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Abstract

Fixing a prime ! and a power q of a prime p, we compute the Dirichlet density of the set of
primes P of Fq[X] defined by

{P ∈ Fq[X]; ! divides the order of X (mod P )}.

Our method is fully elementary in that it does not use any Kummer theory, or the Chebotarev
Density Theorem in any form.

1. Introduction.

Throughout the paper ! denotes a fixed odd rational prime. The exponent of the largest
power of ! dividing an integer n is written ν!(n). We will also write !ν!(n)||n.

A classical result states that if a ∈ Z \ Z! and ρp(a) is the order of a (mod p), then

{
p rational prime; ! ρp(a)

}
has a Dirichlet density equal to

!

!2 − 1
. (1)

We refer to [Ha] and [Ba1], p. 32 for algebraic proofs of (1). But finer and more general
results exist, in particular formulas for the asymptotic proportion of primes p ≤ x such that
m ρp(a) with error estimates valid for any a ∈ Z and any composite integer m ≥ 2 ([Od],
[Wie], [Pa]).

In this paper, we investigate an analogous question in the ring Fq[X], where q is a prime
power pe, where e ≥ 1. We show that

Ω̄ = {P prime in Fq[X]; ! ρP (X)} (2)

has Dirichlet density δq,! =
1

f

[
1− 1

!α−1(! + 1)

]
, where ρP (X) is the order of X (mod P ), f

is the order of q (mod !), and α = ν!(qf −1). Here a prime P in Fq[X] is a monic irreducible
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polynomial of the ring. Note, for the sake of curiosity, that if q is a primitive root (mod !)

and α = ν!(q!−1 − 1) = 1, then δq,! satisfies, as in the classical case (1), δq,! =
!

!2 − 1
.

But the most interesting feature of the paper, in our view, is that, contrary to the
classical case, these densities are computed via an elementary method. This method does
not use any Kummer theory, nor any form of the Chebotarev Density Theorem. The case
! = 2 was handled in [Ba3]. The main object in [Ba3] was to show that the method of
Hasse could successfully be adapted to the ring Fq[X]. We clearly could have used the
Hasse-like method here, but our intention was to give visibility and clarity to a method that
does not have an equivalent in the classical setting. The method uses an adapted notion
of asymptotic density d, which, at least in the present context, plays a role similar to what
is usually called natural density in Z. This notion was introduced in [Ba2] and shown to
imply Dirichlet density δ with δ = d. It was also shown that some sets of primes in Fq[X]
have Dirichlet density δ, but no density d. Because this elementary method is close to an
actual counting “by degree” (see Theorems 9 and 10), it yields asymptotic formulas for the
densities d with error terms of interest. We would like to point out that some strong versions
of the Chebotarev Density Theorem in function fields also provide estimates per degree, but
that these theorems, contrary to the prime number theorem in Fq[X], are difficult to prove
(see [Ro], p. 125-6, for such a theorem and some commentaries). Note that we focused our
attention on the case of the order of X (mod P ) and of a prime !, but it remains to be seen
whether X could be replaced by some other element M of Fq[X] and ! by any composite
integer m. At least we can show that the densities we obtained for M = X are equal to what
one would expect heuristically on average over all monic polynomials M in Fq[X] (follow the
method of Section 5.2 in [Ba3]; in fact, this is a faster way of obtaining the density values
we calculate here).

In Section 2, the abstract and simple frame of the method is being explained and trans-
lated into a theorem, Theorem 1. But framing the method in the abstract also facilitates
the actual computing of the densities δq,!, carried out in Section 3, where Theorem 1 will
be referred to in the two instances q ≡ 1 (mod !) and q &≡ 1 (mod !). An amusing minor
similarity to the Hasse method remains in that, technically, finding the density of Ω̄ (defined
in (2)) is done by computing the density of its complementary set of primes Ω. Primes in
Fq[X] are also polynomials and have roots. So we may count primes in Ω by counting their
roots. Lemma 5 (and Lemma 6) explain how to do this counting transfer. Lemmas 7 and
8 are technical and ease up the writing of the main results, Theorems 9, 10, and 11. We
added a short third section in which we compute the average of the densities δp,! over all
rings Fp[X] as p varies through primes. This result, Theorem 12, is a mixed average over
polynomial and rational primes and uses the classical Dirichlet Density Theorem.

The set of all primes in Fq[X] is denoted by I. If S ⊂ I, then Sn denotes the number of
primes in S of degree n. We will use the formula In = n−1

∑
d n

µ(d)qn/d, where µ is the

Möbius function, and the equivalence In ∼ qn/n known as the Prime Number Theorem for
polynomials (PNT), both of which can be found in [Ro], Ch. 2, as well as the lower estimate
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nIn ≥ qn − q/(q − 1)qn/2 + q/(q − 1) (see for instance Lemma 4.2 of [Ba3]).

2. The Elementary Method

Our method exploits a density result shown in [Ba2]. Namely, if S is a set of primes in
Fq[X] and the limit

d = lim
N→∞

1

N

N∑

n=1

Sn

In
exists, (3)

then S possesses a Dirichlet density

δ = lim
s→1+

∑
P∈S |P |−s

∑
P |P |−s

, with δ = d.

The density defined in (3) was shown in [Ba2] to be a fair analogue to the classical notion of
prime asymptotic density, which is also known to imply Dirichlet density for sets of primes
in Z. Our method to compute the limit d in (3), is based on finding approximations of the
quotients Sn/In such that the discrepancies with their exact values have an average, over N ,
that tends to 0 as N →∞.

Theorem 1 Let S be a set of primes in Fq[X], and let K and τ be positive real numbers.
Assume N is partitioned into a finite or countable union of disjoint arithmetic progressions
Aj = {aj +ndj; n = 0, 1, 2, . . . }, where for each j = 1, 2, 3, . . . , 0 ≤ aj < dj, (aj, dj integral).
Assume for each j there is a constant cj ∈ [0, 1] such that for any n ∈ Aj, we have

∣∣∣∣
Sn

In
− cj

∣∣∣∣ ≤ Kq−τn. (4)

Assume moreover that
∑

j≥1 cj <∞. Then for any N ≥ 1

∣∣∣∣
1

N

N∑

n=1

Sn

In
−

∑

j≥1

cj

dj

∣∣∣∣ ≤
C

N
,

where C may be chosen to be
∑

j≥1 cj + K/(qτ − 1). In particular, S has a d-density and a
Dirichlet density equal to

∑
j≥1 cj/dj.

Proof. Let N be a large positive integer. Then Aj ∩ [1, N ] contains nj members where
nj = N/dj + εj for some εj ∈ R satisfying |εj| ≤ 1. Then the sum sN =

∑N
n=1 Sn/In satisfies

∑

j≥1

njcj −K
N∑

n=1

q−τn ≤ sN ≤
∑

j≥1 njcj + K
∑N

n=1 q−τn, implying

∣∣∣∣sN −N
∑

j≥1

cj/dj

∣∣∣∣ ≤
∑

j≥1 cj + Kq−τ/(1− q−τ ), so that

∣∣∣∣
sN

N
−

∑

j≥1

cj

dj

∣∣∣∣ ≤ N−1

[∑
j≥1 cj + K/(qτ − 1)

]
,
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thereby proving the theorem. !

Remark 2. Theorem 1 remains true even if (4) is false for finitely many degrees n although
one may have to choose a larger value for K.

In the ring Z, the Dirichlet Density Theorem says that, for any d ≥ 2, primes are
equidistributed among linear forms {a+nd; n = 1, 2, . . . } where a varies through all residue
classes (mod d) that are coprime to d. In Fq[X], Theorem 1 allows us to state an analogue
of the Dirichlet Theorem that takes into account the fact that there are primes of any norm.
Indeed, for any d ≥ 2, primes are equidistributed among the d subsets of primes of degree
a + nd, n = 1, 2, . . . , when a varies from 0 to d− 1. We state this result below.

Theorem 3 (Dirichlet Density Theorem for primes having degree in arithmetic progression)
Let a and d be integers with d ≥ 1. Then the set of primes in Fq[X] of degree in the

arithmetic progression a + nd has Dirichlet density
1

d
.

Proof. Apply Theorem 1, taking Remark 2 into account, with Aj = {j + nd; n = 1, 2, . . . }
for j = 0, 1, . . . , d− 1 and cj = 0 unless j ≡ a (mod d), in which case cj = 1. !

3. Application to Primes P such that ! ρP (X)

In the sequel, ! is an odd rational prime, q is a prime power pe, where p and e ≥ 1 are
fixed, f denotes the order of q (mod !) and α = ν!(qf − 1). We seek to apply Theorem 1 to
the set Ω of primes defined by

Ω = {P prime in Fq[X]; ! ! ρP (X)}.

We first recall a few facts from the theory of Lucas sequences (see [Wil], 4.3). Consider

the Lucas sequence of general term un =
qn − 1

q − 1
. Then the least natural number r ≥ 1 such

that ! divides ur is called the rank of ! in (un). With our hypotheses r is known to exist.
Moreover, we have

ν!(un) = 0, if r ! n, (5)

ν!(umr) = ν!(ur) + ν!(m), if n = mr,

so that ν!(q
mr − 1) = ν!(qr − 1) + ν!(m). (6)

Lemma 4 Assume q = pe, where p be a prime distinct from !. Then for any integer n ≥ 1,
we have

ν!(q
n − 1) = 0, if f ! n, ν!(q

f − 1) + ν!(n), if f n.

Proof. Assume first that q ≡ 1 (mod !). Then f = 1 and we need to show that

ν!(q
n − 1) = ν!(q − 1) + ν!(n). (7)
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We have
qn − 1

q − 1
=

n−1∑

k=0

qk ≡ n (mod !). Therefore r = !. Hence (7) follows from (5) if

! ! n. For n = m!, we write q ≡ 1 + λ! (mod !2) for some λ, 0 ≤ λ ≤ ! − 1. Hence,
u! =

∑!−1
k=0 qk ≡ !+λ!

∑!−1
k=1 k ≡ ! (mod !2), which implies ν!(q!−1) = ν!(q−1)+1 = α+1.

And by (6) we have ν!(qm!− 1) = ν!(q! − 1) + ν!(m) = α + 1 + ν!(m) = α + ν!(m!), and (7)
follows.

Assume now that q &≡ 1 (mod !). Then r = f . And by (5) and (6) respectively we get

ν!

(
qn − 1

q − 1

)
= ν!(q

n − 1) = 0, if f ! n,α + ν!(n), if f n,

since (f, !) = 1 implies ν!(n) = ν!(m). !

Rather than counting primes P in Ω, we may, instead, count the roots of these primes
P . The next two lemmas use this idea to yield an expression for Ωn that will make Ωn

comparable to In. In turn this will allow us to use Theorem 1.

Let Fn be the number of elements in the multiplicative group F∗qn of Fqn with order prime
to !. Note that these elements form a subgroup of F∗qn.

Lemma 5 Let γ be algebraic of degree n over Fq and P denote its minimal polynomial over
Fq. Then, the order of γ in the multiplicative group of Fq(γ) is prime to ! if and only if P
is in Ω.

Proof. Since Fq(γ) , Fqn, the order of γ in F∗qn is prime to ! if and only if γ is a root of
XFn − 1, which holds if and only if P divides XFn − 1 in Fq[X]. But that means P ∈ Ω. !

Define Gn to be the number of elements γ ∈ F∗qn of order prime to ! such that Fq(γ) = Fqn.

Lemma 6 We have Fn = (qn − 1)!−ν!(qn−1), Gn =
∑

d n
µ(d)Fn/d, and Ωn = Gn/n.

Proof. Since F∗qn is cyclic of order qn − 1, we see that Fn is indeed the largest divisor of
qn − 1 prime to !. Now Fn =

∑
d n

Gd, so the Möbius inversion formula yields the claimed

expression for Gn. That Ωn = Gn/n is a direct consequence of Lemma 5. !

Lemma 7 Suppose n = !kn′, where (n′, !) = 1 and k ≥ 1. Consider a sum S =
∑

d n
µ(d)ωd,

where the ωd’s are real numbers whose values depend only on ν!(d). Then either S = ω1−ω!,
if n = !k, or 0, otherwise.

Proof. Because the Möbius function is non-zero only for squarefree integers, we have S =∑
!!d µ(d)ωd +

∑
!||d µ(d)ωd = ω1

∑
d n′

µ(d) − ω!

∑
d n′

µ(d) = ω1 − ω!, if n = !k, or 0,

otherwise. !

Lemma 8 Let n be an integer ≥ 2 and let Dn be any set of positive divisors of n. Then the
sum SDn =

∑
d∈Dn

µ(d)qn/d is, in absolute value, less than 2qn.
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Proof. We have SDn ≤ qn + Rn, where Rn = SDn \ {1}. But |Rn| ≤
∑n/2

k=1 qk ≤ qn/2+1 ≤ qn

and the result follows. !

Theorem 9 Assume q = pe is congruent to 1 (mod !). Let n ≥ 2 be an integer. Then we
have

Ωn

In
= !−α, if ν!(n) = 0,

∣∣∣∣
Ωn

In
− !−α−ν!(n)

∣∣∣∣ ≤ Kq−τn, if ν!(n) ≥ 1,

where τ = 1− 1

!
and K is a constant depending on q and ! that can be effectively computed.

Proof. By Lemma 6 we have Gn =
∑

d n
µ(d)Fn/d. If ν!(n) = 0, then for any d dividing

n, ν!(n/d) = 0 and by Lemma 4, ν!(qn/d − 1) = ν!(qf − 1) = ν!(q − 1) = α. So Gn =
!−α

∑
d n

µ(d)qn/d − !−α
∑

d n
µ(d) = !−α

∑
d n

µ(d)qn/d, since n ≥ 2. Thus Gn/n = !−αIn

so that the ratio Ωn/In is exactly !−α.

For ν!(n) ≥ 1, write n′ = n!−ν!(n), g = q!ν!(n)−1
, m = α + ν!(n), and S =

∑
d n

µ(d)ωd

with ωd = !−ν!(qn/d−1). Then Gn =
∑

d n
µ(d)ωdqn/d − S = !−m

∑
ν!(d)=0 µ(d)qn/d +

!−(m−1)
∑

ν!(d)=1 µ(d)qn/d − S = !−m
∑

d n
µ(d)qn/d +

!− 1

!m

∑

ν!(d)=1

µ(d)qn/d − S = !−mnIn −

!− 1

!m

∑

d n′

µ(d)gn′/d − S. By Lemma 7, S is either 0 (if n′ > 1) or ω1 − ω! = (1 − !)/!m

(if n′ = 1), while
∑

d n′
µ(d)gn′/d is dominated by gn′ . Therefore 0 ≤ !−mnIn − Gn ≤

(! − 1)!−mgn′ ≤ qn/!. Hence, because In ∼ qn/n and nIn ≥ qn − q/(q − 1)qn/2 + q/(q − 1),
there is a constant K = K(q, !) > 1, effectively computable, such that for any n with
ν!(n) ≥ 1, ∣∣∣∣Ωn/In − !−m

∣∣∣∣ ≤ Kq−τn with τ = 1− 1

!
.

!

Theorem 10 Assume q is not congruent to 1 (mod !) so that f , the order of q (mod !),
exceeds 1. Assume n ≥ 2 is an integer. Then we have

Ωn

In
= 1, if f ! n,

∣∣∣∣
Ωn

In
− !−α−ν!(n)

∣∣∣∣ ≤ Kq−τn, if f n,

where α = ν!(qf − 1), τ = 1 − 1/p1, p1 is the least prime factor of f , and K is a constant
depending on q and ! which can be effectively computed.

Proof. Assume f ! n. Then by Lemma 4, ! ! qn − 1. But qn − 1 is the order of the cyclic
group (Fq[X]/P )∗ for any prime P of degree n. Thus, the order of X (mod P ) can only be
prime to !, and Ωn = In.
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Assume now that f n. As in the proof of Theorem 9, we first obtain that

Gn =
∑

d n

µ(d)qn/d!−ν!(qn/d−1) − S. (8)

We then split the sum over d n in (8) into three disjoint subsums S1, S2 and S3 according

to whether f ! n

d
, f

n

d
with ! ! d, and f

n

d
with !1||d, respectively. Hence by Lemma 4, we

have, putting k = ν!(n),

S1 =
∑

f !
n

d

µ(d)qn/d =
1

!α+k
S1 +

!α+k − 1

!α+k
S1,

S2 =
1

!α+k

∑
µ(d)qn/d,

(
summing over d’s with f

n

d
and ! ! d

)

S3 =
!

!α+k

∑
µ(d)qn/d,

(
summing over d’s with f

n

d
and !1||d

)
.

Therefore,

Gn =
1

!α+k

∑

d n

µ(d)qn/d +
!− 1

!α+k

∑

f
n

d
, !1||d

µ(d)qn/d +
!α+k − 1

!α+k
S1 − S. (9)

The second term in (9) is −!− 1

!α+k

∑

d∈Dn/!

µ(d)q

n/!

d , where Dn/! is a set of divisors of n/!.

Hence by Lemma 8, this sum is less than 2(!− 1)!−α−kqn/!.

We now consider S1. If f ! n/d and f n, then the g.c.d. (f, d) > 1. So if p1 is the least
prime factor of f , then n/d ≤ n/p1. Therefore, by Lemma 8, S1 is less than 2qn/p1 . The
theorem follows by dividing (9) by nIn and having nIn ∼ qn and nIn ≥ qn− q/(q− 1)qn/2 +
q/(q − 1) as in Theorem 9. !

Theorem 11 Let ! be an odd prime. Consider the ring Fq[X], where q = pe and p is a prime
distinct from !. Then the Dirichlet density δ̄ = δ̄q,! of primes P ∈ Fq[X] such that the order
of X (mod P ) is prime to !, is

1− 1

f
+

1

!α−1(! + 1)

1

f
,

where f is the order of q (mod !) and α = ν!(qf − 1).

Consequently, the set {P ∈ Fq[X] : ! divides the order of X (mod P )} has Dirichlet
density

δ = δq,! =
1

f

[
1− 1

!α−1(! + 1)

]
.
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Proof. First we assume q ≡ 1 (mod !). Note that N is the disjoint union of the arithmetic
progressions Ak,λ, for k ≥ 0 and 1 ≤ λ ≤ !− 1, where Ak,λ = {λ!k + n!k+1; n = 0, 1, 2, . . . }.
By Theorem 10 we may use Theorem 1 with τ = 1 − 1/! and ck,λ = 1/!α+k and conclude
that Ω has a Dirichlet density δ̄ equal to

∑

k≥0

!−1∑

λ=1

ck,λ

!k+1
=

!− 1

!α+1

∑

k≥0

1

!2k
=

1

!α−1

1

! + 1
.

Note that this formula matches the density formula claimed since here f = 1.

Assume now that q &≡ 1 (mod !). Consider the arithmetic progressions Aj = {j+fn; n =
0, 1, 2, . . . } for j = 1, 2, . . . , f − 1, and Bk,λ consisting of the integers n defined by

n ≡ 0 (mod f) and n ≡ λ!k (mod !k+1),

for k ≥ 0 and 1 ≤ λ ≤ ! − 1. Note that Bk,λ is an arithmetic progression of common
difference f!k+1. Then by Theorem 10 we may apply Theorem 1 with constants cj = 1 and
bk,λ = !−(α+k) and τ = 1− 1/p1 so that Ω has Dirichlet density

δ̄ =
f−1∑

j=1

1

f
+

∑

k≥0

!−1∑

λ=1

1

f!k+1!α+k
,

yielding the claimed density. !

Remark. For ! = 3 and q = 5, we calculated
1

10

10∑

n=1

Ωn/In to be

1

10

[
1 +

1

5
+ 1 +

1

3
+ 1 +

67

645
+ 1 +

1

3
+ 1 +

1

3
· 3127

3129

]
, 0.630,

where we counted I1 = 4 discarding the prime X, since the order of X (mod X) has no
meaning. This value for n = 10 already compares well to the asymptotic density 5/8 = 0.625
of Ω.

4. An Average Density Theorem

Here the odd rational prime ! is fixed and q varies through the rational primes p. Note
that the Dirichlet densities δp,! of the sets {P ∈ Fp[X]; ! ρP (X)} in various Fp[X] depend

only on the parameters f and α. So let us write df,α,! =
1

f

[
1 − 1

!α−1(! + 1)

]
. Because the

parameters f and α fluctuate much from prime to prime, we wish to compute the average
δ! over all primes p of the δp,!’s, i.e. the quantity limN N−1

∑N
n=1 δpn,!, where pn is the n-th

prime.
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Theorem 12 The average of the Dirichlet densities δp,!, over all primes p, exists and equals

δ! =
1

!− 1

(
1− !

(! + 1)2

) ∑

f !−1

ϕ(f)

f
,

where ϕ is the Euler totient function.

Proof. Let Pf,α be the set of primes p with parameters f and α. This set has a Dirichlet
density. Indeed, p ∈ Pf,α if and only if pf ≡ 1 (mod !α) but pf &≡ 1 (mod !α+1). Now
pf ≡ 1 (mod !α) if and only if p belongs to one of the ϕ(f) residue classes in (Z/!α)∗ of order
f . By the Dirichlet Density Theorem such primes have density ϕ(f)/ϕ(!α). Therefore, the
Dirichlet density δ(Pf,α) of Pf,α is

δ(Pf,α) =
ϕ(f)

!α − !α−1
− ϕ(f)

!α+1 − !α
=

ϕ(f)

!α
,

since primes p such that pf ≡ 1 (mod !α+1) form a subset of {p; pf ≡ 1 (mod !α)}. By the
same argument as used in [Ba3], Theorem 5, we may assert that the average δ! exists and
is equal to

δ! =
∑

f !−1

∑

α≥1

δ(Pf,α)df,α,! =
∑

f !−1

∑

α≥1

ϕ(f)

!α
df,α,! =

∑

f !−1

ϕ(f)

f

∑

α≥1

(
1

!α
− 1

! + 1

1

!2α−1

)
,

which yields the value claimed in the statement of the theorem. !

Examples. For ! = 3, we have δ! = 39/64, significantly less than δ2 computed in [Ba3]

which is 29/36. For a prime ! = 2m + 1, where m is prime, δ! = 3
!− 2

(!− 1)2

(
1− !

(! + 1)2

)
.
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