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Abstract

A positive integer n is called a covering number if there are some distinct divisors n1, . . . , nk

of n greater than one and some integers a1, . . . , ak such that Z is the union of the residue
classes a1(mod n1), . . . , ak(mod nk). A covering number is said to be primitive if none of its
proper divisors is a covering number. In this paper we give some sufficient conditions for n to
be a (primitive) covering number; in particular, we show that for any r = 2, 3, . . . there are
infinitely many primitive covering numbers having exactly r distinct prime divisors. In 1980 P.
Erdős asked whether there are infinitely many positive integers n such that among the subsets
of Dn = {d ! 2 : d | n} only Dn can be the set of all the moduli in a cover of Z with distinct
moduli; we answer this question affirmatively. We also conjecture that any primitive covering
number must have a prime factorization pα1

1 · · · pαr
r (with p1, . . . , pr in a suitable order) which

satisfies
∏

0<t<s(αt + 1) ! ps − 1 for each 1 " s " r, with strict inequality when s = r.

–Dedicated to Prof. R. L. Graham for his 70th birthday

1. Introduction

For a ∈ Z and n ∈ Z+ = {1, 2, 3, . . . }, a(mod n) = {a + nx : x ∈ Z} is called a
residue class with modulus n. If every integer lies in at least one of the residue classes
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a1(mod n1), . . . , ak(mod nk), then we call the finite system

(1.0) A = {ai(mod ni)}k
i=1

a cover of Z (or covering system), and n1, · · · , nk its moduli. If (1.0) forms a cover of Z but
none of its proper subsystems does, then (1.0) is said to be a minimal cover of Z.

In the 1930s P. Erdős (cf. [E50]) invented the concept of a cover of Z and gave the following
example

{0(mod 2), 0(mod 3), 1(mod 4), 5(mod 6), 7(mod 12)}

whose moduli 2, 3, 4, 6, 12 are distinct. Covers of Z with distinct moduli are of particular
interest and they have some surprising applications (see, e.g., [F] and [S00]). For problems and
results concerning covers of Z and their generalizations the reader may consult [E97], [FFKPY],
[Gu], [PS], [S03], [S04] and [S05].

Here is a famous open conjecture.

The Erdős–Selfridge Conjecture. If (1.0) forms a cover of Z with the moduli n1, . . . , nk

distinct and greater than one, then n1, . . . , nk are not all odd.

Following J. A. Haight [H] we introduce the following concept.

Definition 1.1. A positive integer n is called a covering number if there is a cover of Z with
all the moduli distinct, greater than one and dividing n.

Erdős’ example shows that 22 · 3 = 12 is a covering number. By density considerations, if
n is a covering number then

∑
1<d |n 1/d ! 1; it follows that none of 2, 3, . . . , 11 is a covering

number. Moreover, Example 3 of [S96] indicates that 2n−1n is a covering number for every
n = 3, 5, 7, . . . .

In the direction of the Erdős–Selfridge conjecture, S. Guo and Z. W. Sun [GS] proved that
any odd and squarefree covering number should have at least 22 distinct prime divisors.

If (1.0) is a cover of Z with n1 " · · · " nk−1 < nk, then
∑k−1

i=1 1/ni ! 1 by Theorem I (iv) of
Sun [S96]. So, a necessary condition for n ∈ Z+ to be a covering number is that

(1.1)
σ(n)

n
=

∑

d|n

1
d

! 2 +
1
n

,

where σ(n) is the sum of all positive divisors of n. However, as shown by Haight [H], there does
not exist a constant c > 0 such that n ∈ Z+ is a covering number whenever σ(n)/n > c.
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Let (1.0) be a cover of Z, and set w(r) = |{1 " i " k : r ≡ ai (mod ni)}| for r = 0, . . . , N−1,
where N = [n1, . . . , nk] is the least common multiple of n1, . . . , nk. By Theorem 5(ii) and
Example 6 of [S01],

∑

1!i!k
gcd(x+ai,ni)=1

1
ϕ(ni)

=
∑

0!r<N
gcd(x+r,N)=1

w(r)
ϕ(N)

!
∑

0!r<N
gcd(x+r,N)=1

1
ϕ(N)

= 1 for all x ∈ Z,

where ϕ is Euler’s totient function. If 1 < n1 < · · · < nk and x ≡ −ai (mod ni) for all those
i ∈ I = {1 " j " k : nj is a prime} (such an integer x exists by the Chinese Remainder
Theorem), then

k∑

i=1
i "∈I

1
ϕ(ni)

!
∑

1!i!k
gcd(x+ai,ni)=1

1
ϕ(ni)

! 1.

Thus, if n ∈ Z+ is a covering number then we have

(1.2)
∑

d|n
d is composite

1
ϕ(d)

! 1.

Throughout this paper, for a predicate P we let [[P ]] be 1 or 0 according as P holds or not.
For a real number x, as usual we use $x% and &x' to denote the greatest integer not exceeding
x and the least integer greater than or equal to x, respectively.

Our first theorem in this paper gives a sufficient condition for covering numbers.

Theorem 1.1. Let p1, . . . , pr be distinct primes, and let α1, . . . ,αr ∈ Z+. Suppose that

(1.3)
∏

0<t<s

(αt + 1) ! ps − [[r (= s]] for all s = 1, . . . , r.

Then pα1
1 · · · pαr

r is a covering number.

Remark 1.1. As usual the empty product
∏

0<t<1 (αt + 1) is regarded as 1, thus (1.3) implies
that p1 = 2 " r.

The Erdős–Selfridge conjecture can be viewed as the converse of the following result.

Corollary 1.1. Let p1 = 2 < p2 < · · · < pr (r > 1) be distinct primes. Then there are
α1, . . . ,αr ∈ Z+ such that pα1

1 · · · pαr
r is a covering number.

Proof. For t = 1, . . . , r − 1 we set

αt =
⌈

pt+1 − [[t (= r − 1]]
pt − 1

⌉
− 1.
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Then ∏

0<t<s

(αt + 1) !
∏

0<t<s

pt+1 − [[t + 1 (= r]]
pt − [[t (= r]]

=
ps − [[s (= r]]
p1 − [[1 (= r]]

= ps − [[r (= s]]

for all s = 1, . . . , r. Thus, by Theorem 1.1, pα1
1 · · · pαr

r is a covering number. #

In contrast with Corollary 1.1, we have the following second theorem.

Theorem 1.2. Let α1, . . . ,αr ∈ Z+. Then pα1
1 · · · pαr

r is a covering number for some distinct
primes p1 < · · · < pr, if and only if one of the following (i)–(iii) holds.

(i) r = 2 " α1; (ii) r = 3 and max{α1,α2} ! 2; (iii) r ! 4.

Definition 1.2. A covering number is called a primitive covering number if none of its proper
divisors is a covering number.

Our third theorem provides a sufficient condition for primitive covering numbers.

Theorem 1.3. Let p1 = 2 < p2 < · · · < pr (r > 1) be distinct primes. Suppose further that
pt − 1 | pt+1 − 1 for all 0 < t < r − 1, and pr ! (pr−1 − 2)(pr−1 − 3). Then

p
p2−1
p1−1−1

1 · · · p
pr−1−1
pr−2−1−1

r−2 p
$ pr−1

pr−1−1 %
r−1 pr

is a primitive covering number.

Remark 1.2. By Theorem 1.3, the number 2 · 3 · 5 · 7 = 210 is a primitive covering number;
Erdős ever constructed a cover of Z whose moduli are all the 14 proper divisors of 210 (cf. [Gu]
or [GS]).

Corollary 1.2. For any r = 2, 3, . . . there are infinitely many primitive covering numbers
having exactly r distinct prime divisors.

Proof. By Dirichlet’s theorem (cf. [R, pp. 237–244]), for any m ∈ Z+ there are infinitely many
primes p such that m | p − 1. So, the desired result follows from Theorem 1.3. #

As an application of Theorem 1.3 and its proof, here we give our last theorem.

Theorem 1.4. (i) An integer n > 1 with at most two distinct prime divisors is a primitive
covering number if and only if n = 2p−1p for some odd prime p.

(ii) A positive integer n ≡ 0 (mod 3) with exactly three distinct prime divisors is a primitive
covering number if and only if n = 2 · 3(p−1)/2p for some prime p > 3.
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(iii) If p > 5 is a prime, then both 235$(p−1)/4%p and 2 · 3 · 5$(p−1)/4%p are primitive covering
numbers. If p > 7 is a prime, then 2 · 327$(p−1)/6%p is a primitive covering number, and so is
257$(p−1)/6%p provided that p (= 13, 19.

Remark 1.3. Note that 2572 · 13 and 2573 · 19 are both covering numbers by Theorem 1.1. But
we don’t know whether they are primitive covering numbers.

The following corollary provides an affirmative answer to a question of Erdős [E80].

Corollary 1.3. There are infinitely many positive integers n such that among the subsets of
Dn = {d ! 2 : d | n} only Dn can be the set of all the moduli in a cover of Z with distinct
moduli.

Proof. Let p be one of the infinitely many odd primes. By Theorem 1.4(i), 2p−1p is a primitive
covering number.

Let (1.0) be any minimal cover of Z with 1 < n1 < · · · < nk and [n1, . . . , nk] = 2p−1p. We
want to show that {n1, . . . , nk} = {d > 1 : d | 2p−1p}. By a conjecture of Š. Znám proved by
R. J. Simpson [Si], we have

k ! 1 + f([n1, . . . , nk]) = 1 + (p − 1)(2 − 1) + (p − 1) = 2p − 1,

where the Mycielski function f : Z+ → Z is given by f(
∏r

t=1 pαt
t ) =

∑r
t=1 αt(pt − 1) with

p1, . . . , pr distinct primes and α1, . . . ,αr nonnegative integers (cf. [S90] and [Z]). On the other
hand,

k " |{d > 1 : d | 2p−1p}| = |{2αpβ : α = 0, . . . , p − 1; β = 0, 1}| − 1 = 2p − 1.

So k = 2p − 1 = |{d > 1 : d | 2p−1p}| and we are done. #

In the next section we are going to prove Theorems 1.1 and 1.2. Section 3 is devoted to our
proofs of Theorems 1.3 and 1.4. To conclude this section we propose the following conjecture
concerning the converse of Theorem 1.1.

Conjecture 1.1. Any primitive covering number can be written in the form pα1
1 · · · pαr

r with
p1, . . . , pr distinct primes and α1, . . . ,αr ∈ Z+, such that (1.3) is satisfied.

Remark 1.4. Actually the author made this conjecture on July 16, 1988. Since (1.3) implies
p1 = 2, Conjecture 1.1 is stronger than the Erdős–Selfridge conjecture.

2. Proofs of Theorems 1.1 and 1.2
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For n ∈ Z+ let d(n) denote the number of distinct positive divisors of n. If n has the
factorization pα1

1 · · · pαr
r where p1, . . . , pr are distinct primes and α1, . . . ,αr ∈ Z+, then it is

well known that d(n) =
∏r

t=1(αt + 1).

Proof of Theorem 1.1. For each s = 1, . . . , r, since

d(pα1
1 · · · pαs−1

s−1 ) =
∏

0<t<s

(αt + 1) ! ps − [[r (= s]]

there exist ps − [[r (= s]] distinct positive divisors d(s)
1 , . . . , d(s)

ps−[[r "=s]] of
∏

0<t<s pαt
t . Let A be

the system consisting of 0(mod d(r)
pr pαr

r ) and the following
∑r

s=1 αs(ps − 1) residue classes:

jpα1
1 · · · pαs−1

s−1 pα−1
s (mod d(s)

j pα
s ) (α = 1, . . . ,αs; j = 1, . . . , ps − 1; s = 1, . . . , r).

Then all the moduli of A are distinct. Observe that
ps−1⋃

j=1

jpα1
1 · · · pαs−1

s−1 pα−1
s (mod d(s)

j pα
s )

⊇
ps−1⋃

j=1

jpα1
1 · · · pαs−1

s−1 pα−1
s (mod pα1

1 · · · pαs−1
s−1 pα

s )

=0(mod pα1
1 · · · pαs−1

s−1 pα−1
s ) \ 0(mod pα1

1 · · · pαs−1
s−1 pα

s )

and
αs⋃

α=1

(
0(mod pα1

1 · · · pαs−1
s−1 pα−1

s ) \ 0(mod pα1
1 · · · pαs−1

s−1 pα
s )

)

= 0(mod pα1
1 · · · pαs−1

s−1 ) \ 0(mod pα1
1 · · · pαs−1

s−1 pαs
s ).

If an integer x is not in the residue class 0(mod d(r)
pr pαr

r ), then x (≡ 0 (mod pα1
1 · · · pαr

r ) and
hence

x ∈ 0(mod 1) \ 0(mod pα1
1 · · · pαr

r ) =
r⋃

s=1

(
0
(

mod
∏

0<t<s

pαt
t

)
\ 0

(
mod

s∏

t=1

pαt
t

))
.

Therefore A does form a cover of Z. #

Remark 2.1. In the proof of Theorem 1.1, we make use of some basic ideas in [Z] and [S90].

Lemma 2.1. Let p1, . . . , pr be distinct primes and α1, . . . ,αr ∈ Z+. Suppose that pα1
1 · · · pαr

r

is a covering number but
∏

0<t<r pαt
t is not. Then we must have

∏
0<t<r(αt + 1) ! pr.

Proof. Let (1.0) be a minimal cover of Z with 1 < n1 < · · · < nk and [n1, . . . , nk] | pα1
1 · · · pαr

r .
Since

∏
0<t<r pαt

t is not a covering number, pr divides [n1, . . . , nk]. Let α ∈ Z+ be the largest
integer such that pα

r divides at least one of the moduli n1, . . . , nk. Then we have

|{1 " i " k : pα
r | ni}| ! pr
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by [SS, Theorem 1] or [S96, Corollary 3]. Note that

|{1 " i " k : pα
r | ni}| " |{dpα

r : d | pα1
1 · · · pαr−1

r−1 }| = d

( ∏

0<t<r

pαt
t

)
=

∏

0<t<r

(αt + 1).

So the desired result follows. #

Proof of Theorem 1.2. If (i) holds, then 2α13α2 is a covering number by Theorem 1.1 since
1 ! 2 − 1 and α1 + 1 ! 3. If (ii) is valid, then 2α13α25α3 is a covering number by Theorem
1.1, since α1 + 1 ! 3 − 1 and (α1 + 1)(α2 + 1) ! (1 + 1)(2 + 1) > 5. When (iii) happens
(i.e., r ! 4), letting p1, . . . , pr be the first r primes in the ascending order, we then have
p1 = 2, p2 = 3, p3 = 5, p4 = 7, hence

∏r
s=1 pαs

s is a covering number by Theorem 1.1, because
α1 + 1 ! 3 − 1, (α1 + 1)(α2 + 1) ! 5 − 1, and ps < 2s−1 " ∏

0<t<s(αt + 1) for s ! 4 (by
mathematical induction and Bertrand’s postulate (cf. [R, pp. 220–221]) proved by Chebyshev).

Now suppose that there are distinct primes p1 < · · · < pr such that n = pα1
1 · · · pαr

r is a
covering number. Let d > 1 be the smallest covering number dividing n. Then d is a primitive
covering number. By Lemma 2.1, d cannot be a prime power. So r ! 2. If r = 2 and
α1 = 1, then d = p1p

β
2 for some β = 1, . . . ,α2, thus by Lemma 2.1 we get the contradiction

1 + 1 ! p2 > p1 ! 2. If r = 3 and α1 = α2 = 1, then d = p1p2p
γ
3 for some γ = 1, . . . ,α3, hence

by Lemma 2.1 we have (1 + 1)(1 + 1) ! p3 ! 5 which is impossible. Therefore one of (i)–(iii)
holds. #

3. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Set

α1 =
p2 − 1
p1 − 1

− 1, . . . , αr−2 =
pr−1 − 1
pr−2 − 1

− 1 and αr−1 =
⌊

pr − 1
pr−1 − 1

⌋
.

Then ∏

0<t<s

(αt + 1) =
∏

0<t<s

pt+1 − 1
pt − 1

=
ps − 1
p1 − 1

= ps − 1

for s = 1, . . . , r − 1, and

∏

0<t<r

(αt + 1) =
∏

0<t<r−1

(αt + 1) ×
(⌊

pr − 1
pr−1 − 1

⌋
+ 1

)
> (pr−1 − 1)

pr − 1
pr−1 − 1

= pr − 1.

Thus n = pα1
1 · · · pαr−1

r−1 pr is a covering number in light of Theorem 1.1.

Let d > 1 be the smallest covering number dividing n. It remains to show that d = n.

Suppose that ps is the maximal prime divisor of d. If s (= r, then
∏

0<t<s(αt+1) = ps−1 < ps

which contradicts Lemma 2.1. Therefore, d has the form pβ1
1 · · · pβr−1

r−1 pr where βt ∈ {0, . . . ,αt}
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for t = 1, . . . , r − 1. By Lemma 2.1,

∏

0<t<r

(βt + 1) ! pr.

If βr−1 < αr−1, then

∏

0<t<r

(βt + 1) "
∏

0<t<r−1

(αt + 1) × αr−1 = (pr−1 − 1)
⌊

pr − 1
pr−1 − 1

⌋
" pr − 1 < pr.

So we must have βr−1 = αr−1.

Assume that βj < αj for some 1 " j " r − 2. Then

r−1∏

t=1

(βt + 1) "
r−2∏

t=1

(αt + 1) × αj

αj + 1
(αr−1 + 1) = m,

where

m =(pr−1 − 1)
(

1 − pj − 1
pj+1 − 1

)(⌊
pr − 1

pr−1 − 1

⌋
+ 1

)

"(pr−1 − 1)
(

1 − pj − 1
pj+1 − 1

)(
pr − 1

pr−1 − 1
+ 1

)

=(pr−1 − 2 + pr)
(

1 − pj − 1
pj+1 − 1

)
.

Since
pr ! (pr−1 − 3)(pr−1 − 1 − 1) ! (pr−1 − 3)

(
pj+1 − 1
pj − 1

− 1
)

,

we have
(pr−1 − 2)

(
pj+1 − 1
pj − 1

− 1
)
− pr <

pj+1 − 1
pj − 1

and hence
m " (pr−1 − 2)

(
1 − pj − 1

pj+1 − 1

)
+ pr − pr

pj − 1
pj+1 − 1

< pr + 1.

We claim that

m = (pj − 1)
(

pr−1 − 1
pj − 1

− pr−1 − 1
pj+1 − 1

)( ⌊
pr − 1

pr−1 − 1

⌋
+ 1

)
(= pr.

In fact, m is composite when j > 1; if j = 1 then

pr−1 − 1
pj − 1

− pr−1 − 1
pj+1 − 1

= pr−1 − 1 − pr−1 − 1
p2 − 1

! pr−1 − 1
2

> 1

unless pr−1 = 3 in which case

m =
⌊

pr − 1
3 − 1

⌋
+ 1 =

pr + 1
2

< pr.
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In view of the above,

pr "
r−1∏

t=1

(βt + 1) " m < pr.

This leads to a contradiction.

By the above, βj = αj for all j = 1, . . . , r − 1, and thus d = n. We are done. #

Proof of Theorem 1.4. (i) If p > 2 is a prime, then 2p−1p = 2$(p−1)/(2−1)%p is a primitive
covering number by Theorem 1.3 in the case r = 2.

By Lemma 2.1, any prime power cannot be a primitive covering number.

Now suppose that n = pα1
1 pα2

2 is a primitive covering number, where p1 < p2 are two distinct
primes, and α1,α2 ∈ Z+. Then

2 <
σ(n)

n
<

(
1 +

1
p1

+
1
p2
1

+ · · ·
)(

1 +
1
p2

+
1
p2
2

+ · · ·
)

=
p1

p1 − 1
· p2

p2 − 1
.

If p1 > 2, then

2 <
p1

p1 − 1
· p2

p2 − 1
" 3

3 − 1
· 5
5 − 1

=
15
8

< 2

which leads to a contradiction. So p1 = 2. Observe that α1 + 1 ! p2 by Lemma 2.1. Therefore
n is a multiple of 2p2−1p2. Since both 2p2−1p2 and n are primitive covering numbers, we must
have n = 2p2−1p2.

(ii) If p > 3 is a prime, then

2 · 3
p−1
2 p = 2

3−1
2−1−13

p−1
3−1 p

is a primitive covering number by Theorem 1.3 in the case r = 3.

Now assume that n = pα1
1 pα2

2 pα3
3 is a primitive covering number with n ≡ 0 (mod 3), where

p1 < p2 < p3 are distinct primes, and α1,α2,α3 ∈ Z+. If p1 ! 3, then

∑

d|n
d is composite

1
ϕ(d)

<
3∑

s=1

1
ps − 1

(
1
ps

+
1
p2

s

+ · · ·
)

+
∑

1!s<t!3

1
(ps − 1)(pt − 1)

(
1 +

1
ps

+
1
p2

s

+ · · ·
)(

1 +
1
pt

+
1
p2

t

+ · · ·
)

+
1

(p1 − 1)(p2 − 1)(p3 − 1)

3∏

s=1

(
1 +

1
ps

+
1
p2

s

+ · · ·
)

=
3∑

s=1

1
(ps − 1)2

+
∑

1!s<t!3

pspt

(ps − 1)2(pt − 1)2
+

p1p2p3

(p1 − 1)2(p2 − 1)2(p3 − 1)2

" 1
(3 − 1)2

+
1

(5 − 1)2
+

1
(7 − 1)2

+
3 · 5
2242

+
3 · 7
2262

+
5 · 7
4262

+
3 · 5 · 7
224262

=
1905
2304
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and this contradicts (1.2). So p1 = 2. Since 3 | n, we have p2 = 3. By part (i), 22 · 3 is a
primitive covering number and hence it does not divide n. Therefore n has the form 2 · 3αp,
where p > 3 is a prime and α ∈ Z+.

By Lemma 2.1, (1+1)(α+1) ! p. Thus α ! (p−1)/2 and hence n is a multiple of 2·3(p−1)/2p.
As both 2 · 3(p−1)/2p and n are primitive covering numbers, we must have n = 2 · 3(p−1)/2p.

(iii) If p > 5 is a prime, then by Theorem 1.3 both

235$
p−1
4 %p = 2

5−1
2−1−15$

p−1
5−1 %p and 2 · 3 · 5$

p−1
4 %p = 2

3−1
2−1−13

5−1
3−1−15$

p−1
5−1 %p

are primitive covering numbers.

If p is a prime greater than 19, then p > (7 − 2)(7 − 3), hence both

2 · 32 · 7$
p−1
6 %p = 2

3−1
2−1−13

7−1
3−1−17$

p−1
7−1 %p and 257$

p−1
6 %p = 2

7−1
2−1−17$

p−1
7−1 %p

are primitive covering numbers by Theorem 1.3. When p ∈ {11, 13, 17, 19}, we have

p > (7 − 3)
(

max
{

7 − 1
3 − 1

,
3 − 1
2 − 1

}
− 1

)
= 8

and hence 2 · 32 · 7$ p−1
6 %p is still a primitive covering number by the proof of Theorem 1.3. If p

is 11 or 17, then

m = (7 − 1)
(

1 − 2 − 1
7 − 1

) (⌊
p − 1
7 − 1

⌋
+ 1

)
< p + 1

and hence 257$
p−1
6 %p is a primitive covering number by the proof of Theorem 1.3.

Combining the above we have shown Theorem 1.4. #
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