ON PARTITIONS AND CYCLOTOMIC POLYNOMIALS

Neville Robbins
Mathematics Department, San Francisco State University, San Francisco, CA 94132
robbins@math.sfsu.edu

Received: November 12, 1999, Revised: May 22, 2000, Accepted: June 2, 2000, Published: June 6, 2000

Abstract

Let m denote a squarefree number. Let $f_{m}(n)$ denote the number of partitions of n into parts that are relatively prime to m. Let $\Phi_{m}(z)$ denote the $m^{t h}$ cyclotomic polynomial. We obtain a generating function for $f_{m}(n)$ that involves factors $\Phi_{m}\left(z^{n}\right)$.

1. Introduction

If z is a complex variable, let $\Phi_{m}(z)$ denote the m th cyclotomic polynomial, that is

$$
\Phi_{m}(z)=\prod_{d \mid m}\left(z^{d}-1\right)^{\mu(m / d)}
$$

where $\mu(n)$ denotes the Möbius function. If p is prime, let $b_{p}(n)$ denote the number of p-regular partitions of n, that is, the number of partitions of n such that no part occurs p or more times. It is well-known that $b_{p}(n)$ also counts the number of partitions of n into parts, k, such that $(k, p)=1$. (See [1],[2], and [3].) Furthermore, $b_{p}(n)$ has a generating function given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{p}(n) z^{n}=\prod_{n=1}^{\infty} \frac{1-z^{p n}}{1-z^{n}}=\prod_{n=1}^{\infty} \Phi_{p}\left(z^{n}\right) \tag{1}
\end{equation*}
$$

where $|z|<1$. In particular, if $q(n)$ denotes the number of partitions of n into distinct parts (or odd parts), so that $q(n)=b_{2}(n)$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} q(n) z^{n}=\sum_{n=0}^{\infty} b_{2}(n) z^{n}=\prod_{n=1}^{\infty}\left(1+z^{n}\right)=\prod_{n=1}^{\infty} \Phi_{2}\left(z^{n}\right) \tag{2}
\end{equation*}
$$

In this note, we generalize (1) as follows. Let m be the product of r distinct primes. Let $f_{m}(n)$ denote the number of partitions of n into parts, k, such that $(k, m)=1$. That is, $f_{m}(n)$
denotes the number of partitions of n into parts that are not divisible by any of the r distinct primes. We obtain a generating function for $f_{m}(n)$ as an infinite product of factors $\Phi_{m}\left(z^{n}\right)$ or $1 / \Phi_{m}\left(z^{n}\right)$, accordingly as r is odd or even, respectively.

2. Preliminaries

Theorem 0 If $H \subset N$, let $p_{H}(n)$ denote the number of partitions of n into parts belonging to H; let $q_{H}(n)$ denote the number of partitions of n into distinct parts belonging to H; let $q_{H}^{E}(n)$ denote the number of partitions of n into evenly many distinct parts from H; let $q_{H}^{O}(n)$ denote the number of partitions of n into oddly many distinct parts from H. Further, let $q_{H}^{*}(n)=q_{H}^{E}(n)-q_{H}^{O}(n)$ and define $p_{H}(0)=q_{H}(0)=q_{H}^{E}(0)=q_{H}^{*}(0)=1$. Let z be a complex variable such that $|z|<1$. Then

$$
\begin{align*}
& \sum_{n=0}^{\infty} p_{H}(n) z^{n}=\prod_{n \in H}\left(1-z^{n}\right)^{-1} \tag{3}\\
& \sum_{n=0}^{\infty} q_{H}(n) z^{n}=\prod_{n \in H}\left(1+z^{n}\right) \tag{4}\\
& \sum_{n=0}^{\infty} q_{H}^{*}(n) z^{n}=\prod_{n \in H}\left(1-z^{n}\right) . \tag{5}
\end{align*}
$$

Remarks: Equation (3) is Theorem 1.1, (1.2.4) in [1]; (4) follows from the same theorem; (5) is proven for the case $H=N$ in [1]. The proof extends easily to the case: $H \subset N$.

3. The Main Results

Theorem 1 Let $m=\prod_{i=1}^{r} p_{i}$, where $r \geq 1$ and the p_{i} are distinct primes. Let $f_{m}(n)$ be the number of partitions of n into parts, k, such that $(k, m)=1$. Let $\Phi_{m}(z)$ denote the m th cyclotomic polynomial, where z is a complex variable, with $|z|<1$. Then

$$
\begin{equation*}
\sum_{n=0}^{\infty} f_{m}(n) z^{n}=\prod_{n=1}^{\infty}\left(\Phi_{m}\left(z^{n}\right)\right)^{(-1)^{r-1}} \tag{6}
\end{equation*}
$$

Proof. If $r=1$, then $f_{m}(n)=f_{p}(n)=b_{p}(n)=$ the number of p-regular partitions of n, so (by (1))

$$
\sum_{n=0}^{\infty} f_{m}(n) z^{n}=\sum_{n=0}^{\infty} b_{p}(n) z^{n}=\prod_{n=1}^{\infty} \frac{1-z^{p n}}{1-z^{n}}=\prod_{n=1}^{\infty} \Phi_{p}\left(z^{n}\right)
$$

Now suppose that m has r distinct prime factors, and p is a prime such that $p \nmid m$. Then $p m$ has $r+1$ distinct prime factors. By induction hypothesis,

$$
\sum_{n=0}^{\infty} f_{m}(n) z^{n}=\prod_{n=1}^{\infty}\left(\Phi_{m}\left(z^{n}\right)\right)^{(-1)^{r-1}}
$$

Now

$$
\begin{aligned}
\sum_{n=0}^{\infty} f_{p m}(n) z^{n} & =\prod_{(p, n)=1}\left(\Phi_{m}\left(z^{n}\right)\right)^{(-1)^{r-1}}=\prod_{n=1}^{\infty}\left(\frac{\Phi_{m}\left(z^{n}\right)}{\Phi_{m}\left(z^{p n}\right)}\right)^{(-1)^{r-1}} \\
& =\prod_{n=1}^{\infty}\left(1 / \Phi_{p m}\left(z^{n}\right)\right)^{(-1)^{r-1}}=\prod_{n=1}^{\infty}\left(\Phi_{p m}\left(z^{n}\right)\right)^{(-1)^{r}}
\end{aligned}
$$

so we are done.
Remarks: Let $\omega(d)$ denote the number of distinct prime factors of d. Then (6) could be restated as:

$$
\begin{equation*}
\sum_{n=0}^{\infty} f_{m}(n) z^{n}=\prod_{n=1}^{\infty} \prod_{d \mid m}\left(1-z^{d n}\right)^{(-1)^{1+\omega(d)}} \tag{7}
\end{equation*}
$$

Since d is squarefree by hypothesis, we have $(-1)^{\omega(d)}=\mu(d)$. Thus (7) becomes:

$$
\begin{equation*}
\sum_{n=0}^{\infty} f_{m}(n) z^{n}=\prod_{n=1}^{\infty} \prod_{d \mid m}\left(1-z^{d n}\right)^{-\mu(d)} \tag{8}
\end{equation*}
$$

A shorter, alternate proof is based on the inclusion-exclusion principle, namely

$$
\begin{gathered}
\sum_{n=0}^{\infty} f_{m}(n) z^{n}=\prod_{n=1}^{\infty}\left(1-z^{n}\right)^{-1} \prod_{p \mid m}\left(1-z^{p n}\right) \prod_{p_{1} p_{2} \mid m}\left(1-z^{p_{1} p_{2} n}\right)^{-1} \prod_{p_{1} p_{2} p_{3} \mid m}\left(1-z^{p_{1} p_{2} p_{3} n}\right) \cdots \\
=\prod_{n=1}^{\infty} \prod_{d \mid m}\left(1-z^{d n}\right)^{-\mu(d)}
\end{gathered}
$$

(In the products above, the p_{i} are distinct prime divisors of m.)
Furthermore, $f_{m}(n)$ may be computed recursively by the repeated use of Theorem 2 below, whose elementary proof is omitted.

Theorem 2 Let $m, r, f_{m}(n), z$ be as in the hypothesis of Theorem 1. Let p be a prime such that $p \nmid m$. Then

$$
f_{p m}(n)+\sum_{j=1}^{[n / p]} f_{p m}(n-p j) f_{m}(j)=f_{m}(n)
$$

For example, suppose we wish to compute the number of partitions of n into parts that are not divisible by 2,3 , or 5 . That is, we wish to compute $f_{30}(n)$. According to Theorem 1 , we have:

$$
\sum_{n=0}^{\infty} f_{30}(n) z^{n}=\prod_{n=1}^{\infty} \Phi_{30}\left(z^{n}\right)=\prod_{n=1}^{\infty}\left(z^{8 n}+z^{7 n}-z^{5 n}-z^{4 n}-z^{3 n}+z^{n}+1\right)
$$

We conclude with the following theorem, which follows easily from Theorems 1 and 0 .
Theorem 3 Let m, r, n, z be as in the hypothesis of Theorem 1. Let $q_{m}^{E}(n), q_{m}^{O}(n)$ denote respectively the number of partitions of n into evenly, oddly many distinct parts, k, such that $(k, m)=1$. Then

$$
\prod_{n=1}^{\infty}\left(\Phi_{m}\left(z^{n}\right)\right)^{(-1)^{r}}=\sum_{n=0}^{\infty}\left(q_{m}^{E}(n)-q_{m}^{O}(n)\right) z^{n}
$$

Proof. This follows from the hypothesis, Theorem 1, and Theorem 0, part (iii).

References

1. George E. Andrews, "The Theory of Partitions," Cambridge University Press (1984).
2. J. W. L. Glaisher, "A theorem in partitions," Messenger of Math. 12 (1883), 158-170.
3. G. D. James \& A. Kerner, "The representation theory of the symmetric group," AddisonWesley, Reading, MA (1981).
