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Abstract

The short answer to the question in the title is that Ron Graham, one of the leaders of Ramsey
theory, co-author of the definitive book (with Rothschild and Spencer) on the subject and co-
prover of one of its Super-Six theorems (with Leeb and Rothschild), would not choose to work
on an easy subject. A longer answer, from my enumerator’s perspective, is that Ramsey theory,
that according to Motzkin, proves that complete disorder is impossible, is equivalent to proving
that for sufficiently large universes we are guaranteed islands of order. More precisely, if X is
the random variable, “number of orderly islands”, we have to find (or bound) the number of
universes with X=0. If we knew all the moments of X, we would be done. Already the first
moment, the expectation E[X], gives us some information (as was first observed by Erdős). The
second moment is harder, but still tractable, even for humans. But for the third and fourth
moments we need computers. Beyond that, even computers seem to get stumped.

–Dedicated to Ron Graham, on his (106)8-th Birthday

Grade Inflation

Nothing is like it used to be. In the old days, an A was an A, and a C was a C. Nowadays
an A is a C and a C is an F.

But not all inflation is bad. In the old days, seventy was really old. In fact Rabbi Judah
son of Tema, in pirke avot, stated that sixty was already old, and seventy was ancient (“hoary
head”). But if you look at Ron Graham, you see the epitome of youth. So, with all due respect
to Rabbi Juda ben Tema, let me make a new, time-dependent, definition of old.

Definition: A person is old if his or her age is at least ten years older than the current age of
Ron Graham.

1 http://www.math.rutgers.edu/∼zeilberg/. First version: Nov. 24, 2005. Edited version of the
transcript of a plenary talk given (Carrollton, GA, USA, 10:30-11:20, Oct. 28, 2005) at the
INTEGERS 2005 conference in honor of Ron Graham’s 70th Birthday, Oct. 27-30, organized
by Bruce Landman. Accompanied by Maple package SMCramsey available from
http://www.math.rutgers.edu/∼zeilberg/tokhniot/SMCramsey. Supported in part by the NSF.
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Ramsey Theory

Speaking of Ron Graham, Ron is one of the leaders of this fascinating but extremely difficult
subject (see abstract). Let’s take the original Ramsey theorem, Ramsey’s theorem.

For every k there exists an n such that any party with n guests is guaranteed either to have
k people who all mutually love each other or k people who all mutually hate each other.

As we all know, the classical proof (that is not that hard) tells us that a party with
(2k

k

)

people would do the job, hence R(k, k) , the smallest party size that would guarantee a clique or
anti-clique of size k is ≤

(2k
k

)
. But what is it actually equal to? Well, R(3, 3) = 6, R(4, 4) = 18,

but all we know about R(5, 5) is that it is between 43 and 49. As for R(6, 6), forget it! Erdős’s
proverbial aliens don’t themselves know the answer, and they just used this question as an
excuse to destroy us. Even the humble fact that R(4, 5) = 25 (due to Brendan McKay and
Stanislaw Radziszkowski and their 1995 computer) took a year or so to figure out.

A pioneering result in explicit Ramsey numbers is due to the Birthday wife, Fan Chung
(Graham), who in her doctoral thesis proved that R(4, 4, 4, 4) > 50 (Discrete Math 5 (1973),
317-321). The exact value is still unknown.

From a traditional mathematician’s point of view a result such as R(4, 5) = 25 is trivial,
since it is routinely provable in finite time. All you have to do is check all the 2300 possible
parties, and check that each of them either has four people who mutually love each other or
five people who mutually hate each other. This takes only

2300

((
5
2

)
·
(

25
5

)
+

(
4
2

)
·
(

25
4

))
= (1.08 . . .) · 1096

operations. So we would have to wait many big bangs to do it by brute force.

It is also notoriously difficult to even find the asymptotics. As we all know, and Ron will
remind us in his talk, it is not even known whether limk→∞R(k, k)1/k exists, and if it does, all
we know is that its value is ≥

√
2 and ≤ 4.

I am willing to bet that the Riemann Hypothesis will be proved by the time of Ron Graham’s
100th birthday, and I am also willing to bet (a much larger amount!), that the exact value of
limk→∞R(k, k)1/k, and the exact value of R(6, 6), would be still unknown.

An Enumerator’s Perspective

Consider all 2(
n
2) parties of n people. Let a(n, k) be the number of good parties, i.e., parties

where you don’t have any k-clique and any k-anticlique. Then R(k, k) is nothing but the smallest
n for which a(n, k) = 0. So let’s find a ‘formula’ for a(n, k) using that venerable workhorse of
enumeration called the Principle of Inclusion-Exclusion (PIE).

One way to formulate it is as follows. Let U be a set of elements and P be a set of properties.
For each u ∈ U and p ∈ P, u either does or does not enjoy property p. Let X : U → Z≥0 be the
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random variable defined by X(u) := the number of properties in P enjoyed by u. Then PIE
can be phrased as follows:

P (X = 0) =
∑

s≥0

(−1)sE[
(

X

s

)
] .

So if we can compute E[
(X

s

)
], for all s, or equivalently, E[Xs] (for all s), we would be done!

Applying this to the set of all r-edge-colorings of Kn, with X(C) the number of monochro-
matic Kk, we should be able to find the number of colorings with no monochromatic Kk. The
beginning is encouraging. E[X0] = 1, of course, and E[X] =

(n
k

)
/r(

k
2)−1. Even E[X2] is not

too hard (try it!). But for E[X3], we need a computer!.

So computing P (X = 0) seems out of reach. But what about lower bounds? If we can show
that P (X = 0) > 0, we know that they are good guys, and we immediately get a lower bound
for the Ramsey number. Indeed Bonferroni’s theorem tells us that, for any odd t,

P (X = 0) ≥
t∑

s=0

(−1)sE[
(

X

s

)
] ,

and for any even t,

P (X = 0) ≤
t∑

s=0

(−1)sE[
(

X

s

)
] .

The original probabilistic method (introduced by Erdős in 1947) consists of using t = 1. It
already gives us some useful information: the lower bound R(k, k) > 2k/2. I was hoping that
using t = 3 would considerably improve this (asymptotic) lower bound, but disappointingly, it
does not seem to improve it at all. It seems that we need more sophisticated sieves, in the style
of the Brun and linear sieves in number theory, or a refinement of the Lovász Local Lemma.

So let’s forget about the initial motivation. It is still interesting to have an explicit closed
form formula, for symbolic n and r and numeric m and k for the m-th moment of the random
variable “number of monochromatic Kk’s in an r-coloring of the edges of Kn”.

The Maple package SMCramsey

This article is accompanied by the Maple package SMCramsey available from
http://www.math.rutgers.edu/∼zeilberg/tokhniot/SMCramsey.

Alas, already for the fourth moment it takes a very long time. I am sure that more clever
programming would yield an explict expression for the fourth moment, but the fifth moment
really seems out of reach.

More interesting than the output is the method of completely automatic symbol-crunching.
Let’s describe it briefly.
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Write
X =

∑

S

XS ,

where the sum is over all k-subsets of {1, . . . , n}, and XS is the indicator random variable that
is 1 if the subgraph of Kn induced by S is monochromatic. Of course E[XS ] = 1/r(

k
2)−1. It

follows by linearity of expectation and symmetry that

E[X] =
(n

k

)

r(
k
2)−1

.

Now

E[X2] = E[

(
∑

S1

XS1

)(
∑

S2

XS2

)
] =

∑

[S1,S2]

E[XS1XS2 ] ,

where the sum is over all ordered pairs of k-subsets of {1, . . . , n}. Writing S = S1 ∪ S2, we get
that k ≤ |S| ≤ 2k. Of course for a given size of S, say, K, all are ‘isomorphic’, and there are

(n
K

)

of them. Without loss of generality we can label the vertices of S1∪S2 by 1, 2, . . . ,K. We have
to see how to pick S1 and S2 such that S = S1∪S2 and for each of these, figure-out E[XS1XS2 ].
If S1 and S2 are disjoint or only share one vertex (K = 2k, K = 2k − 1 respectively) then
E[XS1XS2 ] = (1/r(

k
2)−1)2. If e := |S1∩S2| ≥ 2 then all the edges must have the same color and

then E[XS1XS2 ] = 1/r2(k
2)−(e

2)−1. Adding up all the cases would give us the second moment.

Let’s now consider the general case, the m-th moment. Now we get m-tuples [S1, . . . , Sm]
of k-subsets of {1, . . . , n} and, denoting S := S1 ∪ . . .∪Sm, we have k ≤ |S| ≤ mk. What is the
contribution of a single E[XS1XS2 · · ·XSm ] to the sum? Let v := |S| and e the total number
of edges in the union of the sets of edges of the complete graphs on Si (i = 1.. . . . ...m). Also
form a ‘meta-graph’ whose vertices are the Si’s and there is a meta-edge between Si and Sj if
|Si ∩ Sj | > 1. Let c be the number of connected components of this meta-graph. We have

E[XS1XS2 · · ·XSm ] = rc−e .

But each and every m-tuple [S1, . . . , Sm] is isomorphic to such an m-tuple in which the smallest
label in S := S1 ∪ . . . ∪ Sm is replaced by 1, the second smallest by 2, etc. For such a reduced
[S1, . . . , Sm], define the weight to be (

n

v

)
rc−e .

Note that for numeric m and k, there are only finitely many such labelled m-tuples of k-sets
[S1, . . . , Sm], whose union is {1, . . . , v}, for some v between k and mk. So a naive approach to
finding the expression, in n and r, is to have the computer construct this finite set of objects,
compute the weight for each of them, and then add up these finitely many expressions, getting
an explicit (symbolic) algebraric expression in n and r.

Unfortunately, very soon, the ‘finitely many’ gets to be too many even for the fastest and
largest computers, and we have yet another indication op why Ramsey Theory is sooo hard.

The above ‘algorithm’ is really naive weighted counting. One literally constucts the set itself,
and adds-up the weights of its elements. It is analagous (in ordinary counting) to computing
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20! in Maple by doing nops(permute(20));. Of course, a much better way, due to Rabbi Levi
Ben Gerson, is to establish, and then use, the recurrence n! = n(n− 1)!.

What we need in our case is to partition our set, of m-tupes of k-sets, lets’s call is A(m,k),
into one- or two- or whatever- parameter subsets B(m,k; a1, a2, . . .) and find a structre theorem
that expresses these in terms of B’s with smaller parameters. This structre theorem should
enable one to take weight and get a recurrence scheme for the weight-enumerators of the B’s,
that can be added up to yield the weight-enumerator of A(m,k), our desired quantity.

I believe that this approach should work with numeric (specific) k, but I doubt whether it
would work with symbolic (i.e. general) k.

Two Computer-Generated Theorems

Theorem K3. For any r-coloring of the edges of Kn, C, let X(C) be the number of monochro-
matic triangles. Then, of course E[X] =

(n
3

)
/r2. The variance is:

(n
3

)
(r − 1)(r + 1)

r4
,

and the third moment (about the mean) is
(n
3

)
(r − 1)(r3 + r2 − 2r + 6n− 20)

r6
.

Theorem K4. For any r-coloring of the edges of Kn, C, let X(C) be the number of monochro-
matic K4. Then, of course E[X] =

(n
4

)
/r5. The variance is:

n(n− 1)(n− 2)(n− 3)(r − 1)(r4 + r3 + r2 + 4rn− 15r + 4n− 15)
24r10

,

and the third moment (about the mean) is

n(n− 1)(n− 2)(n− 3)(r − 1)
24r15

·

(r9 + r8 + r7 +12nr6− 47r6 +24nr5− 95r5 +12nr4− 50r4 +40n2r3− 348nr3 +750r3 +76n2r2

−672nr2 + 1470r2 − 44n2r + 348rn− 690r + 24n3 − 401n2 + 2097n− 3510) .


