(pa) = r · 2α (2)

has no solutions with p prime, a ∈ N, and α a non-negative integer.

For a contradiction, assume this is false. Let α ≥ 0 be the least non-negative integer for
which Equation (2) has a solution. By the conditions of the lemma, α ≥ 1.

t Since α ≥ 1, p must be an odd prime and a an odd integer, say a = 2k − 1. If k = 1,
then a = 1, and the equation becomes p = r · 2α− 1, contradicting the fact that r is a Riesel
number.

Now, let k > 1. Then a = 2k − 1 > k > 1. We get
pk − 1

p− 1
(pk + 1) = r · 2α. Thus,

σ(pk−1) = pk−1
p−1 = 2β or else σ(pk−1) = r · 2β with 0 ≤ β < α.

Suppose σ(pk−1) = r · 2β. By the conditions of the lemma, β ≥ 1. This contradicts the
fact that α is the least positive solution of Equation (2).

Finally, let σ(pk−1) = 2β. Lemma 5 implies k = 2, a = 3, and p is Mersenne prime.

We obtain (1 + p)(1 + p2) = r · 2α.

Now, p2 + 1 ≡ 2 (mod 4). Therefore p2 + 1 = 2r. This contradicts the condition that
2r − 1 is not the square of a Mersenne prime. So, our assumption is false and the proof of
the lemma is complete.

Lemma 3 (which is stated in the Introduction) follows directly from Lemma 6.

Proof of Lemma 3. It suffices to check that 509203 satisfies the conditions of Lemma 6. Note
that 509203 is a Riesel number (see [8]), and 509203 is prime too. Also, 2 · 509203 − 1 =
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(5)(353)(577) is not a perfect square. Finally, the equation

1 + p + · · ·+ pk = 509203 (3)

has no solutions with p prime and k ∈ N.

Indeed, if Equation (3) holds, then p|509202 = 2 · 32 · 28289. A quick check shows that none
of the primes 2, 3, 28289 gives a solution to Equation (3).

Finally, we prove Theorem 2.

Proof of Theorem 2. (i) If Hypothesis 1 holds, then there exist infinitely many positive
integers α such that 2α is not a value of the σ function. For each such α, vα = 1.

(ii) Here we will use the results of the computations of the Riesel Problem project aiming
to show that 509203 is the smallest Riesel number. The idea is to find, for every odd positive
integer k less than 509203, an exponent ek ∈ N such that k · 2ek − 1 is prime. This has been
achieved for all but seventy-six integers. Denote the set of these seventy-six integers by C.
For the complete list of the elements of C see [1].

Assume that Hypothesis 1 does not hold. Then there exists α0 such that for each α ≥ α0

there exists nα ∈ N with σ (nα) = 2α. Lemma 5 implies that nα is a squarefree number
whose prime divisors are Mersenne primes. The set C has several properties which we will
use in the proof. These properties are:

(i) No element of C is a multiple of another element of C;
(ii) Each element of C is either prime or it has at least two distinct prime divisors;
(iii) No element of C is a Mersenne prime;
(iv) If q ∈ C is prime, then 2q − 1 is not the square of a Mersenne prime;
(v) No element of C is of the form n2 + n + 1 with n ∈ N;
(vi) If q ∈ C is prime, then the equation σ(pk) = q has no solutions with k ∈ N and p prime.

Properties (i) and (ii) are easy to check by considering the factorizations of the elements
of C. It is also straightforward to establish properties (iii), (iv), and (v). To establish (vi),
assume σ(pk) = q for some primes p and q with q ∈ C and k ∈ N. By property (iii), we have
p $= 2. Thus, p is an odd prime and k is even. Note that q < 509203. So, if k ≥ 6, then
p < 10; that is, p = 3, 5, or 7. No element of C is of the form 1 + p + · · · + pk with k ∈ N
and p = 3, 5, or 7. If k = 4 we check that the numbers 1 + p + p2 + p3 + p4 are not in C
when p ∈ {11, 13, 17, 19, 23} (294 > 700000). Finally, property (v) ensures that there are no
solutions with k = 2. Thus, property (vi) holds.

Denote by r be the smallest Riesel prime number. Let k be an odd integer in the interval
[1, r). If k $∈ C then there exists ek such that pk = k · 2ek − 1 is prime. If k ∈ C, then
k is composite (k < r). By properties (i) and (ii), k has the factorization k = uv with
gcd(u, v) = 1 and u $∈ C, v $∈ C. Thus, there exist primes pu, pv, and an integer αk ∈ N
such that σ(pupv) = uv · 2αk . We showed that for each odd integer in the interval [1, r) there
exist positive integers mk, αk such that σ(mk) = k · 2αk . Moreover, mk is either prime or a



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A06 8

product of two distinct primes, and no Mersenne prime divides mk. Let α > αk + α0. Set
β = α − αk. Then σ(nβ ·mk) = k · 2α. Thus, the equation σ(m) = k · 2α has a solution for
all α > αk + α0. Let M = α0 + max{αk} where the maximum is taken over all odd integers
in the interval [1, r). Thus, the equation σ(m) = k · 2α has a solution whenever k is an odd
integer in [1, r) and α > M. Therefore

vα ≥ r for all α > M. (4)

On the other hand, r satisfies all conditions of Lemma 6. (It is a prime Riesel number
by definition and the remaining conditions of Lemma 6 hold due to properies (iv) and (vi)).
Therefore the equation σ(m) = r · 2α has no solution for any α. We get

vα ≤ r for all α ∈ N. (5)

Combining (4) and (5) we get vα = r for all α > M.
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