INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A33

ON COVERING NUMBERS

Zhi-Wei Sun¹

Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China zwsun@nju.edu.cn

Received: 1/2/06, Accepted: 8/14/06

Abstract

A positive integer n is called a covering number if there are some distinct divisors n_1, \ldots, n_k of n greater than one and some integers a_1, \ldots, a_k such that \mathbb{Z} is the union of the residue classes $a_1 \pmod{n_1}, \ldots, a_k \pmod{n_k}$. A covering number is said to be primitive if none of its proper divisors is a covering number. In this paper we give some sufficient conditions for n to be a (primitive) covering number; in particular, we show that for any $r = 2, 3, \ldots$ there are infinitely many primitive covering numbers having exactly r distinct prime divisors. In 1980 P. Erdős asked whether there are infinitely many positive integers n such that among the subsets of $D_n = \{d \ge 2 : d \mid n\}$ only D_n can be the set of all the moduli in a cover of \mathbb{Z} with distinct moduli; we answer this question affirmatively. We also conjecture that any primitive covering number must have a prime factorization $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ (with p_1, \ldots, p_r in a suitable order) which satisfies $\prod_{0 \le t \le s} (\alpha_t + 1) \ge p_s - 1$ for each $1 \le s \le r$, with strict inequality when s = r.

-Dedicated to Prof. R. L. Graham for his 70th birthday

1. Introduction

For $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+ = \{1, 2, 3, ...\}$, $a \pmod{n} = \{a + nx : x \in \mathbb{Z}\}$ is called a residue class with modulus n. If every integer lies in at least one of the residue classes

¹Supported by the National Natural Science Fund for Distinguished Young Scholars (No. 10425103) and a Key Program of NSF (No. 10331020) in China. Webpage: http://pweb.nju.edu.cn/zwsun/

 $a_1 \pmod{n_1}, \ldots, a_k \pmod{n_k}$, then we call the finite system

(1.0)
$$A = \{a_i (\text{mod } n_i)\}_{i=1}^k$$

a cover of \mathbb{Z} (or covering system), and n_1, \dots, n_k its moduli. If (1.0) forms a cover of \mathbb{Z} but none of its proper subsystems does, then (1.0) is said to be a minimal cover of \mathbb{Z} .

In the 1930s P. Erdős (cf. [E50]) invented the concept of a cover of \mathbb{Z} and gave the following example

 $\{0 \pmod{2}, 0 \pmod{3}, 1 \pmod{4}, 5 \pmod{6}, 7 \pmod{12}\}$

whose moduli 2, 3, 4, 6, 12 are distinct. Covers of \mathbb{Z} with distinct moduli are of particular interest and they have some surprising applications (see, e.g., [F] and [S00]). For problems and results concerning covers of \mathbb{Z} and their generalizations the reader may consult [E97], [FFKPY], [Gu], [PS], [S03], [S04] and [S05].

Here is a famous open conjecture.

The Erdős–Selfridge Conjecture. If (1.0) forms a cover of \mathbb{Z} with the moduli n_1, \ldots, n_k distinct and greater than one, then n_1, \ldots, n_k are not all odd.

Following J. A. Haight [H] we introduce the following concept.

Definition 1.1. A positive integer n is called a *covering number* if there is a cover of \mathbb{Z} with all the moduli distinct, greater than one and dividing n.

Erdős' example shows that $2^2 \cdot 3 = 12$ is a covering number. By density considerations, if n is a covering number then $\sum_{1 < d \mid n} 1/d \ge 1$; it follows that none of $2, 3, \ldots, 11$ is a covering number. Moreover, Example 3 of [S96] indicates that $2^{n-1}n$ is a covering number for every $n = 3, 5, 7, \ldots$

In the direction of the Erdős–Selfridge conjecture, S. Guo and Z. W. Sun [GS] proved that any odd and squarefree covering number should have at least 22 distinct prime divisors.

If (1.0) is a cover of \mathbb{Z} with $n_1 \leq \cdots \leq n_{k-1} < n_k$, then $\sum_{i=1}^{k-1} 1/n_i \geq 1$ by Theorem I (iv) of Sun [S96]. So, a necessary condition for $n \in \mathbb{Z}^+$ to be a covering number is that

(1.1)
$$\frac{\sigma(n)}{n} = \sum_{d|n} \frac{1}{d} \ge 2 + \frac{1}{n},$$

where $\sigma(n)$ is the sum of all positive divisors of n. However, as shown by Haight [H], there does not exist a constant c > 0 such that $n \in \mathbb{Z}^+$ is a covering number whenever $\sigma(n)/n > c$. Let (1.0) be a cover of \mathbb{Z} , and set $w(r) = |\{1 \leq i \leq k : r \equiv a_i \pmod{n_i}\}|$ for $r = 0, \ldots, N-1$, where $N = [n_1, \ldots, n_k]$ is the least common multiple of n_1, \ldots, n_k . By Theorem 5(ii) and Example 6 of [S01],

$$\sum_{\substack{1 \leq i \leq k \\ \gcd(x+a_i,n_i)=1}} \frac{1}{\varphi(n_i)} = \sum_{\substack{0 \leq r < N \\ \gcd(x+r,N)=1}} \frac{w(r)}{\varphi(N)} \ge \sum_{\substack{0 \leq r < N \\ \gcd(x+r,N)=1}} \frac{1}{\varphi(N)} = 1 \quad \text{for all } x \in \mathbb{Z},$$

where φ is Euler's totient function. If $1 < n_1 < \cdots < n_k$ and $x \equiv -a_i \pmod{n_i}$ for all those $i \in I = \{1 \leq j \leq k : n_j \text{ is a prime}\}$ (such an integer x exists by the Chinese Remainder Theorem), then

$$\sum_{\substack{i=1\\i\not\in I}}^k \frac{1}{\varphi(n_i)} \geqslant \sum_{\substack{1\leqslant i\leqslant k\\\gcd(x+a_i,n_i)=1}} \frac{1}{\varphi(n_i)} \geqslant 1.$$

Thus, if $n \in \mathbb{Z}^+$ is a covering number then we have

(1.2)
$$\sum_{\substack{d|n\\d \text{ is composite}}} \frac{1}{\varphi(d)} \ge 1.$$

Throughout this paper, for a predicate P we let $\llbracket P \rrbracket$ be 1 or 0 according as P holds or not. For a real number x, as usual we use $\lfloor x \rfloor$ and $\lceil x \rceil$ to denote the greatest integer not exceeding x and the least integer greater than or equal to x, respectively.

Our first theorem in this paper gives a sufficient condition for covering numbers.

Theorem 1.1. Let p_1, \ldots, p_r be distinct primes, and let $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}^+$. Suppose that

(1.3)
$$\prod_{0 < t < s} (\alpha_t + 1) \ge p_s - \llbracket r \neq s \rrbracket \quad \text{for all } s = 1, \dots, r.$$

Then $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is a covering number.

Remark 1.1. As usual the empty product $\prod_{0 < t < 1} (\alpha_t + 1)$ is regarded as 1, thus (1.3) implies that $p_1 = 2 \leq r$.

The Erdős–Selfridge conjecture can be viewed as the converse of the following result.

Corollary 1.1. Let $p_1 = 2 < p_2 < \cdots < p_r$ (r > 1) be distinct primes. Then there are $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}^+$ such that $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is a covering number.

Proof. For $t = 1, \ldots, r - 1$ we set

$$\alpha_t = \left\lceil \frac{p_{t+1} - \left[\!\left[t \neq r - 1\right]\!\right]}{p_t - 1} \right\rceil - 1$$

4 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A33

Then

$$\prod_{0 < t < s} (\alpha_t + 1) \ge \prod_{0 < t < s} \frac{p_{t+1} - [t+1 \neq r]}{p_t - [t \neq r]} = \frac{p_s - [s \neq r]}{p_1 - [1 \neq r]} = p_s - [r \neq s]$$

for all s = 1, ..., r. Thus, by Theorem 1.1, $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is a covering number.

In contrast with Corollary 1.1, we have the following second theorem.

Theorem 1.2. Let $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}^+$. Then $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is a covering number for some distinct primes $p_1 < \cdots < p_r$, if and only if one of the following (i)–(iii) holds.

(i) $r = 2 \leq \alpha_1$; (ii) r = 3 and $\max\{\alpha_1, \alpha_2\} \geq 2$; (iii) $r \geq 4$.

Definition 1.2. A covering number is called a *primitive covering number* if none of its proper divisors is a covering number.

Our third theorem provides a sufficient condition for primitive covering numbers.

Theorem 1.3. Let $p_1 = 2 < p_2 < \cdots < p_r$ (r > 1) be distinct primes. Suppose further that $p_t - 1 \mid p_{t+1} - 1$ for all 0 < t < r - 1, and $p_r \ge (p_{r-1} - 2)(p_{r-1} - 3)$. Then

$$p_1^{\frac{p_2-1}{p_1-1}-1} \cdots p_{r-2}^{\frac{p_{r-1}-1}{p_{r-2}-1}-1} p_{r-1}^{\lfloor \frac{p_r-1}{p_{r-1}-1} \rfloor} p_r$$

is a primitive covering number.

Remark 1.2. By Theorem 1.3, the number $2 \cdot 3 \cdot 5 \cdot 7 = 210$ is a primitive covering number; Erdős ever constructed a cover of \mathbb{Z} whose moduli are all the 14 proper divisors of 210 (cf. [Gu] or [GS]).

Corollary 1.2. For any r = 2, 3, ... there are infinitely many primitive covering numbers having exactly r distinct prime divisors.

Proof. By Dirichlet's theorem (cf. [R, pp. 237–244]), for any $m \in \mathbb{Z}^+$ there are infinitely many primes p such that $m \mid p - 1$. So, the desired result follows from Theorem 1.3.

As an application of Theorem 1.3 and its proof, here we give our last theorem.

Theorem 1.4. (i) An integer n > 1 with at most two distinct prime divisors is a primitive covering number if and only if $n = 2^{p-1}p$ for some odd prime p.

(ii) A positive integer $n \equiv 0 \pmod{3}$ with exactly three distinct prime divisors is a primitive covering number if and only if $n = 2 \cdot 3^{(p-1)/2}p$ for some prime p > 3.

(iii) If p > 5 is a prime, then both $2^3 5^{\lfloor (p-1)/4 \rfloor} p$ and $2 \cdot 3 \cdot 5^{\lfloor (p-1)/4 \rfloor} p$ are primitive covering numbers. If p > 7 is a prime, then $2 \cdot 3^2 7^{\lfloor (p-1)/6 \rfloor} p$ is a primitive covering number, and so is $2^5 7^{\lfloor (p-1)/6 \rfloor} p$ provided that $p \neq 13, 19$.

Remark 1.3. Note that $2^57^2 \cdot 13$ and $2^57^3 \cdot 19$ are both covering numbers by Theorem 1.1. But we don't know whether they are primitive covering numbers.

The following corollary provides an affirmative answer to a question of Erdős [E80].

Corollary 1.3. There are infinitely many positive integers n such that among the subsets of $D_n = \{d \ge 2 : d \mid n\}$ only D_n can be the set of all the moduli in a cover of \mathbb{Z} with distinct moduli.

Proof. Let p be one of the infinitely many odd primes. By Theorem 1.4(i), $2^{p-1}p$ is a primitive covering number.

Let (1.0) be any minimal cover of \mathbb{Z} with $1 < n_1 < \cdots < n_k$ and $[n_1, \ldots, n_k] = 2^{p-1}p$. We want to show that $\{n_1, \ldots, n_k\} = \{d > 1 : d \mid 2^{p-1}p\}$. By a conjecture of \check{S} . Znám proved by R. J. Simpson [Si], we have

$$k \ge 1 + f([n_1, \dots, n_k]) = 1 + (p-1)(2-1) + (p-1) = 2p - 1,$$

where the Mycielski function $f : \mathbb{Z}^+ \to \mathbb{Z}$ is given by $f(\prod_{t=1}^r p_t^{\alpha_t}) = \sum_{t=1}^r \alpha_t(p_t - 1)$ with p_1, \ldots, p_r distinct primes and $\alpha_1, \ldots, \alpha_r$ nonnegative integers (cf. [S90] and [Z]). On the other hand,

$$k \leq |\{d > 1 : d \mid 2^{p-1}p\}| = |\{2^{\alpha}p^{\beta} : \alpha = 0, \dots, p-1; \beta = 0, 1\}| - 1 = 2p - 1.$$

So $k = 2p - 1 = |\{d > 1 : d \mid 2^{p-1}p\}|$ and we are done.

In the next section we are going to prove Theorems 1.1 and 1.2. Section 3 is devoted to our proofs of Theorems 1.3 and 1.4. To conclude this section we propose the following conjecture concerning the converse of Theorem 1.1.

Conjecture 1.1. Any primitive covering number can be written in the form $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ with p_1, \ldots, p_r distinct primes and $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}^+$, such that (1.3) is satisfied.

Remark 1.4. Actually the author made this conjecture on July 16, 1988. Since (1.3) implies $p_1 = 2$, Conjecture 1.1 is stronger than the Erdős–Selfridge conjecture.

2. Proofs of Theorems 1.1 and 1.2

6 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A33

For $n \in \mathbb{Z}^+$ let d(n) denote the number of distinct positive divisors of n. If n has the factorization $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ where p_1, \ldots, p_r are distinct primes and $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}^+$, then it is well known that $d(n) = \prod_{t=1}^r (\alpha_t + 1)$.

Proof of Theorem 1.1. For each $s = 1, \ldots, r$, since

$$d(p_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}}) = \prod_{0 < t < s} (\alpha_t + 1) \ge p_s - \llbracket r \neq s \rrbracket$$

there exist $p_s - [\![r \neq s]\!]$ distinct positive divisors $d_1^{(s)}, \ldots, d_{p_s - [\![r \neq s]\!]}^{(s)}$ of $\prod_{0 < t < s} p_t^{\alpha_t}$. Let \mathcal{A} be the system consisting of $0 \pmod{d_{p_r}^{(r)} p_r^{\alpha_r}}$ and the following $\sum_{s=1}^r \alpha_s(p_s - 1)$ residue classes:

$$jp_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}} p_s^{\alpha-1} \pmod{d_j^{(s)} p_s^{\alpha}} \quad (\alpha = 1, \dots, \alpha_s; \ j = 1, \dots, p_s - 1; \ s = 1, \dots, r).$$

Then all the moduli of \mathcal{A} are distinct. Observe that

$$\bigcup_{j=1}^{p_s-1} jp_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}} p_s^{\alpha-1} (\text{mod } d_j^{(s)} p_s^{\alpha})$$

$$\supseteq \bigcup_{j=1}^{p_s-1} jp_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}} p_s^{\alpha-1} (\text{mod } p_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}} p_s^{\alpha})$$

$$=0 (\text{mod } p_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}} p_s^{\alpha-1}) \setminus 0 (\text{mod } p_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}} p_s^{\alpha})$$

and

$$\bigcup_{\alpha=1}^{\alpha_{s}} \left(0(\text{mod } p_{1}^{\alpha_{1}} \cdots p_{s-1}^{\alpha_{s-1}} p_{s}^{\alpha-1}) \setminus 0(\text{mod } p_{1}^{\alpha_{1}} \cdots p_{s-1}^{\alpha_{s-1}} p_{s}^{\alpha}) \right) \\= 0(\text{mod } p_{1}^{\alpha_{1}} \cdots p_{s-1}^{\alpha_{s-1}}) \setminus 0(\text{mod } p_{1}^{\alpha_{1}} \cdots p_{s-1}^{\alpha_{s-1}} p_{s}^{\alpha_{s}}).$$

If an integer x is not in the residue class $0 \pmod{d_{p_r}^{(r)} p_r^{\alpha_r}}$, then $x \neq 0 \pmod{p_1^{\alpha_1} \cdots p_r^{\alpha_r}}$ and hence

$$x \in 0 \pmod{1} \setminus 0 \pmod{p_1^{\alpha_1} \cdots p_r^{\alpha_r}} = \bigcup_{s=1}^r \left(0 \left(\mod \prod_{0 < t < s} p_t^{\alpha_t} \right) \setminus 0 \left(\mod \prod_{t=1}^s p_t^{\alpha_t} \right) \right).$$

Therefore \mathcal{A} does form a cover of \mathbb{Z} . \Box

Remark 2.1. In the proof of Theorem 1.1, we make use of some basic ideas in [Z] and [S90].

Lemma 2.1. Let p_1, \ldots, p_r be distinct primes and $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}^+$. Suppose that $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is a covering number but $\prod_{0 < t < r} p_t^{\alpha_t}$ is not. Then we must have $\prod_{0 < t < r} (\alpha_t + 1) \ge p_r$.

Proof. Let (1.0) be a minimal cover of \mathbb{Z} with $1 < n_1 < \cdots < n_k$ and $[n_1, \ldots, n_k] \mid p_1^{\alpha_1} \cdots p_r^{\alpha_r}$. Since $\prod_{0 < t < r} p_t^{\alpha_t}$ is not a covering number, p_r divides $[n_1, \ldots, n_k]$. Let $\alpha \in \mathbb{Z}^+$ be the largest integer such that p_r^{α} divides at least one of the moduli n_1, \ldots, n_k . Then we have

$$|\{1 \leqslant i \leqslant k : p_r^{\alpha} \mid n_i\}| \geqslant p_r$$

by [SS, Theorem 1] or [S96, Corollary 3]. Note that

$$|\{1 \le i \le k : p_r^{\alpha} \mid n_i\}| \le |\{dp_r^{\alpha} : d \mid p_1^{\alpha_1} \cdots p_{r-1}^{\alpha_{r-1}}\}| = d\left(\prod_{0 < t < r} p_t^{\alpha_t}\right) = \prod_{0 < t < r} (\alpha_t + 1).$$

So the desired result follows.

Proof of Theorem 1.2. If (i) holds, then $2^{\alpha_1}3^{\alpha_2}$ is a covering number by Theorem 1.1 since $1 \ge 2-1$ and $\alpha_1 + 1 \ge 3$. If (ii) is valid, then $2^{\alpha_1}3^{\alpha_2}5^{\alpha_3}$ is a covering number by Theorem 1.1, since $\alpha_1 + 1 \ge 3 - 1$ and $(\alpha_1 + 1)(\alpha_2 + 1) \ge (1 + 1)(2 + 1) > 5$. When (iii) happens (i.e., $r \ge 4$), letting p_1, \ldots, p_r be the first r primes in the ascending order, we then have $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7$, hence $\prod_{s=1}^r p_s^{\alpha_s}$ is a covering number by Theorem 1.1, because $\alpha_1 + 1 \ge 3 - 1, (\alpha_1 + 1)(\alpha_2 + 1) \ge 5 - 1$, and $p_s < 2^{s-1} \le \prod_{0 < t < s} (\alpha_t + 1)$ for $s \ge 4$ (by mathematical induction and Bertrand's postulate (cf. [R, pp. 220–221]) proved by Chebyshev).

Now suppose that there are distinct primes $p_1 < \cdots < p_r$ such that $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is a covering number. Let d > 1 be the smallest covering number dividing n. Then d is a primitive covering number. By Lemma 2.1, d cannot be a prime power. So $r \ge 2$. If r = 2 and $\alpha_1 = 1$, then $d = p_1 p_2^\beta$ for some $\beta = 1, \ldots, \alpha_2$, thus by Lemma 2.1 we get the contradiction $1 + 1 \ge p_2 > p_1 \ge 2$. If r = 3 and $\alpha_1 = \alpha_2 = 1$, then $d = p_1 p_2 p_3^\gamma$ for some $\gamma = 1, \ldots, \alpha_3$, hence by Lemma 2.1 we have $(1 + 1)(1 + 1) \ge p_3 \ge 5$ which is impossible. Therefore one of (i)–(iii) holds.

3. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Set

$$\alpha_1 = \frac{p_2 - 1}{p_1 - 1} - 1, \dots, \ \alpha_{r-2} = \frac{p_{r-1} - 1}{p_{r-2} - 1} - 1 \text{ and } \alpha_{r-1} = \left\lfloor \frac{p_r - 1}{p_{r-1} - 1} \right\rfloor.$$

Then

$$\prod_{0 < t < s} (\alpha_t + 1) = \prod_{0 < t < s} \frac{p_{t+1} - 1}{p_t - 1} = \frac{p_s - 1}{p_1 - 1} = p_s - 1$$

for s = 1, ..., r - 1, and

$$\prod_{0 < t < r} (\alpha_t + 1) = \prod_{0 < t < r-1} (\alpha_t + 1) \times \left(\left\lfloor \frac{p_r - 1}{p_{r-1} - 1} \right\rfloor + 1 \right) > (p_{r-1} - 1) \frac{p_r - 1}{p_{r-1} - 1} = p_r - 1.$$

Thus $n = p_1^{\alpha_1} \cdots p_{r-1}^{\alpha_{r-1}} p_r$ is a covering number in light of Theorem 1.1.

Let d > 1 be the smallest covering number dividing n. It remains to show that d = n.

Suppose that p_s is the maximal prime divisor of d. If $s \neq r$, then $\prod_{0 < t < s} (\alpha_t + 1) = p_s - 1 < p_s$ which contradicts Lemma 2.1. Therefore, d has the form $p_1^{\beta_1} \cdots p_{r-1}^{\beta_{r-1}} p_r$ where $\beta_t \in \{0, \ldots, \alpha_t\}$

$$\prod_{0 < t < r} (\beta_t + 1) \ge p_r.$$

If $\beta_{r-1} < \alpha_{r-1}$, then

$$\prod_{0 < t < r} (\beta_t + 1) \leqslant \prod_{0 < t < r-1} (\alpha_t + 1) \times \alpha_{r-1} = (p_{r-1} - 1) \left\lfloor \frac{p_r - 1}{p_{r-1} - 1} \right\rfloor \leqslant p_r - 1 < p_r.$$

So we must have $\beta_{r-1} = \alpha_{r-1}$.

Assume that $\beta_j < \alpha_j$ for some $1 \leq j \leq r-2$. Then

$$\prod_{t=1}^{r-1} (\beta_t + 1) \leqslant \prod_{t=1}^{r-2} (\alpha_t + 1) \times \frac{\alpha_j}{\alpha_j + 1} (\alpha_{r-1} + 1) = m_j$$

where

$$m = (p_{r-1} - 1) \left(1 - \frac{p_j - 1}{p_{j+1} - 1} \right) \left(\left\lfloor \frac{p_r - 1}{p_{r-1} - 1} \right\rfloor + 1 \right)$$

$$\leq (p_{r-1} - 1) \left(1 - \frac{p_j - 1}{p_{j+1} - 1} \right) \left(\frac{p_r - 1}{p_{r-1} - 1} + 1 \right)$$

$$= (p_{r-1} - 2 + p_r) \left(1 - \frac{p_j - 1}{p_{j+1} - 1} \right).$$

Since

$$p_r \ge (p_{r-1} - 3)(p_{r-1} - 1 - 1) \ge (p_{r-1} - 3)\left(\frac{p_{j+1} - 1}{p_j - 1} - 1\right),$$

we have

$$(p_{r-1}-2)\left(\frac{p_{j+1}-1}{p_j-1}-1\right) - p_r < \frac{p_{j+1}-1}{p_j-1}$$

and hence

$$m \leq (p_{r-1}-2)\left(1-\frac{p_j-1}{p_{j+1}-1}\right) + p_r - p_r \frac{p_j-1}{p_{j+1}-1} < p_r+1.$$

We claim that

$$m = (p_j - 1) \left(\frac{p_{r-1} - 1}{p_j - 1} - \frac{p_{r-1} - 1}{p_{j+1} - 1} \right) \left(\left\lfloor \frac{p_r - 1}{p_{r-1} - 1} \right\rfloor + 1 \right) \neq p_r.$$

In fact, m is composite when j > 1; if j = 1 then

$$\frac{p_{r-1}-1}{p_j-1} - \frac{p_{r-1}-1}{p_{j+1}-1} = p_{r-1} - 1 - \frac{p_{r-1}-1}{p_2-1} \ge \frac{p_{r-1}-1}{2} > 1$$

unless $p_{r-1} = 3$ in which case

$$m = \left\lfloor \frac{p_r - 1}{3 - 1} \right\rfloor + 1 = \frac{p_r + 1}{2} < p_r.$$

In view of the above,

$$p_r \leqslant \prod_{t=1}^{r-1} (\beta_t + 1) \leqslant m < p_r.$$

This leads to a contradiction.

By the above,
$$\beta_j = \alpha_j$$
 for all $j = 1, ..., r - 1$, and thus $d = n$. We are done.

Proof of Theorem 1.4. (i) If p > 2 is a prime, then $2^{p-1}p = 2^{\lfloor (p-1)/(2-1) \rfloor}p$ is a primitive covering number by Theorem 1.3 in the case r = 2.

By Lemma 2.1, any prime power cannot be a primitive covering number.

Now suppose that $n = p_1^{\alpha_1} p_2^{\alpha_2}$ is a primitive covering number, where $p_1 < p_2$ are two distinct primes, and $\alpha_1, \alpha_2 \in \mathbb{Z}^+$. Then

$$2 < \frac{\sigma(n)}{n} < \left(1 + \frac{1}{p_1} + \frac{1}{p_1^2} + \cdots\right) \left(1 + \frac{1}{p_2} + \frac{1}{p_2^2} + \cdots\right) = \frac{p_1}{p_1 - 1} \cdot \frac{p_2}{p_2 - 1}.$$

If $p_1 > 2$, then

$$2 < \frac{p_1}{p_1 - 1} \cdot \frac{p_2}{p_2 - 1} \leqslant \frac{3}{3 - 1} \cdot \frac{5}{5 - 1} = \frac{15}{8} < 2$$

which leads to a contradiction. So $p_1 = 2$. Observe that $\alpha_1 + 1 \ge p_2$ by Lemma 2.1. Therefore n is a multiple of $2^{p_2-1}p_2$. Since both $2^{p_2-1}p_2$ and n are primitive covering numbers, we must have $n = 2^{p_2-1}p_2$.

(ii) If p > 3 is a prime, then

$$2 \cdot 3^{\frac{p-1}{2}} p = 2^{\frac{3-1}{2-1}-1} 3^{\frac{p-1}{3-1}} p$$

is a primitive covering number by Theorem 1.3 in the case r = 3.

Now assume that $n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3}$ is a primitive covering number with $n \equiv 0 \pmod{3}$, where $p_1 < p_2 < p_3$ are distinct primes, and $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{Z}^+$. If $p_1 \ge 3$, then

$$\begin{split} \sum_{\substack{d|n\\d \text{ is composite}}} \frac{1}{\varphi(d)} &< \sum_{s=1}^{3} \frac{1}{p_{s} - 1} \left(\frac{1}{p_{s}} + \frac{1}{p_{s}^{2}} + \cdots \right) \\ &+ \sum_{1 \leqslant s < t \leqslant 3} \frac{1}{(p_{s} - 1)(p_{t} - 1)} \left(1 + \frac{1}{p_{s}} + \frac{1}{p_{s}^{2}} + \cdots \right) \left(1 + \frac{1}{p_{t}} + \frac{1}{p_{t}^{2}} + \cdots \right) \\ &+ \frac{1}{(p_{1} - 1)(p_{2} - 1)(p_{3} - 1)} \prod_{s=1}^{3} \left(1 + \frac{1}{p_{s}} + \frac{1}{p_{s}^{2}} + \cdots \right) \\ &= \sum_{s=1}^{3} \frac{1}{(p_{s} - 1)^{2}} + \sum_{1 \leqslant s < t \leqslant 3} \frac{p_{s}p_{t}}{(p_{s} - 1)^{2}(p_{t} - 1)^{2}} + \frac{p_{1}p_{2}p_{3}}{(p_{1} - 1)^{2}(p_{2} - 1)^{2}(p_{3} - 1)^{2}} \\ &\leqslant \frac{1}{(3 - 1)^{2}} + \frac{1}{(5 - 1)^{2}} + \frac{1}{(7 - 1)^{2}} + \frac{3 \cdot 5}{2^{2}4^{2}} + \frac{3 \cdot 7}{2^{2}6^{2}} + \frac{3 \cdot 5 \cdot 7}{2^{2}4^{2}6^{2}} = \frac{1905}{2304} \end{split}$$

and this contradicts (1.2). So $p_1 = 2$. Since $3 \mid n$, we have $p_2 = 3$. By part (i), $2^2 \cdot 3$ is a primitive covering number and hence it does not divide n. Therefore n has the form $2 \cdot 3^{\alpha} p$, where p > 3 is a prime and $\alpha \in \mathbb{Z}^+$.

By Lemma 2.1, $(1+1)(\alpha+1) \ge p$. Thus $\alpha \ge (p-1)/2$ and hence *n* is a multiple of $2 \cdot 3^{(p-1)/2}p$. As both $2 \cdot 3^{(p-1)/2}p$ and *n* are primitive covering numbers, we must have $n = 2 \cdot 3^{(p-1)/2}p$.

(iii) If p > 5 is a prime, then by Theorem 1.3 both

$$2^{3}5^{\lfloor \frac{p-1}{4} \rfloor}p = 2^{\frac{5-1}{2-1}-1}5^{\lfloor \frac{p-1}{5-1} \rfloor}p \quad \text{and} \quad 2 \cdot 3 \cdot 5^{\lfloor \frac{p-1}{4} \rfloor}p = 2^{\frac{3-1}{2-1}-1}3^{\frac{5-1}{3-1}-1}5^{\lfloor \frac{p-1}{5-1} \rfloor}p$$

are primitive covering numbers.

If p is a prime greater than 19, then p > (7-2)(7-3), hence both

$$2 \cdot 3^2 \cdot 7^{\lfloor \frac{p-1}{6} \rfloor} p = 2^{\frac{3-1}{2-1}-1} 3^{\frac{7-1}{3-1}-1} 7^{\lfloor \frac{p-1}{7-1} \rfloor} p \quad \text{and} \quad 2^5 7^{\lfloor \frac{p-1}{6} \rfloor} p = 2^{\frac{7-1}{2-1}-1} 7^{\lfloor \frac{p-1}{7-1} \rfloor} p$$

are primitive covering numbers by Theorem 1.3. When $p \in \{11, 13, 17, 19\}$, we have

$$p > (7-3)\left(\max\left\{\frac{7-1}{3-1}, \frac{3-1}{2-1}\right\} - 1\right) = 8$$

and hence $2 \cdot 3^2 \cdot 7^{\lfloor \frac{p-1}{6} \rfloor} p$ is still a primitive covering number by the proof of Theorem 1.3. If p is 11 or 17, then

$$m = (7-1)\left(1 - \frac{2-1}{7-1}\right)\left(\left\lfloor\frac{p-1}{7-1}\right\rfloor + 1\right) < p+1$$

and hence $2^57^{\lfloor \frac{p-1}{6} \rfloor}p$ is a primitive covering number by the proof of Theorem 1.3.

Combining the above we have shown Theorem 1.4.

Acknowledgment. The author thanks the referee for helpful comments.

References

- [E50] P. Erdős, On integers of the form $2^k + p$ and some related problems, Summa Brasil. Math. **2** (1950), 113–123.
- [E80] P. Erdős, A survey of problems in combinatorial number theory, Ann. Discrete Math. 6 (1980), 89–115.
- [E97] P. Erdős, Some of my favorite problems and results, in: The mathematics of Paul Erdős, I, 47–67, Algorithms Combin., 13, Springer, Berlin, 1997.
- [F] M. Filaseta, Coverings of the integers associated with an irreducibility theorem of A. Schinzel, in: Number Theory for the Millennium (Urbana, IL, 2000), Vol. II, pp. 1-24, A K Peters, Natick, MA, 2002.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A33 11

- [FFKPY] M. Filaseta, K. Ford, S. Konyagin, C. Pomerance and G. Yu, Sieving by large integers and covering systems of congruences, J. Amer. Math. Soc., in press. arXiv:math.NT/0507374.
- [GS] S. Guo and Z. W. Sun, On odd covering systems with distinct moduli, Adv. in Appl. Math. 35 (2005), 182–187.
- [Gu] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, New York, 2004.
- [H] J. A. Haight, Covering systems of congruences, a negative result, Mathematika 26 (1979), 53–61.
- [PS]
 S. Porubský and J. Schönheim, Covering systems of Paul Erdős: past, present and future, in: Paul Erdős and his Mathematics. I (edited by G. Halász, L. Lovász, M. Simonvits, V. T. Sós), Bolyai Soc. Math. Studies 11, Budapest, 2002, pp. 581–627.
- [R] H. E. Rose, A Course in Number Theory, Oxford Univ. Press, New York, 1988.
- [Si] R. J. Simpson, Regular coverings of the integers by arithmetic progressions, Acta Arith. 45 (1985), 145–152.
- [S90] Z. W. Sun, *Finite coverings of groups, Fund. Math.* **134** (1990), 37–53.
- [S96] Z. W. Sun, Covering the integers by arithmetic sequences II, Trans. Amer. Math. Soc. 348 (1996), 4279–4320.
- [S00] Z. W. Sun, On integers not of the form $\pm p^a \pm q^b$, Proc. Amer. Math. Soc. 128 (2000), 997–1002.
- [S01] Z. W. Sun, Algebraic approaches to periodic arithmetical maps, J. Algebra **240** (2001), 723–743.
- [S03] Z. W. Sun, Unification of zero-sum problems, subset sums and covers of Z, Electron.
 Res. Announc. Amer. Math. Soc. 9 (2003), 51–60.
- [S04] Z. W. Sun, On the Herzog-Schönheim conjecture for uniform covers of groups, J. Algebra 273 (2004), 153–175.
- [S05] Z. W. Sun, On the range of a covering function, J. Number Theory **111** (2005), 190–196.
- [SS] Z. W. Sun and Z. H. Sun, Some results on covering systems of congruences, J. Southwest-China Teachers Univ. (1987), no. 1, 10–15. Zbl. M. 749.11018.
- [Z] S. Znám, On Mycielski's problem on systems of arithmetical progressions, Colloq. Math. 15 (1966), 201–204.