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Abstract

The quantum integer [n]q is the polynomial 1 + q + q2 + · · · + qn−1. Two sequences of
polynomials U = {un(q)}∞n=1 and V = {vn(q)}∞n=1 define a linear addition rule ⊕ on a
sequence F = {fn(q)}∞n=1 by fm(q) ⊕ fn(q) = un(q)fm(q) + vm(q)fn(q). This is called a
quantum addition rule if [m]q ⊕ [n]q = [m + n]q for all positive integers m and n. In this
paper all linear quantum addition rules are determined, and all solutions of the corresponding
functional equations fm(q)⊕ fn(q) = fm+n(q) are computed.

–To Ron Graham on his 70th birthday

1. Multiplication and Addition of Quantum Integers

We consider polynomials f(q) with coefficients in a commutative ring with 1. A sequence
F = {fn(q)}∞n=1 of polynomials is nonzero if fn(q) "= 0 for some integer n. For every positive
integer n, the quantum integer [n]q is the polynomial [n]q = 1 + q + q2 + · · · + qn−1. These
polynomials appear in many contexts. In quantum calculus (Cheung-Kac [2]), for example,
the q derivative of f(x) = xn is

f ′(x) =
f(qx)− f(x)

qx− x
= [n]qx

n−1.

The quantum integers are ubiquitous in the study of quantum groups (Kassel [3]).

Let F = {fn(q)}∞n=1 be a sequence of polynomials. Nathanson [5] observed that the
multiplication rule

fm(q) ∗ fn(q) = fm(q)fn(qm)

induces a natural multiplication on the sequence of quantum integers, since [m]q∗[n]q = [mn]q
for all positive integers m and n. He asked what sequences F = {fn(q)}∞n=1 of polynomials,
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rational functions, and formal power series satisfy the multiplicative functional equation

(1) fm(q) ∗ fn(q) = fmn(q)

for all positive integers m and n. Borisov, Nathanson, and Wang [1] proved that the only
solutions of (1) in the field Q(q) of rational functions with rational coefficients are essentially
quotients of products of quantum integers. More precisely, let F = {fn(q)}∞n=1 be a nonzero
solution of (1) in Q(q), and let supp(F) be the set of all integers n with fn(q) "= 0. They
proved that there is a finite set R of positive integers and a set {tr}r∈R of integers such that,
for all n ∈ supp(F),

fn(q) = λ(n)qt0(n−1)
∏

r∈R

[n]trqr ,

where λ(n) is a completely multiplicative arithmetic function and t0 is a rational number such
that t0(n − 1) ∈ Z for all n ∈ supp(F). Nathanson [6] also proved that if F = {fn(q)}∞n=1

is any solution of the functional equation (1) in polynomials or formal power series with
coefficients in a field, and if fn(0) = 1 for all n ∈ supp(F), then there exists a formal power
series F (q) such that

lim
n→∞

n∈supp(F)

fn(q) = F (q).

Nathanson [7] also defined the addition rule

(2) fm(q)⊕ fn(q) = fm(q) + qmfn(q)

on a sequenceF = {fn(q)}∞n=1of polynomials, and considered the additive functional equation

(3) fm(q)⊕ qmfn(q) = fm+n(q).

He noted that

(4) [m]q ⊕ [n]q = [m + n]q

for all positive integers m and n, and proved that every solution of the additive functional
equation (3) is of the form fn(q) = h(q)[n]q, where h(q) = f1(q). This implies that if a
nonzero sequence of polynomials F = {fn(q)}∞n=1 satisfies both the multiplicative functional
equation (1) and additive function equation (3), then fn(q) = [n]q for all positive integers n.

In this paper we consider other binary operations fm(q)⊕fn(q) on sequences of polynomials
that induce the natural addition of quantum integers or, equivalently, that satisfy (4). The
goal of this paper is to prove that the addition rule (2) is essentially the only linear quantum
addition rule, and to find all solutions of the associated additive functional equation.

2. Linear Addition Rules

A general linear quantum addition rule is defined by two doubly infinite sequences of poly-
nomials U = {um,n(q)}∞m,n=1 and V = {vm,n(q)}∞m,n=1 such that

(5) [m + n]q = um,n(q)[m]q + vm,n(q)[n]q

for all positive integers m and n. If the sequences U and V satisfy (5), then U determines V,
and conversely. It is not known for what sequences U there exists a complementary sequence
V satisfying (5).
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A linear zero identity is determined by two sequences of polynomials S = {sm,n(q)}∞m,n=1

and T = {tm,n(q)}∞m,n=1 such that sm,n(q)[m]q + tm,n(q)[n]q = 0 for all positive integers m
and n.

We can construct new addition rules from old rules by adding zero identities and by taking
affine combinations of addition rules. For example, the simplest quantum addition rule is

(6) [m + n]q = [m]q + qm[n]q.

Then

[m]q + qm[n]q = [m + n]q = [n + m]q = [n]q + qn[m]q

for all positive integers m and n, and we obtain the zero identity

(7) (1− qn)[m]q + (qm − 1)[n]q = 0.

Adding (6) and (7), we obtain

(8) [m + n]q = (2− qn)[m]q + (2qm − 1)[n]q.

An affine combination of (6) and (8) gives

(9) [m + n]q = (4− 3qn)[m]q + (4qm − 3)[n]q.

We can formally describe this process as follows.

Theorem 1. For i = 1, . . . , k, let U (i) = {u(i)
m,n(q)}∞m,n=1 and V(i) = {v(i)

m,n(q)}∞m,n=1 be
sequences of polynomials that determine a quantum addition rule. If α1, . . . ,αk are elements
of the coefficient ring such that α1 + · · · + αk = 1, and if the sequences U = {um,n(q)}∞m,n=1

and V = {vm,n(q)}∞m,n=1 are defined by

um,n(q) =
k∑

i=1

αiu
(i)
m,n(q)

and

vm,n(q) =
k∑

i=1

αiv
(i)
m,n(q)

for all positive integers m and n, then U and V determine a quantum addition rule. Sim-
ilarly, if U = {um,n(q)}∞m,n=1 and V = {vm,n(q)}∞m,n=1 are sequences of polynomials that
determine a quantum addition rule, and if S = {sm,n(q)}∞m,n=1 and T = {tm,n(q)}∞m,n=1

are sequences of polynomials that determine a zero identity, then the sequences U + S =
{um,n(q) + sm,n(q)}∞m,n=1 and V + T = {vm,n(q) + tm,n(q)}∞m,n=1 determine a quantum addi-
tion rule.

3. The Fundamental Quantum Addition Rule

In this paper we consider sequences U and V that depend only on m or n. We shall classify
all linear zero identities and all linear quantum addition rules.
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Theorem 2. Let S = {sn(q)}∞n=1 and T = {tm(q)}∞m=1 be sequences of polynomials. Then

(10) sn(q)[m]q + tm(q)[n]q = 0

for all positive integers m and n if and only if there exists a polynomial z(q) such that

(11) sn(q) = z(q)[n]q for all n ≥ 1

and

(12) tm(q) = −z(q)[m]q for all m ≥ 1.

If

(13) sm(q)[m]q + tm(q)[n]q = 0

for all positive integers m and n, or if

(14) sm(q)[m]q + tn(q)[n]q = 0

for all positive integers m and n, then sn(q) = tn(q) = 0 for all n.

Proof. If there exists a polynomial z(q) such that the sequences S and T satisfy identities (11)
and (12), then sn(q)[m]q + tm(q)[n]q = z(q)[n]q[m]q − z(q)[m]q[n]q = 0 for all m and n.

Conversely, suppose that the sequences S and T define a linear zero identity of the
form (10). Letting m = n = 1 in (10), we have

s1(q) + t1(q) = s1(q)[1]q + t1(q)[1]q = 0.

Let z(q) = s1(q) = −t1(q). For all positive integers n we have

sn(q)[1]q + t1(q)[n]q = sn(q)− z(q)[n]q = 0,

and so sn(q) = z(q)[n]q. Similarly,

s1(q)[m]q + tm(q)[1]q = z(q)[m]q + tm(q) = 0,

and so tm(q) = −z(q)[m]q for all positive integers m.

If the sequences S and T define a linear zero identity of the form (13), then

tm(q)[n]q = −sm(q)[m]q = tm(q)[n + 1]q = tm(q)([n]q + qn),

and so tm(q)qn = 0. It follows that tm(q) = 0 for all m, and so sm(q) = 0 for all m.

Suppose that the sequences S and T define a linear zero identity of the form (14). Then

sm(q)[m]q = −tn(q)[n]q

for all m and n. This implies that if sm(q) "= 0 for some m, then tn(q) "= 0 for all n and
sm(q) "= 0 for all m. If S and T are not the zero sequences, then, denoting the degree of
a polynomial f by deg(f), we obtain deg(sm) + m − 1 = deg(tn) + n − 1 ≥ n − 1, and so
deg(sm) ≥ n −m for all positive integers n, which is absurd. Therefore, S and T are the
zero sequences. This completes the proof. !
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Theorem 3. Let U = {un(q)}∞n=1 and V = {vm(q)}∞m=1 be sequences of polynomials. Then

(15) [m + n]q = un(q)[m]q + vm(q)[n]q

for all positive integers m and n if and only if there exists a polynomial z(q) such that

(16) un(q) = 1 + z(q)[n]q

and

(17) vm(q) = qm − z(q)[m]q

for all positive integers m and n. Moreover, z(q) = u1(q)− 1 = q − v1(q).

Proof. Let z(q) be any polynomial, and define the sequences U = {un(q)}∞n=1 and V =
{vm(q)}∞m=1 by (16) and (17). Then

un(q)[m]q + vm(q)[m]q = (1 + z(q)[n]q) [m]q + (qm − z(q)[m]q) [n]q

= ([m]q + qm[n]q) + (z(q)[n]q[m]q − z(q)[m]q[n]q)

= [m]q + qm[n]q

= [m + n]q.

Conversely, let U = {un(q)}∞n=1 and V = {vm(q)}∞m=1 be a solution of (15). We define
z(q) = u1(q)− 1. Since 1 + q = [2]q = [1 + 1]q = u1(q) + v1(q) = 1 + z(q) + v1(q), it follows
that v1(q) = q − z(q). For all positive integers m we have [m + 1]q = u1(q)[m]q + vm(q), so

vm(q) = [m + 1]q − u1(q)[m]q

= qm + [m]q − u1(q)[m]q

= qm − z(q)[m]q.

Similarly, for all positive integers n we have [n + 1]q = [1 + n]q = un(q) + v1(q)[n]q, and so

un(q) = [n + 1]q − v1(q)[n]q

= 1 + q[n]q − (q − z(q))[n]q

= 1 + z(q)[n]q.

This completes the proof. !

For example, we can rewrite the quantum addition rule (9) in the form

[m + n]q = (4− 3qn)[m]q + (4qm − 3)[n]q

= (1 + z(q)[n]q)[m]q + (qm − z(q)[m]q)[n]q,

where z(q) = 3− 3q.

Theorem 4. Let U = {um(q)}∞m=1 and V = {vn(q)}∞n=1 be sequences of polynomials. Then

(18) [m + n]q = um(q)[m]q + vm(q)[n]q

for all positive integers m and n if and only if um(q) = 1 and vm(q) = qm for all m. There
do not exist sequences of polynomials U = {um(q)}∞m=1 and V = {vn(q)}∞n=1 such that

(19) [m + n]q = um(q)[m]q + vn(q)[n]q

for all positive integers m and n.
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Proof. Suppose that for every positive integer m we have

[m + 1]q = um(q)[m]q + vm(q)[1]q = um(q)[m]q + vm(q),

and

[m + 2]q = um(q)[m]q + vm(q)[2]q = um(q)[m]q + (1 + q)vm(q).

Subtracting, we obtain

qm+1 = [m + 2]q − [m + 1]q = qvm(q),

and so vm(q) = qm. Then

um(q)[m]q = [m + 1]q − vm(q) = [m + 1]q − qm = [m]q,

and so um(q) = 1 for all m. This proves the first assertion of the theorem.

If (19) holds for n = 1 and all m, then

[m + 1]q = um(q)[m]q + v1(q)[1]q = um(q)[m]q + v1(q),

and so

um(q)[m]q = [m + 1]q − v1(q).

We also have

[m + 2]q = um(q)[m]q + v2(q)[2]q = [m + 1]q − v1(q) + (1 + q)v2(q),

and so

qm+1 = [m + 2]q − [m + 1]q = (1 + q)v2(q)− v1(q)

for all positive integers m, which is absurd. !

Theorems 3 and 4 show that all linear quantum addition rules are of the form [m + n]q =
un(q)[m]q + vm(q)[n]q. The following result shows that the sequence of quantum integers is
essentially the only solution of the corresponding functional equation.

Theorem 5. Let U = {un(q)}∞n=1 and V = {vm(q)}∞m=1 be sequences of polynomials such that
[m + n]q = un(q)[m]q + vm(q)[n]q for all positive integers m and n. Then F = {fn(q)}∞n=1 is
a solution of the functional equation fm+n(q) = un(q)fm(q) + vm(q)fn(q) if and only if there
is a polynomial h(q) such that fn(q) = h(q)[n]q for all n ≥ 1.

Proof. By Theorem 3, there exists a polynomial z(q) such that un(q) = 1 + z(q)[n]q and
vm(q) = qm− z(q)[m]q for all positive integers m and n. The proof is by induction on n. Let
h(q) = f1(q). Suppose that fn(q) = h(q)[n]q for some integer n ≥ 1. Then

fn+1(q) = u1(q)fn(q) + vn(q)f1(q)

= (1 + z(q))h(q)[n]q + (qn − z(q)[n]q)h(q)

= h(q)([n]q + qn)

= h(q)[n + 1]q.

This completes the proof. !
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Remark. The only property of polynomials used in this paper is the degree of a polynomial,
which occurs in the proof that there is no nontrivial zero identity of the form (14). It follows
that Theorems 3 and 5 hold in any algebra that contains the quantum integers, for example,
the polynomials, the rational functions, the formal power series, or the formal Laurent series
with coefficients in a ring or field.

4. Nonlinear Addition Rules

A. V. Kontorovich observed that the quantum integers satisfy the following two nonlinear
addition rules:

[m + n]q = [m]q + [n]q − (1− q)[m]q[n]q
and

[m + n]q = qn[m]q + qm[n]q + (1− q)[m]q[n]q.

These give rise to the functional equations

fm(q)⊕ fn(q) = fm(q) + fn(q)− (1− q)fm(q)fn(q)

and
fm(q)⊕ fn(q) = qnfm(q) + qmfn(q) + (1− q)fm(q)fn(q),

whose solutions are, respectively,

fn(q) =
1

q − 1

n∑

k=1

(
n

k

)
((q − 1)f1(q))

k =
1− (1 + (q − 1)f1(q))n

1− q
.

and

fn(q) =
1

q − 1

n∑

k=1

(
n

k

)
qn−k((1− q)f1(q))

k =
(q + (1− q)f1(q))n − qn

1− q
.

Kontorovich and Nathanson [4] have recently described all quadratic addition rules for the
quantum integers. It would be interesting to classify higher order nonlinear quantum addition
rules.
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