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Abstract

In this paper we consider the Cayley graph Gf associated with a Boolean function f and
we use it to investigate some of the cryptographic properties of f . We derive necessary
(but not sufficient) conditions for a Boolean function to be bent. We also find a complete
characterization of the propagation characteristics of f using the topology of its associated
Cayley graph Gf . Finally, some inequalities between the cardinality of the spectrum of Gf

and the Hamming weight of f are obtained, and some problems are raised.

1. Introduction and Motivation

In this paper we will concentrate on a new technique for dealing with Boolean functions.
The technique has already been used successfully to find a characterization of Boolean bent
functions in terms of spectrum of the Cayley graph Gf associated with f . Here, we will
completely describe the propagation characteristics of the Boolean function f using the
spectrum of the associated Cayley graph, we find some necessary conditions for a function
to be bent, and show some inequalities (albeit, far from being tight) connecting the Hamming
weight of f , the dimension of the vector space where f is defined, and the cardinality of the
spectrum of Gf .

Let Vn be the vector space of dimension n over the two-element field F2 (= V1). Let
us denote the addition operator over F2 by ⊕, and the direct product by “·”. A Boolean
function f on n variables is a mapping from Vn into V1, that is, a multivariate polynomial
over F2,

f(x1, . . . , xn) = a0 ⊕
n∑

i=1

aixi ⊕
∑

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn, (1)
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where the coefficients a0, ai, aij, . . . , a12...n ∈ F2. This representation of f is called the alge-
braic normal form (ANF) of f . The number of variables in the highest order product term
with nonzero coefficient is called the algebraic degree, or simply the degree of f . We make
the convention that for all matrices and vectors the indexing starts from 0.

For a Boolean function on Vn, let Ωf = {x ∈ Vn | f(x) = 1}. We denote by 〈Ωf〉 the
space of the 0, 1 sequences generated by Ωf , and by dim〈Ωf〉 its dimension. The cardinality of
Ωf is wt(f), called the Hamming weight of f . The Hamming distance between two functions
f, g : Vn → V1 is d(f, g) = wt(f ⊕ g). A Boolean function f(x) is called an affine function
if its algebraic degree is 1. If, in addition, a0 = 0 in (1), then f(x) is a linear function. The
nonlinearity of a function f , denoted by Nf , is defined as

min
φ∈An

d(f,φ),

where An is the class of all affine functions on Vn. We say that f satisfies the propagation
criterion (PC) with respect to c if

∑

x∈Vn

f(x)⊕ f(x⊕ c) = 2n−1. (2)

If f satisfies the PC with respect to all vectors of weight 1, f is called an SAC (Strict
Avalanche Criterion) function. If the above relation holds for any c with wt(c) ≤ s, we
say that f satisfies PC(s), and if s = n, then we say that f is a bent function. Recall that
the Hamming weight of bent functions is 2n−1 ± 2n/2−1 (n even), and they attain maximum
nonlinearity, namely 2n−1 − 2n/2−1 (cf. [14]). The correlation value between g and h (both
are defined on Vn) is

c(g, h) = 1− d(g, h)

2n−1
.

We define the Walsh transform of a function f on Vn to be the map W (f) : Vn → R,
W (f)(w) =

∑
x∈Vn

f(x)(−1)w·x, which defines the coefficients of f with respect to the
orthonormal basis of the group characters Qw(x) = (−1)w·x. In turn,

f(x) = 2−n
∑

w

W (f)(w)(−1)w·x.

A graph is regular of degree r (or r-regular) if every vertex has degree r (number of
edges incident to it). We say that an r-regular graph G with parameters (v, r, d, e) is a
strongly regular graph (srg) if there exist nonnegative integers e, d such that for all vertices
u,v the number of vertices adjacent to both u,v is e, d, if u,v are adjacent, respectively,
nonadjacent.

An easy counting argument shows that r(r − d− 1) = e(v − r − 1). The complementary
graph Ḡ of the strongly regular graph G is also strongly regular with parameters (v, v− r−
1, v − 2r + e− 2, v − 2r + d).
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Let f be a Boolean function on Vn. We define the Cayley graph of f to be the graph
Gf = (Vn, Ef) whose vertex set is Vn and the set of edges is defined by

Ef = {(w,u) ∈ Vn | f(w ⊕ u) = 1}.

The adjacency matrix Af is the matrix whose entries are Ai,j = f(b(i)⊕ b(j)), where b(·)
is the binary representation of the argument. It is simple to prove that Af has the dyadic
property: Ai,j = Ai+2k−1,j+2k−1 . Also, from its definition we derive that Gf is a regular graph
of degree wt(f) = |Ωf | (see [12, Chapter 3] for further definitions).

Given a graph f and its adjacency matrix A, the spectrum Spec(Gf) is the set of eigen-
values of A (called also the eigenvalues of Gf). All of our theorems will assume that Gf is
connected. One can show easily that all connected components of Gf are isomorphic (we
shall point out from time to time what changes in our arguments in case Gf is not connected).

We observe that a strongly regular graph is essentially the same as an association scheme
of class 2 (see [11, 18] and the references therein). In spite of their (apparently) strict arith-
metic nature, strongly regular graphs are difficult to investigate. P.J. Cameron [7] mentions
that “Strongly regular graphs lie on the cusp between highly structured and unstructured. For
example, there is a unique strongly regular graph with parameters (36; 10; 4; 2), but there are
32548 non-isomorphic graphs with parameters (36; 15; 6; 6). (The first assertion is a special
case of a theorem of Shrikhande (our note [23]), while the second is the result of a computer
search by McKay and Spence (our note [19]).) In the light of this, it will be difficult to develop
a theory of random strongly regular graphs!”

The complete determination for the class of bent functions is still an open problem. This
type of function is relevant to cryptography, cf. [21] (although balancedness is often required,
and bent functions are not balanced, if n > 20, the difference 2n/2−1 between bent functions’
weights and the weight 2n−1 of balanced functions is negligible and cannot be used in attacks
[10]); algebraic coding theory (Kerdock codes are constructed from quadratic bent functions
[20]); sequences [22]; design theory (any difference set will render a symmetric design, cf. [2,
pp. 274–278]).

As bent Boolean functions are as elusive as the strongly regular graphs, perhaps it is then
not surprising that there should be some connections between graph theory and Boolean
functions. In fact, they are more related than one might initially guess, as we shall see next.
The attempt in the present paper (and in a few other works, see [3, 4, 5]) is to push further the
connection between two very intriguing topics, bent functions and strongly regular graphs,
with the hope that the investigation will shed more light into the constructions of both. We
would like to invite researchers in these two areas to collaborate for the benefit of all parties.
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2. Known Results

Here and throughout we assume that n ≥ 4. The following theorem is a compilation of
various results in [3] (we slightly changed the notation).

Theorem 2.1. The following statements hold:

(i) Let f : Vn → F2, and let λi, 0 ≤ i ≤ 2n − 1 be the eigenvalues of its associated Cayley
graph Gf . Then λi = W (f)(b(i)), for any i.

(ii) The multiplicity of the largest spectral coefficient of f , W (f)(b(0)), is equal to 2n−dim〈Ωf 〉.

(iii) If Gf is connected, then f has a spectral coefficient equal to −wt(f) if and only if its
Walsh spectrum is symmetric with respect to zero.

(iv) The number of nonzero spectral coefficients is equal to rk(Af), the rank of Af , which
satisfies 2d2 ≤ rk(Af) ≤

∑d
i=1

(
n
i

)
(d2, respectively, d is the degree of f over F2,

respectively R).

It is known (see [12, pp. 194–195]) that a connected r-regular graph is strongly regular iff
it has exactly three distinct eigenvalues λ0 = r,λ1,λ2 (so e = r+λ1λ2+λ1+λ2, d = r+λ1λ2).
The following result is known [12, Th. 3.32, p. 103].

Proposition 2.2. The following identity holds for a strongly r-regular graph:

A2 = (d− e)A + (r − e)I + eJ,

where J is the “all ones” matrix.

3. Odd Cycles and Bent Functions

One can infer the following result from [3], [4], and Proposition 2.2.

Theorem 3.1. Bent functions (on Vn, with n even) are the only functions whose associated
Cayley graphs are strongly regular graphs with the additional property e = d. The eigenvalues
of G are λ1 = |Ωf | = wt(f), λ3 = −λ2 = −

√
|Ωf |− e, of multiplicities m1 = 1, m2 =√

|Ωf |−e (2n−1)−|Ωf |

2
√

|Ωf |−e
, m3 =

√
|Ωf |−e (2n−1)+|Ωf |

2
√

|Ωf |−e
. Moreover, the adjacency matrix satisfies

A2 =
(
2n−1 ± 2n/2−1 − e

)
I + eJ,

for some choice of the ± sign.
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It is assumed above that Gf is connected. If it is not connected, then the multiplicities
must be multiplied by 2n−dim〈Ωf 〉 (since the connected components of G are isomorphic).

A graph G = (V (G), E(G)) is bipartite if the vertex set V (G) can be partitioned into two
sets V1, V2 in such a way that no two vertices from the same set are adjacent. The following
result is well-known (see [1]).

Theorem 3.2. The following statements are equivalent for a graph G:

(i) G is bipartite.

(ii) G has no cycles of odd length.

(iii) Every subgraph H of G has at least |V (H)|/2 mutually non-adjacent vertices.

(iv) The spectrum of G is symmetric with respect to 0, that is, if λ is an eigenvalue, then
−λ is also an eigenvalue.

We can now prove

Theorem 3.3. The Cayley graph associated with a bent function is not bipartite.

Proof. Theorem 3.2 implies that the graph Gf associated with a Boolean function f is
bipartite if and only if its spectrum is symmetric with respect to the origin. But according
to Theorem 3.1, that is impossible since −λ1 = −wt(f) is not an eigenvalue of G. The
theorem is proved.

As stated in Theorem 3.2, a graph is bipartite if and only if it contains no cycles of odd
length. Thus, if f is bent then the associated Cayley graph contains a cycle of odd length.
One can get more precise results.

Theorem 3.4. Let n > 4. If Gf is triangle-free, then f is not bent.

Proof. For a contradiction, assume that f is bent. Erdös and Sós proved in 1974 (cf. [1]),
that a triangle-free graph G on p vertices with minimum degree δ(G) > 2p/5 is bipartite.
Recall that Gf is a regular graph of degree |Ωf | of order p = 2n. Since n > 4, then 2n/2 > 5
is equivalent to 5(2n−1 − 2n/2−1) > 2n+1, which implies |Ωf | = wt(f) > 2n+1/5. Thus, G
is bipartite. That is certainly false by Theorem 3.3, contradicting our assumption that f is
bent.

In the previous proof it is sufficient to assume that Gf is regular of degree greater than
2n+1/5 (if the degree is < 2n+1/5, then the function is certainly not bent).

A more constructive argument that proves Theorem 3.4 is the following. Assume that
f is bent. One may replace f by its complement, also bent (cf. [14]), so we assume that
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the constant term, a0, in Equation (1), equals 0. Next, we prove that there exist triangles
in Gf . By Theorem 3.1, Gf is strongly regular. Lemma 8 of [3] shows that e = |(x ⊕
Ωf) ∩ (y ⊕ Ωf)| ≥ 1. Applying this for x = 0 and an arbitrary vector y ∈ Ωf , implies
that e = |Ωf ∩ (y ⊕ Ωf)| ≥ 1. That is, there exists z ∈ Ωf such that y ⊕ z ∈ Ωf . Thus,
f(y ⊕ z) = f(z) = f(y) = 1. It follows that 0,y, z is a triangle in Gf .

The converse of Theorem 3.4 is not true, as it can be seen by considering on V6 the
function f(x1, x2, x3, x4, x5, x6) = x1x2x3⊕ x2x3x4⊕ x3x4x5⊕ x4x5x6⊕ x5x6x1⊕ x6x1x2 and
the associated Cayley graph which has plenty of triangles, but f is not bent.

The number of triangles sitting on any two (fixed) adjacent vertices is equal to e. We
know that e = |(Ωf ⊕ vi) ∩ (Ωf ⊕ vj)| (Lemma 8 of [3]) for any pair of vertices vi += vj.
We note that e += |Ωf |, since the equality prompts two eigenvalues to become 0. That is
not possible since in that case (see [12]) the graph Gf cannot be strongly connected. Thus
e < |Ωf |. There are other restrictions on e. A simple corollary of Theorem 3.1 is that e must
differ from |Ωf | by a perfect square.

4. Coloring the Boolean Cayley Graph

Assume that the eigenvalues of Gf are ordered as λ1 ≥ λ2 ≥ · · · ≥ λv.

Theorem 4.1. Let f be a Boolean function, and let Gf be the associated Cayley graph with

g being the multiplicity of its lowest eigenvalue λv(Gf). Then, min
{
g + 1, 1− λv(Gf )

λ2(Gf )

}
≤

χ(Gf) ≤ |Ωf | (provided λ2(Gf) += 0).

Proof. The first inequality min
{
g + 1, 1− λv(G)

λ2(G)

}
≤ χ(G) can be found in [16], being true for

arbitrary graphs G. Cao proved in [8] that the chromatic number satisfies χ(G) ≤
√

T (G)+1,
for any graph G, where T (G) is the maximum sum of degrees of vertices adjacent to any
vertex v (that is, the maximum number of 2-walks in G). When G = Gf , since Gf is
Ωf -regular, then T (Gf) = |Ωf |2, so we get χ(Gf) ≤ |Ωf | + 1. By Wilf’s theorem [26], the
equality χ(Gf) = |Ωf |+ 1 holds if and only if Gf is a complete graph or an odd cycle. Since
Gf is neither, we obtain χ(Gf) ≤ |Ωf |.

Corollary 4.2. With the notations of the previous theorem, assuming that Gf is a strongly

regular (connected) graph, with e = d, then max

{
2, 1 + |Ωf |√

|Ωf |−e

}
≤ χ(Gf) ≤ |Ωf |.

Proof. The corollary follows easily observing that under the imposed conditions v = 3,
λ3 = −λ2. Using Theorem 4.1 (with g ≥ 1), Hoffman’s famous bound on the chromatic

number χ(Gf) ≥ 1− λ1(Gf )
λv(Gf ) (cf. [17]), and Theorem 3.1, we get the result.
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One cannot get better bounds by using the fact that Gf (for f a bent function) is always a
Ramanujan graph. Recall that a graph is Ramanujan if it is r-regular and all eigenvalues += r
are ≤ 2

√
r − 1. That certainly is the case here since r = |Ωf | and the eigenvalues in absolute

value are
√
|Ωf |− e ≤ 2

√
|Ωf |− 1. If Gf is connected, non-bipartite, and r-regular, then

χ(Gf) ≥ r
2
√

r−1
∼

√
r

2 (see [13]). However, this bound is not better than the one obtained by
Corollary 4.2.

5. Avalanche Features of the Cayley graphs

In [24, 25] it was proved that a Boolean function f depends on the variable xi linearly if and
only if the Walsh transform of f̂(u) = (−1)f(u) is 0, that is, W (f̂)(u) = 0 for all u with the
ith component ui = 0. Using the known relationship between the Walsh transform of f and
f̂ ,

W (f̂)(u) = −2W (f)(u) + 2nδ(u), on Vn (3)

where δ(u) = 1 if u = 0 and 0 otherwise, it is rather easy to deduce the following result.

Proposition 5.1. A Boolean function f depends on a variable xi linearly if and only if the
eigenvalues for the Cayley graph Gf satisfy λ0 = 2n−1, and λj '=0 = 0 whenever b(j) has its
i-th component equal to 0.

We call a function f on Vn %-order correlation-immune (% − CI) if its Walsh transform
satisfies W (f̂)(v) = 0 for all 1 ≤ wt(v) ≤ %. If, in addition, W (f̂)(0) = 0, then f is called
%-resilient. We derive the following characterization of these properties in terms of graph
spectra.

Proposition 5.2. A function f on Vn is %−CI if and only if the eigenvalues of the associated
Cayley graph Gf satisfy λi = 0 for all i with 1 ≤ wt(b(i)) ≤ %. Further, f is %-resilient if
and only if λi = 0 for all 1 ≤ wt(b(i)) ≤ % and λ0 = 2n−1.

Proof. We know that λi = W (f)(b(i)), for any 0 ≤ i ≤ 2n − 1. Using the definition of the
%− CI functions and Equation (3) we derive the result.

Corollary 5.3. For an unbalanced %-CI function f , there are
#∑

s=1

(
n

s

)
zero eigenvalues of

Gf .

One can compute the Walsh spectrum by using f = HnW (f) and W (f) = 2−nHnf .

Recall that the Sylvester-Hadamard matrix Hn is defined as H1 =

(
1 1
1 −1

)
and Hn =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
, that is, Hn is the Kronecker product Hn = H1 ⊗ Hn−1. We show the

following result (this was also proved by McFarland, cf. [14]).
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Theorem 5.4. If H = Hn is the Sylvester-Hadamard matrix with entries (−1)vi·vj , where
vi,vj are the vectors of Vn, then

HAfH
t = 2nD,

where D is the diagonal matrix formed by the eigenvalues of Af .

Proof. Since HHt = 2nI2n, it suffices to show that

HAf = DH. (4)

Now, for H = (hi,j) and Af = (ai,j), the left-hand side is

(HAf)i,j =
2n∑

l=1

hi,lal,j =
2n∑

l=1

(−1)vi·vlf(vl ⊕ vj)

=
2n∑

l=1

(−1)vi·(vl⊕vj)+vi·vjf(vl ⊕ vj)

= (−1)vi·vj
∑

x∈Vn

(−1)vi·xf(x)

= (−1)vi·vjW (f)(vi) = (−1)vi·vj λi.

Let f be a Boolean function on Vn and assume that f(0) = 0. Moreover, assume that
Gf is connected. Bernasconi and Codenotti [5] proved

Theorem 5.5. The graph Gf is bipartite if and only if Vn \ Ωf contains a subspace of
dimension n− 1.

Now let S0 be a subspace of dimension n−1 with basis {α(1),α(2), . . . ,α(n−1)}. Complete
the previous basis with α(n) to get a basis for Vn. Let b be the unique solution in Vn of the
system: 



α(1)
1 α(1)

2 . . . α(1)
n

α(2)
1 α(2)

2 . . . α(2)
n

...
... . . .

...

α(n)
1 α(n)

2 . . . α(n)
n









b1

b2
...
bn




=





0
0
...
1




(5)

Let w ∈ Vn. Since f is 0 on S0, we have

W (f)(w ⊕ b) =
∑

x∈Vn

(−1)x·(w⊕b)f(x) =
∑

x∈Vn\S0

(−1)x·w(−1)x·bf(x).

Furthermore, since b is the solution to (5) and x +∈ S0 is a linear combination of the vectors
α(1), . . . ,α(n) (with α(n) always present), we get (−1)x·b = −1, and the following result is
proven [5].
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Theorem 5.6. If b is given by (5), then W (f)(w) = −W (f)(w ⊕ b), for any w ∈ Vn.

Further, Bernasconi and Codenotti proved the following theorem [5] that describes the
propagation features of f for all vectors with a specific property.

Theorem 5.7. Let f : Vn → F2 be a Boolean function whose associated graph is bipartite,
and let b ∈ Vn given by (5). If |Ωf | = 2n−2, then f satisfies the PC with respect to all strings
w such that w · b is an odd integer. If |b| = n, then f satisfies the SAC.

The previous theorem seems to be quite restrictive. We prove a new result next that
connects the PC property with the symmetric difference in counting vertices of Gf .

Denote by N (x) the set of vertices adjacent to a vertex x in the graph Gf . For easy
writing, we write λi = λb(i). The next result is our main theorem of this section.

Theorem 5.8. Let f : Vn → F2 be a Boolean function. Then the following statements are
equivalent:

1. f satisfies the PC with respect to w;

2. |N (0) \ N (w)| + |N (w) \ N (0)| = 2n−1;

3.
∑

u∈Vn
(−1)u·wλ2

u = 2nλ0 − 22n−2 = 2nwt(f)− 22n−2.

Proof. It is easy to see that f satisfies the PC with respect to w if and only if the autocor-
relation function

r̂f(w) =
∑

v

(−1)f(v)+f(v⊕w)

=
∑

v∈Ωf

(−1)f(v)+f(v⊕w) +
∑

v '∈Ωf

(−1)f(v)+f(v⊕w)

=
∑

v∈Ωf

(−1)1+f(v⊕w) +
∑

v '∈Ωf

(−1)f(v⊕w)

=
∑

v∈Ωf∩N (w)

1 +
∑

v∈Ωf∩N (w)

(−1)

+
∑

v∈Ωf∩N (w)

(−1) +
∑

v∈Ωf∩N (w)

1 = 0.

Thus, |(N (0) ∩ N (w)) ∪ (N (0) ∩ N (w))| = |(N (0) ∩ N (w)) ∪ (N (0) ∩ N (w))|. Further,
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using the inclusion-exclusion principle, the previous identity is equivalent to

|N (0) ∩N (w)| + |N (0) ∪N (w)| = |N (0) ∩N (w)| + |N (0) ∪N (w)| ⇐⇒
|N (0) ∩N (w)| + 2n − |N (0) ∪N (w)| = |N (0) ∩N (w)| + 2n

− |N (0) ∪N (w)| ⇐⇒
|N (0) ∪N (w)|− |N (0) ∩N (w)| = |N (0) ∪N (w)|− |N (0) ∩N (w)| ⇐⇒
|N (0) \ N (w)| + |N (w) \ N (0)| = 2n − |N (0) \ N (w)|− |N (w) \ N (0)|,

which proves the first claim. Now, using the Wiener-Khintchine’s Theorem (see [9]) W (r̂)(w) =
W (f̂)2(w), the equation (3), and the autocorrelation definition, one can deduce (see also [15])
that f satisfies the PC with respect to w if and only if

∑

u∈Vn

(−1)u·wW (f̂)2(u) = 0 ⇐⇒

∑

u∈Vn

(−1)u·wW (f)2(u) = 2nW (f)(0, 0, . . . , 0)− 22n−2.

Since W (f)(0, 0, . . . , 0) is equal to the number of ones in the truth table of f , that is, the
weight of f , which is the eigenvalue corresponding to (0, 0, . . . , 0), we get the last claim.

6. Sensitivity of Hamming Weight of f to Spec(Gf)

We know that a strongly regular Cayley graph Gf with the extra condition e = d corresponds
to a Boolean bent function f . Is there any influence of arbitrary Cayley graph spectra on
the weight (or nonlinearity) of f? We can only prove the following theorem and its corollary
in this direction.

Theorem 6.1. Let f be a Boolean function defined on Vn. If Gf is connected and its
spectrum Spec(Gf) contains exactly m + 1 distinct eigenvalues (m ≤ n/2), then

n ≤ log2

(
r +

(
r

m

))
,

where r = wt(f).

Proof. We know that if |Spec(Gf)| = m + 1, then the diameter of Gf is ≤ m (cf. [12, Th.
3.13, p. 88]). Thus, for any w ∈ Vn \ Ωf , there is a constant number of strings w(i) ∈ Ωf

such that w =
∑

i w
(i). The number of such strings is less than or equal to m, say p. It

follows that writing w =
∑r

j=1 cjw(j), cj ∈ F2, exactly p coefficients are nonzero. Thus, the
number of elements of Vn \ Ωf is less than or equal to the number of ways of choosing p
nonzero coefficients out of r. Thus, 2n − r ≤

(
r
p

)
≤

(
r
m

)
(since m ≤ n/2). The result follows

easily.
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Corollary 6.2. If the Cayley graph associated with a Boolean function f is connected and

strongly regular, then wt(f) ≥ −1 +
√

2n+3 + 1

2
.

Proof. If Gf is connected and strongly regular, then the number of distinct eigenvalues is
m = 3. Therefore, the diameter of Gf , diam(Gf), is ≤ 2. If diam(Gf) = 1, then Gf

is complete, but then we would have only two distinct eigenvalues. So diam(Gf) = 2.
Therefore, any w ∈ Vn \ Ωf can be written as a sum of two elements in Ωf . Writing, as
before, w =

∑r
j=1 w(j), it follows that exactly two coefficients are nonzero. Therefore,

2n − r ≤
(

r

2

)
⇐⇒ r(r + 1) ≥ 2n+1 ⇐⇒ r ≥ −1 +

√
2n+3 + 1

2
,

thus proving the corollary.

The author challenges the reader to find further indicators of a Boolean function that
are more sensitive to Spec(Gf).
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