ON Z.-W. SUN'S DISJOINT CONGRUENCE CLASSES CONJECTURE

Kevin O'Bryant
Department of Mathematics, City University of New York, College of Staten Island, Staten Island, NY 10314, U. S. A.
kevin@member.ams.org

Received: 2/25/06, Accepted: 4/7/06

Abstract

Sun has conjectured that if k congruence classes are disjoint, then necessarily two of the moduli have greatest common divisor at least as large as k. We prove this conjecture for $k \leq 20$.

1. Introduction

In May of 2003, Prof. Sun ${ }^{1}$ proposed a conjecture on the number theory listserver ${ }^{2}$.
Conjecture 1 (Disjoint Congruence Classes Conjecture). If $k \geq 2$ congruence classes $a_{i}\left(\bmod m_{i}\right)$ are disjoint, then there exist $i<j$ with $\operatorname{gcd}\left(m_{i}, m_{j}\right) \geq k$.

The set of congruence classes $\{1(\bmod k), 2(\bmod k), \ldots, k(\bmod k)\}$ demonstrate that, if true, the DCCC is best possible.

The contrapositive of the $k=2$ case is a familiar special case of the Chinese remainder theorem: if two congruence classes have relatively prime moduli, then they intersect. Prof. Graham ${ }^{3}$, who first brought this problem to my attention, pointed out that the $k=3$ case follows easily from the pigeonhole principle, as we now explain.

Suppose that $a_{1} \bmod m_{1}, a_{2} \bmod m_{2}, a_{3} \bmod m_{3}$ is a counter-example: they are disjoint and $\operatorname{gcd}\left(m_{i}, m_{j}\right)<3$ for all $i<j$. If $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, then by the Chinese remainder theorem $a_{i}\left(\bmod m_{i}\right)$ and $a_{j}\left(\bmod m_{j}\right)$ intersect. Thus, $\operatorname{gcd}\left(m_{i}, m_{j}\right)=2$ for all $i<j$; in

[^0]particular, all m_{i} are even. By the pigeonhole principle, two of the a_{i} 's must have the same parity, say $a_{1} \equiv a_{2}(\bmod 2)$. Since $\operatorname{gcd}\left(m_{1}, m_{2}\right)=2$, obviously $\operatorname{gcd}\left(\frac{m_{1}}{2}, \frac{m_{2}}{2}\right)=1$. If a_{1} and a_{2} are both even, then by the Chinese remainder theorem we can find x in the intersection of
$$
\frac{a_{1}}{2} \quad\left(\bmod \frac{m_{1}}{2}\right) \quad \text { and } \quad \frac{a_{2}}{2} \quad\left(\bmod \frac{m_{2}}{2}\right)
$$
and consequently $2 x$ is in the intersection of $a_{1}\left(\bmod m_{1}\right)$ and $a_{2}\left(\bmod m_{2}\right)$. If a_{1} and a_{2} are both odd, then we can find x in the intersection of
$$
\frac{a_{1}-1}{2} \quad\left(\bmod \frac{m_{1}}{2}\right) \quad \text { and } \quad \frac{a_{2}-1}{2} \quad\left(\bmod \frac{m_{2}}{2}\right) .
$$

But then $2 x+1$ is in the intersection of $a_{1}\left(\bmod m_{1}\right)$ and $a_{2}\left(\bmod m_{2}\right)$.
The following criterion is at the heart of the last paragraph.
Proposition 2. The congruence classes $a_{i}\left(\bmod m_{i}\right)$ and $a_{j}\left(\bmod m_{j}\right)$ are disjoint if and only if $\operatorname{gcd}\left(m_{i}, m_{j}\right) \nmid a_{i}-a_{j}$.

Prof. Graham also noted that the $k=4$ case was similar but with more considerations, and considered it likely that $k=5$ was similarly tractable. We now state our main theorem.

Theorem 3. The DCCC holds for $k \leq 20$. Moreover, a counterexample to the DCCC with minimal k does not have $k \in\{24,30\}$.

We close the introduction with a stronger conjecture of Prof. Sun [3].
Conjecture 4. Suppose that A_{1}, \ldots, A_{k} are disjoint left-cosets of H_{1}, \ldots, H_{k} in the group G. Then $\operatorname{gcd}\left(\left[G: H_{i}\right],\left[G: H_{j}\right]\right) \geq k$ for some $i<j$.

2. A Disjointness Criterion

The following criterion is stated in [1] without proof.
Lemma 5. If $\sum_{i=1}^{\ell} \frac{1}{\operatorname{gcd}\left(m_{i}, M\right)}>1$, where M is any multiple of $\operatorname{LCM}\left\{\operatorname{gcd}\left(m_{i}, m_{j}\right): 1 \leq i<\right.$ $j \leq \ell\}$, then the congruence classes $a_{i} \bmod m_{i}$ (with $\left.1 \leq i \leq k\right)$ are not disjoint.

The usefulness of this criterion lies in the fact that it makes no reference to the a_{i}.
Can there be seven disjoint congruence classes with moduli $20,15,12,6,6,6,6$? Lemma 5 does not exclude it directly, but it does exclude the possibility that there are six disjoint congruence classes with moduli $15,12,6,6,6,6$. It is plausible that if every subset of
$\left\{m_{1}, \ldots, m_{k}\right\}$ passes the above test, then it is possible to choose a_{1}, \ldots, a_{k} so that $a_{1} \bmod$ $m_{1}, \ldots, a_{k} \bmod m_{k}$ are disjoint, and Huhn \& Megyesi [1] conjectured this. However, Z.-W. Sun [2] notes that the moduli $10,15,36,42,66$ pass the above test (as does every subset of the moduli), but these are not the moduli of disjoint congruence classes.

Proof. The class $a_{i} \bmod m_{i}$ intersects each of the $M / \operatorname{gcd}\left(m_{i}, M\right)$ classes $a_{i}+j m_{i}(\bmod M)$ (for $0 \leq j<M / \operatorname{gcd}\left(m_{i}, M\right)$); that is, the class $a_{i} \bmod m_{i}$ is actually $M / \operatorname{gcd}\left(m_{i}, M\right)$ classes modulo M. Since by hypothesis $\sum_{i=1}^{\ell} M / \operatorname{gcd}\left(m_{i}, M\right)>M$, the pigeonhole principle implies that two of the modulo- M congruence classes must intersect. In other words, there are integers $\alpha, \beta, \gamma, i, j$ such that

$$
a_{i}+\alpha m_{i}=a_{j}+\beta m_{j}+\gamma M
$$

Since $\operatorname{gcd}\left(m_{i}, m_{j}\right) \mid M$, there are integers δ, ϵ such that $\delta m_{i}+\epsilon m_{j}=M$. Thus

$$
a_{i}+(\alpha-\delta \gamma) m_{i}=a_{j}+(\beta+\epsilon \gamma) m_{j}
$$

and we see that $a_{i} \bmod m_{i}$ and $a_{j} \bmod m_{j}$ intersect.

3. Without Loss of Generality

We suppose that a minimal counterexample exists, and use that to determine a sequence m_{1}, \ldots, m_{k} (as described in the lemma below) that has particular properties (in particular, we have an explicit upper bound on m_{i}). While there are infinitely many sets of k congruence classes, there are only finitely many such m_{i} sequences, and in fact we show that for $k \leq 20$ there are none. We note that the existence of such an m_{i} sequence would not disprove Sun's Disjoint Congruence Classes Conjecture, but that nonexistence would imply his conjecture.

Set $L_{k}:=\operatorname{LCM}\{1,2, \ldots, k-1\}$.

k	3	4	5	6	7	8	9	10	11	12	13	14	15
L_{k}	2	6	12	60	60	420	840	2520	2520	27720	27720	360360	360360

Lemma 6. Suppose that $k \geq 2$ is the least integer such that there are k disjoint congruence classes $a_{i}\left(\bmod m_{i}\right)$ with $\operatorname{gcd}\left(m_{i}, m_{j}\right)<k$ for $i<j$ (i.e., a counterexample to the DCCC). Further, suppose that $a_{i}\left(\bmod m_{i}\right)(1 \leq i \leq k)$ has minimal $\sum_{i} m_{i}$. Set

$$
N:=\operatorname{LCM}\left\{\operatorname{gcd}\left(m_{i}, m_{j}\right): 1 \leq i<j \leq k\right\} .
$$

Then $k \geq 4$, and for all i

1. $m_{i} \mid N$, and $N \mid L_{k}$, and $N=\operatorname{LCM}\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$;
2. $1<\operatorname{gcd}\left(m_{i}, m_{j}\right)<k$ for all $j \neq i$;
3. If a prime power q divides m_{i}, then there is $j \neq i$ with $q \mid m_{j}$.
4. m_{i} is not a prime power;
5. At least three of the m 's are multiples of $k-1$;
6. If only three of the m 's are multiples of $k-1$, then two others are multiples of $k-2$;
7. For every $\left\{h_{1}, \ldots, h_{\ell}\right\} \subseteq\left\{m_{1}, \ldots, m_{k}\right\}$, and every multiple M of $\operatorname{LCM}\left\{\operatorname{gcd}\left(h_{i}, h_{j}\right): 1 \leq i<j \leq \ell\right\}$,

$$
\sum_{i=1}^{\ell} \frac{1}{\operatorname{gcd}\left(h_{i}, M\right)} \leq 1
$$

8. If $7 \leq k \leq 30$, and $p \geq k / 2$ is a prime that divides some m, then it divides exactly two of the m 's.

Proof. We noted in the introduction the reasons why $k \not \leq 3$.
In this paragraph, we prove the three statements in item 1. Suppose that p^{r} is a prime power that divides m_{i} but not N. By the definition of N, we see that $p^{r} \nmid m_{j}$ for $j \neq i$. Thus $\operatorname{gcd}\left(m_{i}, m_{j}\right)=\operatorname{gcd}\left(m_{i} / p, m_{j}\right)$, and by Proposition 2, the classes $a_{i}\left(\bmod m_{i} / p\right)$ and $a_{j}\left(\bmod m_{j}\right)$ are disjoint. Thus, we can replace $a_{i}\left(\bmod m_{i}\right)$ in our counterexample to the DCCC with $a_{i}\left(\bmod m_{i} / p\right)$, obtaining a counterexample with smaller $\sum m$. We began with minimal $\sum m$, so we conclude that there is no prime power dividing m_{i} but not N. Since N is defined to be the least common multiple of a subset of $\{1,2, \ldots, k-1\}$, it is clear that $N \mid L_{k}$. Moreover, since N is the least common multiple of divisors of the m_{i}, and the m_{i} divide N, it is also now immediate that $N=\operatorname{LCM}\left\{m_{1}, \ldots, m_{k}\right\}$.

That $\operatorname{gcd}\left(m_{i}, m_{j}\right)<k$ is by hypothesis; that $\operatorname{gcd}\left(m_{i}, m_{j}\right)>1$ follows from the chinese remainder theorem. This proves item 2.

Any prime power that divides some m_{i} also divides N since $N=\operatorname{LCM}\left\{m_{1}, \ldots, m_{k}\right\}$. But any prime power that divides $N=\operatorname{LCM}\left\{\operatorname{gcd}\left(m_{i}, m_{j}\right): i \neq j\right\}$ must divide two of the m 's. This proves item 3.

Items 4,5 , and 6 are based on the minimality of k. Suppose that $m_{1}=p^{r}$, a prime power. Since $\operatorname{gcd}\left(m_{1}, m_{j}\right)>1$, we know that $p \mid m_{j}$ for every j. By item 3, there is m_{2} that is also a multiple of p^{r}. Since $\operatorname{gcd}\left(m_{1}, m_{2}\right)<k$, we see that $p<k$, whence $\lceil k / p\rceil \geq 2$. By Proposition $2, \operatorname{gcd}\left(m_{i}, m_{j}\right) \nmid a_{j}-a_{i}$ for every $1 \leq i<j \leq k$. And by the pigeonhole principle, there are at least $\lceil k / p\rceil$ of the a 's that are congruent to one another modulo p, say (after renumbering)

$$
a_{1} \equiv a_{2} \equiv \cdots \equiv a_{\lceil k / p\rceil} \quad(\bmod p)
$$

Consequently,

$$
\operatorname{gcd}\left(\frac{m_{i}}{p}, \frac{m_{j}}{p}\right)+\frac{a_{j}-a_{i}}{p}
$$

for every $1 \leq i<j \leq\lceil k / p\rceil$. This implies, again by Proposition 2 , that

$$
0\left(\bmod \frac{m_{1}}{p}\right), \quad \frac{a_{2}-a_{1}}{p}\left(\bmod \frac{m_{2}}{p}\right), \quad \ldots, \quad \frac{a_{\lceil k / p\rceil}-a_{1}}{p}\left(\bmod \frac{m_{\lceil k / p\rceil}}{p}\right)
$$

are also disjoint. Since k is minimal, there must be $1 \leq i<j \leq\lceil k / p\rceil$ with

$$
\operatorname{gcd}\left(\frac{m_{i}}{p}, \frac{m_{j}}{p}\right) \geq\left\lceil\frac{k}{p}\right\rceil \text {, }
$$

whence $\operatorname{gcd}\left(m_{i}, m_{j}\right) \geq\lceil k / p\rceil p \geq k$, contradicting the existence of a counterexample with k classes. This proves item 4.

Suppose that only m_{1} and m_{2} are multiples of $k-1$. Then $a_{i}\left(\bmod m_{i}\right)($ with $2 \leq i \leq k)$ is a collection of $k-1$ disjoint congruence classes whose moduli have geds strictly less than $k-1$. This contradicts the minimality of k, and proves item 5 .

Suppose that only m_{1}, m_{2}, and m_{3} are multiples of $k-1$. Then $a_{i}\left(\bmod m_{i}\right)$ (with $3 \leq i \leq k$) are $k-2$ disjoint congruence classes whose moduli have gcds strictly less than k (because we started with a counterexample). Moreover, the gcds are strictly less than $k-1$ because none of m_{4}, \ldots, m_{k} are multiples of $k-1$. If there are not two of m_{3}, \ldots, m_{k} that are multiples of $k-2$, then we have even more: a counterexample with $k-2$ sequences. By the minimality of k, then, two of m_{3}, \ldots, m_{k} must be multiples of $k-2$. If there are exactly two, then it could be that m_{3} is one of them. To see that is not the case, we renumber m_{2} and m_{3} to conclude that both m_{2} and m_{3} are multiples of $k-2$. But then both $k-1$ and $k-2$ divide $\operatorname{gcd}\left(m_{2}, m_{3}\right)$, so that it must be at least k. This proves item 6 , and that $k \geq 5$.

Item 7 is a restatement of Lemma 5 for subsets.
Now suppose that p and k are as hypothesized in item 8 , and suppose that m_{1}, \ldots, m_{ℓ} are multiples of p, while $m_{\ell+1}, \ldots, m_{k}$ are not multiples of p. Note that $\ell \geq 2$ by item 3 , and by item 2 necessarily $p<k$. Suppose that there are r primes less than k; since $k \leq 30$ we know that $r \leq 10$. Assume, by way of contradiction, that $\ell \geq 3$.

Set

$$
\mathcal{P}_{i}:=\left\{q: q \text { prime, } q \mid m_{i}\right\} \backslash\{p\},
$$

and recall that by Lemma 6 (item 4) the cardinality of \mathcal{P}_{i} is at least 1 for every $i \leq \ell$, and at least 2 for $i>\ell$. Moreover, since $\operatorname{gcd}\left(m_{i}, m_{j}\right)<k \leq 2 p$ the \mathcal{P}_{i} (for $1 \leq i \leq \ell$) are disjoint.

Now define for $\ell<i \leq k$ the ℓ-tuple

$$
\left.\omega_{i}:=\left(\min \left\{\mathcal{P}_{1} \cap \mathcal{P}_{i}\right\}, \min \left\{\mathcal{P}_{2} \cap \mathcal{P}_{i}\right\}, \ldots, \min \left\{\mathcal{P}_{\ell} \cap \mathcal{P}_{i}\right\}\right\}\right),
$$

which is an element of $\mathcal{P}_{1} \times \cdots \times \mathcal{P}_{\ell}$. If $\omega_{i}=\omega_{j}$ (with $\ell<i<j \leq k$), then $\operatorname{gcd}\left(m_{i}, m_{j}\right)$ is at least the product of the primes in ω_{i}; since $\ell \geq 3$ this product must be at least $2 \cdot 3 \cdot 5=30 \geq k$. By the pigeonhole principle, this certainly happens if

$$
k-\ell>\left|\mathcal{P}_{1} \times \cdots \times \mathcal{P}_{\ell}\right|=\prod_{i=1}^{\ell}\left|\mathcal{P}_{i}\right|
$$

Since $\left|\mathcal{P}_{i}\right| \geq 1$ and $\sum_{i=1}^{\ell}\left|\mathcal{P}_{i}\right| \leq r-1$ (because the \mathcal{P}_{i} are disjoint for $i \leq \ell$, and there are r primes less than k including p), we can easily bound the size of $\prod_{i=1}^{\ell}\left|\mathcal{P}_{i}\right|$ in terms of r and ℓ :

		ℓ						
	$\max \left\{\prod_{i=1}^{\ell}\left\|\mathcal{P}_{i}\right\|\right\}$	3	4	5	6	7	8	9
	4	1	0	0	0	0	0	0
	5	2	1	0	0	0	0	0
	6	4	2	1	0	0	0	0
r	7	8	4	2	1	0	0	0
	8	12	8	4	2	1	0	0
	9	18	16	8	4	2	1	0
	10	27	24	16	8	4	2	1

This table shows that for $4 \leq r \leq 10$, necessarily $k-\ell>|\operatorname{Range}(\omega)|$, and so two m 's have gcd at least $30 \geq k$, with the exception of $r=10, k=30, \ell=3$.

In the case of $r=10, k=30, \ell=3$, each of the 27 possible values of ω must actually occur: $\left|\mathcal{P}_{1}\right|=\left|\mathcal{P}_{2}\right|=\left|\mathcal{P}_{3}\right|=3$. Thus two of the four primes $17,19,23,29$ are in separate \mathcal{P}_{i} 's $(1 \leq i \leq 3)$, and so must both be in three of the ω_{i} 's $(4 \leq i \leq 30)$. But then the two corresponding m 's will have gcd at least $17 \cdot 19>30$.

4. Casework

4.1. The Cases $3 \leq k \leq 6$

These cases can be handled in a variety of ways. We handle them here using only $1<m_{i} \mid L_{k}$, $1<\operatorname{gcd}\left(m_{i}, m_{j}\right)<k$, and that m_{i} cannot be a prime power.
$\mathbf{k}=\mathbf{3}$. The divisors of $L_{3}=2$ are 1 and 2 . That $m_{i}=1$ is impossible since $\operatorname{gcd}\left(m_{i}, m_{j}\right)>1$, and that $m_{i}=2$ is impossible since m_{i} cannot be a prime power.
$\mathbf{k}=4$. The divisors of $L_{4}=6$ are $1,2,3$, and 6 . Since m_{i} cannot be a prime power (or 1), every $m_{i}=6$. But $\operatorname{gcd}\left(m_{i}, m_{j}\right)<k<6$, so this too is impossible.
$\mathbf{k}=\mathbf{5}$. The divisors of $L_{5}=12$ are $1,2,3,4,6$, and 12 . Since m_{i} cannot be a prime power (or 1), every m_{i} is either 6 or 12 . But $\operatorname{gcd}\left(m_{i}, m_{j}\right)<k<6$, so this too is impossible.
$\mathbf{k}=\mathbf{6}$. The only allowed divisors of $L_{6}=60$ are $6,10,12,15,20,30$, and 60 . Since $\operatorname{gcd}\left(m_{i}, m_{j}\right)<$ 6 , the m_{i} must be distinct. By the pigeonhole principle, two of the m 's must be multiples of 10 , whence $\operatorname{gcd}\left(m_{i}, m_{j}\right) \geq 10$.

4.2. The Cases $6 \leq k \leq 10$

While looking through the cases below, I find it helpful to imagine the complete graph on k vertices with vertices labeled with $m_{1}, m_{2}, \ldots, m_{k}$, and edges labeled with $\operatorname{gcd}\left(m_{i}, m_{j}\right)$.

With $k=7$, the assignments $m_{1}=20, m_{2}=15, m_{3}=12, m_{4}=m_{5}=m_{6}=m_{7}=6$ satisfy all of the conditions given in Lemma 6 except item 7, and also passes the test of Lemma 5. Thus, for $k \geq 7$ the arguments are necessarily more involved.
$\mathbf{k}=7$. We have $N \mid L_{7}=60$. Suppose that none of the m 's are multiples of 5 , so that we can take $M:=12$, and at most one $\operatorname{gcd}\left(m_{i}, M\right)$ is 12 , with other $\operatorname{six} \operatorname{gcd}\left(m_{i}, M\right)$ being ≤ 6. In this case,

$$
\sum_{i=1}^{7} \frac{1}{\operatorname{gcd}\left(m_{i}, 12\right)} \geq \frac{1}{12}+6 \frac{1}{6}>1
$$

Now suppose that some m is a multiple of 5 , and by item 3 , at least two of the m 's are multiples of 5 . We know that no m is exactly 5 (a prime), so that the two (or more) of the m 's that are multiples of 5 are in $\{10,15,20,30,60\}$. Since $\operatorname{gcd}\left(m_{i}, m_{j}\right) \leq 6$ the only possibilities are " 10 and 15 " or " 15 and 20 ". Delete the congruence class that gives m being either 10 or 20 , and the six classes remaining fail to have the condition given in item 7 with $M=12$:

$$
\sum_{6 \text { classes }} \frac{1}{\operatorname{gcd}\left(m_{i}, 12\right)} \geq \frac{1}{\operatorname{gcd}(15,12)}+\frac{1}{\operatorname{gcd}(12,12)}+4 \frac{1}{\operatorname{gcd}(6,12)}>1
$$

$\mathbf{k}=\mathbf{8}$. Here, items 5 and 8 are not consistent. For clarity, we reprove here this special case of item 8 , proved in full above.

By item 5 , we may assume that m_{1}, m_{2}, m_{3} are multiples of 7 and divisors of $L_{8}=2^{2} \cdot 3 \cdot 5 \cdot 7$. No m is exactly 7 , so the remaining possibilities for $\left(m_{1}, m_{2}, m_{3}\right)$ are $(2 \cdot 7,3 \cdot 7,5 \cdot 7)$ and ($4 \cdot 7,3 \cdot 7,5 \cdot 7$). In particular, there are not four m's that are multiples of 7 . Item 6 now implies that there are two m^{\prime} 's, say m_{4} and m_{5}, that are multiples of $k-2=6$, and one of those is not a multiple of 5 (or else $\left.\operatorname{gcd}\left(m_{4}, m_{5}\right)=30\right)$. Thus, either $\operatorname{gcd}\left(m_{4}, m_{3}\right)$ or $\operatorname{gcd}\left(m_{5}, m_{3}\right)$ is 1 .
$\mathbf{k}=\mathbf{9}$. At least three of the m 's are multiples of 8 and divisors of $L_{9}=2^{3} \cdot 3 \cdot 5 \cdot 7$. Since $m_{i} \neq 8$ (a prime power), the three multiples of 8 are $3 \cdot 8,5 \cdot 8,7 \cdot 8$, and there isn't a fourth.

Since there isn't a fourth multiple of 8 , there must be two other m 's that are multiples of $k-2=7$, one of which is relatively prime to 5 , and both are odd since $\operatorname{gcd}\left(m_{i}, 7 \cdot 8\right) \leq 8$. Thus there is one that is relatively prime to $5 \cdot 8$, a contradiction.
$\mathbf{k}=\mathbf{1 0}$. At least three of the m 's are multiples of 9 and divisors of $L_{10}=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$. Since $m_{i} \neq 9$ (a prime power) the three multiples of 9 are $\left(m_{1}, m_{2}, m_{3}\right)=\left(2^{r} \cdot 9,5 \cdot 9,7 \cdot 9\right)$ (for some $r \geq 1$), and there isn't a fourth m that is a multiple of 9 . Since there isn't a fourth multiple of 9 , there must be two other m 's, say m_{4} and m_{5}, that are multiples of 8 , one of which is relatively prime to 5 , and so a multiple of 3 since $\operatorname{gcd}\left(m_{i}, m_{5}\right)>1$. Say m_{4} is the multiple of $3 \cdot 8$, and m_{5} is not a multiple of 3 since $\operatorname{gcd}\left(m_{4}, m_{5}\right)<10$. Since $\operatorname{gcd}\left(m_{2}, m_{5}\right)>1$ and $\operatorname{gcd}\left(m_{3}, m_{5}\right)>1$, we have $m_{5}=8 \cdot 5 \cdot 7$. Since $\operatorname{gcd}\left(m_{1}, m_{4}\right)<10$ and $\operatorname{gcd}\left(m_{4}, m_{5}\right)=8$, we have $m_{4}=3 \cdot 8$. And since $m_{1} \neq 9$ and $\operatorname{gcd}\left(m_{1}, m_{4}\right)<10$, we find that $m_{1}=2^{r} \cdot 9=2 \cdot 9$.

We have $m_{1}=2 \cdot 3^{2}, m_{2}=5 \cdot 3^{2}, m_{3}=7 \cdot 3^{2}, m_{4}=2^{3} \cdot 3, m_{5}=2^{3} \cdot 5 \cdot 7$. Suppose that there is another m that is a multiple of 7 . Since $\operatorname{gcd}\left(m, m_{1}\right)>1$, either $2 \mid m$ or $3 \mid m$. But then either $\operatorname{gcd}\left(m, m_{5}\right)=14 \geq k$ or $\operatorname{gcd}\left(m, m_{3}\right)=21 \geq k$. Likewise, no other m is a multiple of 5 . Thus the other m 's are divisors of $2^{3} \cdot 3^{2}$, but not multiples of 8 or 9 or prime powers: the possibilities are $4,6,12$. No other m can be a multiple of 12 because $m_{4}=24$, so m_{6}, \cdots, m_{10} are at most 6 . Deleting m_{5}, we take $M=2^{3} \cdot 3^{2}$ and

$$
\sum_{i \neq 5} \frac{1}{\operatorname{gcd}\left(m_{i}, M\right)} \geq \frac{1}{18}+\frac{1}{9}+\frac{1}{9}+\frac{1}{24}+\frac{1}{8}+5 \frac{1}{6}>1
$$

4.3. The Cases $\mathrm{k} \in\{8,12,14,18,20,24,30\}$

For $k \in\{8,12,14,18,20,24,30\}$, the prime $k-1$ must divide at least 3 of the m 's by item 5 . By item 8 , however, only 0 or 2 of the m 's can be multiples of a prime as large as $k / 2$.

4.4. The Cases $\mathrm{k} \leq 19$

Let G be a (possibly empty) list of positive integers and let potentials be a (possibly empty) list of positive integers. Define a function Grow [G, potentials] that will return True if it is possible to augment G with elements of potentials to get a set of size k (a global variable) such that each pair of elements has gcd strictly between 1 and k, and every subset of it passes the test of Lemma 5. Otherwise it will return False. We give in Figure 1 a Mathematica program that accomplishes this.

```
GCDList[G_] := Union[Flatten[Table[GCD[G[[i]], G[[j]]],
                                    \{i, 1, Length[G]-1\},
                                    \{j, i+1, Length[G]\} ]]];
LemmaTest[G_]:= Block[
        \{gcdlist \(=\) GCDList [G] ,
        M \},
        M = LCM @@ gcdlist;
        ( (Last [gcdlist] < k) \&\&
        (First[gcdlist] > 1) \&\&
        (Plus @@ (1/ (GCD[M,\#]\& /@ G) ) <= 1)
        ) ];
Grow[G_, potentials_] :=
        If [Length[G] == k,
        \{passed, counter\} = \{True, Length[Subsets[G, \{3, k\}]]\};
        While[passed \&\& counter > 0 ,
            passed = LemmaTest @@ Subsets[G, \{3, k\}, \{counter\}];
            counter-- ];
        passed,
        Or @@ Table[Grow[Append[ G, potentials[[i]] ],
                Select[potentials,
                        ( (\# >= potentials[[i]]) \&\&
                            LemmaTest[Join[G, \{potentials[[i]], \#\}]]
                )\& ]],
                \{i, Length[potentials]\} ]];
```

Figure 1: Mathematica code to look for counter-examples.
We can prove that there is no counter-example with $k \leq 19$ sequences by executing the following Mathematica loop

```
Or @@ Table[L = LCM @@ Range[k-1];
    candidates = Select[Divisors[L],
    (Length[FactorInteger[#]] > 1)&];
    Grow[ {}, candidates ],
    {k, 2, 19}
        ]
```

and observing that the output is False. This required slightly less than a week to run on the authors humble desktop PC.

Acknowledgement

The author wishes to thank Prof. Landman ${ }^{4}$ for marvelously organizing the Integers conference. He also wishes to thank Prof. Eichhorn ${ }^{5}$ for several conversations concerning the DCCC, including a discussion that led to Lemma 6 (item 8).

References

[1] Huhn, A.P. and Megyesi, L., On Disjoint Residue Classes, Discrete Math. 41 (1982), 327-330.
[2] Sun, Z.-W., Solutions to Two Problems of Huhn and Megyesi, Chinese Ann. Math. Ser. A 13 (1992), 722-727.
[3] Sun, Z.-W., Finite Covers of Groups by Cosets of Subgroups, Internat. J. Math, to appear.

[^1]
[^0]: ${ }^{1}$ Zhi-Wei Sun, Department of Mathematics, Nanjing University, zwsun@nju.edu.cn
 ${ }^{2}$ http://listserv.nodak.edu/archives/nmbrthry.html
 ${ }^{3}$ Ronald Graham, Department of Computer Science and Engineering, University of California, San Diego, graham@ucsd.edu

[^1]: ${ }^{4}$ Bruce M. Landman, Department of Mathematics, State University of West Georgia, landman@westga.edu
 ${ }^{5}$ Dennis Eichhorn, Department of Math and Computer Science, California State University, East Bay, eichhorn@mcs.csueastbay.edu

