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Abstract

We discuss the smallest algebraic number field which contains the nth roots of unity and
which may be reached from the rational field Q by a sequence of irreducible, radical, Galois
extensions. The degree D(n) of this field over Q is ϕ(m), where m is the smallest multiple of
n divisible by each prime factor of ϕ(m). The prime factors of m/n are precisely the primes
not dividing n but which do divide some number in the “Euler chain” ϕ(n),ϕ(ϕ(n)), . . . .
For each fixed k, we show that D(n) > nk on a set of asymptotic density 1.

–For Ron Graham on his 70th birthday

1. Introduction

Throughout this paper, all fields which appear are of characteristic zero. Let K ⊂ L be a field
extension (which is always assumed to be of finite degree). We say L is prime radical over K
if L = K[α], where αp ∈ K for some prime p, and the polynomial f(X) = Xp − αp ∈ K[X]
is irreducible. Note that for such an extension to also be Galois it is necessary and sufficient
that the pth roots of unity lie in L.

The first author was supported in part by grants PAPIIT IN104505, SEP-CONACyT 46755 and a
Guggenheim Fellowship. The second author was supported in part by NSF grant DMS-0401422.
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The present paper is motivated by the following situation. Every Galois extension K ⊂ L
with solvable Galois group can be decomposed into a chain of prime cyclic extensions, but
these prime cyclic extensions are not necessarily radical. In elementary Galois theory it is
shown that if one introduces to K and L the pth roots of unity for p running over the prime
factors of [L : K], then one has larger fields K ′ ⊂ L′, and here we can indeed find a chain
of prime radical Galois extensions, but these run from K ′ to L′. We ask if one can find an
extension L′′ of L so that there is a chain of prime radical Galois extensions from K to L′′.
In fact this is always the case, which we record as follows.

Theorem 1. Let K ⊂ L be a Galois extension with solvable Galois group of characteristic
zero fields lying in an algebraically closed field U . There is a unique minimal extension
L ⊂M ⊂ U such that M can be reached from K by a finite sequence of prime radical Galois
extensions. The field M is the smallest extension of L in U that contains a primitive pth
root of unity for each prime p | [M : K].

For example, say K = Q and L = Q(ζ23), where in general we let ζn denote a primitive nth
root of unity. This Galois extension is not only solvable, it is cyclic. The field L has degree

22 over Q, and there is the intermediate field A = Q
(∑10

i=0 ζ3i

23

)
of degree 2 over Q. Clearly

every field extension of degree 2 is prime radical and Galois, so there is no problem here. But
the degree-11 extension from A to L is Galois, so cannot be prime radical, since the eleventh
roots of unity are not present. There is no getting around an extension of degree eleven
at some point, so we throw in the eleventh roots of 1, giving us a prime radical degree-10
extension B of A. There is the intermediate field C = A(ζ11 + ζ3

11 + ζ4
11 + ζ5

11 + ζ9
11) of degree

2 over A, which is clearly prime radical and Galois. However the degree 5-extension from C
to B is prime radical but not Galois since the fifth roots of unity are not present. So, we
throw them in too obtaining a prime radical extension D = C(ζ5) which is cyclic of degree
4. Hence, D can be reached from C by a sequence of two prime radical Galois extensions,
each of degree two. Further, the extension E = D(ζ11) of D is cyclic of degree five, and
with the fifth roots of unity present in D, it follows that it is both prime radical and Galois.
Finally, the extension M = E(ζ23) is a cyclic extension of degree eleven of E, and with the
11th roots of unity present in E, it is both prime radical and Galois. So

M = Q(
10∑

i=0

ζ3i

23)(
4∑

j=0

ζ3j

11)(ζ5)(ζ11)(ζ23) = Q(ζ1265),

a field of degree 880 over Q, may be reached from Q by a sequence of prime radical Galois
extensions.

Let us consider more generally the case for K = Q(ζn). We shall present a formula for
D(n), the degree of the field M determined in Theorem 1. Let ϕk(n) be the kth iterate of
the Euler function ϕ at n. By convention, we have ϕ0(n) = n and ϕ1(n) = ϕ(n).

Theorem 2. Let F (n) be the product of the primes that divide
∏

k≥1 ϕk(n) that do not divide
n. Then the field M determined in Theorem 1 with K = Q and L = Q(ζn) is Q(ζnF (n)),
which has degree D(n) = ϕ(nF (n)) over Q.
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Some years ago, Hendrik Lenstra communicated these results to one of us (CP) and asked
how large D(n) is for most numbers n. We are now in a position to answer this question; the
following result shows that D(n), for most positive integers n, grows faster than any fixed
power of n.

Theorem 3. For each ε > 0, the set of natural numbers n for which

D(n) > n(1−ε) log log n/ log log log n

has asymptotic density 1.

Note that a quantity similar to F (n) appears in the proof of Pratt [8] that every prime has
a polynomial-time proof of primality. (This result predates the recent algorithm of Agrawal,
Kayal and Saxena that decides in deterministic polynomial time whether a given number is
prime or composite. The Pratt theorem shows only that a polynomial-time proof of primality
exists; it does not show how to find it quickly.) In particular, if p is prime, then Pratt reduces
the primality of p to the primality of the prime factors of F (p). Very recently, Bayless [2]
was able to use the methods of this paper and the Brun–Titchmarsh inequality to show that
Theorem 3 holds for prime numbers (that is, for all prime numbers except those in a set of
relative density 0 within the set of primes). As a consequence he shows that for any number
C > 0, the number of modular multiplications involved in a Pratt certificate for the prime p
exceeds C log p for all but o(π(x)) primes p ≤ x.

Throughout this paper, we use c0, c1, . . . to denote computable positive constants and
x to denote a positive real number. We also use the Landau symbols O and o and the
Vinogradov symbols % and & with their usual meanings. We write log x for the maximum
of 1 and the natural logarithm of x. We write p and q for prime numbers.

Acknowledgements. We thank Hendrik Lenstra for asking the question about the normal
size of D(n) and for his help with Section 2. We also thank Tom Shemanske for some helpful
discussions. This paper started during a very enjoyable visit of the first author to Dartmouth
College under a Shapiro Fellowship in May of 2005. He would like to thank this department
for its hospitality and support.

2. The Proofs of Theorem 1 and Theorem 2

We prove two lemmas. The first gives a sufficient condition for an extension K ⊂ L to be
decomposable into a tower of prime radical Galois extensions.

Lemma 4. If K ⊂ L is Galois with solvable Galois group, and ζp ∈ L for each prime
p dividing [L : K], then L can be reached from K by a sequence of prime radical Galois
extensions.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A25 4

Proof. The proof relies on the well-known fact from Kummer theory that a cyclic extension
of prime degree p of a field K containing a primitive pth root of 1 is prime radical. We
now proceed by induction on [L : K]. If all ζp ∈ K for prime p | [L : K], we then use the
solvability of Gal(L/K) to break up the extension into a tower of cyclic extensions of prime
degrees, and apply the above well-known fact to each of them. Otherwise, let p be minimal
with ζp '∈ K. We now break up the extension K ⊂ L into K ⊂ K(ζp) ⊂ L and deal with
each piece inductively. By [K(ζp) : K] < p and the choice of p, the above fact applies to the
prime degree pieces into which the abelian extension K ⊂ K(ζp) can be broken up, while
the inductive hypothesis applies to K(ζp) ⊂ L.

The second lemma shows that the condition on pth roots of 1 is necessary.

Lemma 5. If K ⊂ L and L can be reached from K by a finite sequence of prime radical
Galois extensions, then ζp ∈ L for each prime p | [L : K].

Proof. Say the promised sequence of fields is K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L, and let p be
a prime factor of [L : K]. Then some [Ki+1 : Ki] = p. Since this extension is radical and
Galois, we must have ζp ∈ Ki+1, so that ζp ∈ L.

Lenstra points out to us that if one does not assume the radical extensions in Lemma 5
to be Galois, but imposes that L/K is Galois, then the conclusion of Lemma 5 still holds.
Indeed, if L/K is Galois, and M is an extension of L such that we can reach M from K by
a finite sequence of prime radical extensions (not necessarily Galois), then M contains ζp for
each prime p | [L : K]. To see this, let K = K0 ⊂ K1 ⊂ · · · ⊂ Kt = M be a sequence of
prime radical extensions, and let p be a prime dividing [L : K]. The sequence of fields LKi

runs from LK0 = L to LKt = M , so the sequence of degrees [LKi : Ki] runs from [L : K],
when i = 0, to 1, when i = t. Note too that each extension Ki ⊂ LKi is Galois. Since

[LKi+1 : Ki+1] = [LKi : LKi ∩Ki+1], (1)

we have each [LKi+1 : Ki+1] | [LKi : Ki]. Thus, there is a largest subscript i such that
p | [LKi : Ki]. Clearly, i < t. We will show that Ki ⊂ Ki+1 ⊂ LKi, and that [Ki+1 : Ki] = p.
Since Ki+1 is prime radical over Ki and LKi is Galois over Ki, it follows that LKi contains
ζp. To see the assertion, note that (1) implies that

[LKi : Ki] = [LKi : LKi ∩Ki+1][LKi ∩Ki+1 : Ki]

= [LKi+1 : Ki+1][LKi ∩Ki+1 : Ki].

By the choice of i, the left side is divisible by p and the first factor in the last product
is not divisible by p. Thus, the last factor in the last product is divisible by p. Since
LKi ∩ Ki+1 ⊂ Ki+1 and Ki+1/Ki is prime radical, the extension LKi ∩ Ki+1/Ki is an
extension of degree exactly p and LKi ∩Ki+1 = Ki+1. This proves our assertion, and so the
alternate form of Lemma 5.
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We are now ready to prove Theorems 1 and 2.

Proof of Theorem 1. This follows immediately from Lemmas 4 and 5. Indeed, to obtain
M from L, we first adjoin to L = L0 all ζp for p | [L : K]. The resulting field L1 is still
Galois with a solvable group over K. We now adjoin to L1 all ζp for p | [L1 : L0] and
so reach a solvable extension L2 of K. We continue to iterate the process, noting that if
[Li : Li−1] = di, then [Li+1 : Li] is a divisor of ϕ(di). Thus, the procedure stabilizes at the
smallest field M = Ln which contains all ζp for p | [M : K].

It follows from Lemma 4 that M may be reached from K by a sequence of prime radical
Galois extensions. The minimality, and thus uniqueness of M follows from Lemma 5.

Proof of Theorem 2. We apply the algorithm described in the proof of Theorem 1 to K = Q
and L = Q(ζn). We obtain M = Q(ζm), where m is the least multiple of n that is divisible
by all primes dividing ϕ(m). It is easy to see that

m = n
∏

p|ϕk(n) for some k≥1
p ! n

p,

and we immediately recognize that m = nF (n). Thus, D(n) = [Q[ζm] : Q] = ϕ(m) =
ϕ(nF (n)).

Using the alternate form of Lemma 5 described before the proof of Theorem 1 above, we
also get the following alternate version of Theorem 1.

Theorem 6. Let K ⊂ L be a finite extension of characteristic zero fields lying in an al-
gebraically closed field U . Assume that the Galois group of the normal closure L of L over
K (in U) is solvable. There is a unique minimal Galois extension L ⊂ M in U such that
M can be reached from K by a finite sequence of prime radical extensions. The field M is
the smallest extension of L in U that contains a primitive pth root of unity for each prime
p | [M : K].

3. The Proof of Theorem 3

3.1 Preliminary Results

We recall a result from [4]:

Proposition 7. There is an absolute constant c1 such that for each prime p and integer
k ≥ 0, the number of integers n ≤ x with p | ϕk(n) is at most (x/p)(c1 log log x)k.

Let
FK(n) =

∏

0≤k≤K

ϕj(n).
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One of our goals will be to establish the following result.

Proposition 8. There is an absolute constant c2 such that for all sufficiently large numbers
x, all numbers y ≥ 1 and all integers K ≥ 1, the number of integers n ≤ x with p2 | FK(n)
for some prime p > y is at most (x/y)K(c2 log log x)2K.

Let Ω(n) denote the number of prime factors of n counted with multiplicity. We will also
prove the following result.

Proposition 9. The number of positive integers n ≤ x with the property that Ω(FK(n)) >
2(5 log log x)K+1 is & (x/ log x)(c1 log log x)K uniformly in K, where c1 is the constant from
Proposition 7.

3.2 Proof of Theorem 3

Let x be a large positive real number and let 0 < ε < 1 be arbitrarily small and fixed. Put

K = *(1− ε) log log x/ log log log x+.

Assume n ≤ x, and factor FK(n) as AB, where each prime in A is at most (log x)3 and each
prime in B exceeds (log x)3. Since

(x/ log x)(c1 log log x)K = o(x),

Proposition 9 implies that but for o(x) choices of the positive integer n ≤ x, we have

A ≤ (log3 x)2(5 log log x)K+1 ≤ exp(2(5 log log x)K+2) = xo(1).

By the minimal order of ϕ(m)/m for m ≤ x, we have that each one of the inequalities
ϕj+1(n)/ϕj(n) > 1/(2 log log x) holds. We also may assume that n > x/(2 log log x), so that

FK(n) = nK+1
K∏

i=0

ϕi(n)

n
= nK+1

K∏

i=0

i−1∏

j=0

ϕj+1(n)

ϕj(n)

> nK+1/(2 log log x)1+2+···+K > xK+1/(2 log log x)(K+1)(K+2)/2

> xK+1/2

for x sufficiently large. Thus, but for o(x) choices for n ≤ x, we have

B > xK+1/4.

By Proposition 8, the number of n ≤ x with p2 | FK(n) for some prime number p > log3 x is
O(x/ log x). Thus, for all but o(x) choices of n ≤ x, the number B is squarefree. It is clear
that B | nF (n), therefore ϕ(B) | D(n). From the minimal order of the Euler function, we
have

ϕ(B) >
B

2 log log B
>

xK+1/4

2(log(K + 1/4) + log log x)
>

xK+1/4

3 log log x
> xK .

Thus, D(n) > xK holds for all n ≤ x with at most o(x) exceptions, which completes the
proof of the theorem.
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3.3 Proofs of the Preliminary Results

Before we begin the proof of Proposition 8, we establish some helpful notation. For a positive
integer m, let

Pm = {p prime : p ≡ 0 or 1 (mod m)}.

By the Brun–Titchmarsh inequality and partial summation, we have

∑

p∈Pm
p≤x

1

p
≤ c0

ϕ(m)
log log x (2)

for some absolute constant c0 (see Lemma 1 in [3] or formula (3.1) in [4]). Note that from
Theorem 3.5 in [4], we may (and do) take the constant c1 from Proposition 7 equal to 2c0.
Let

Sk(x,m) = {n ≤ x : m | ϕk(n)}, Sk(x,m) = #Sk(x,m).

Lemma 10. For all sufficiently large values of x, if q1 ≤ q2 are primes and k is any
nonnegative integer, then

Sk(x, q1q2) ≤
x

q1q2
(3c0 log log x)2k.

Proof. We proceed by induction on k. The result is clearly true for k = 0. Assume that the
result holds at k. If q1q2 | ϕk+1(n), then either p | ϕk(n) for some p ∈ Pq1q2 , or p1p2 | ϕk(n)
for some p1 ∈ Pq1 and p2 ∈ Pq2 . Thus,

Sk+1(x, q1q2) ≤
∑

p∈Pq1q2

Sk(x, p) +
∑

p1∈Pq1 , p2∈Pq2

Sk(x, p1p2).

Thus, by Proposition 7 and the induction hypothesis, we have that

Sk+1(x, q1q2) ≤
∑

p∈Pq1q2
p≤x

x

p
(c1 log log x)k +

∑

p1∈Pq1 , p2∈Pq2
p1≤x, p2≤x

x

p1p2
(3c0 log log x)2k.

We now use (2), and so get

Sk+1(x, q1q2) ≤ x

ϕ(q1q2)
(c0 log log x)(c1 log log x)k

+
x

ϕ(q1)ϕ(q2)
(c0 log log x)2(3c0 log log x)2k

≤ x

q1q2

(
3c0 log log x(c1 log log x)k + (2c0 log log x)2(3c0 log log x)2k

)
.

Thus, using c1 = 2c0, the inequality at k + 1 follows for all x beyond some uniform bound.
Thus, the lemma has been proved.
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We introduce the following notation. Let

SK(x, y) =
⋃

0≤k≤K
p>y, p prime

Sk(x, p2), SK(x, y) = #SK(x, y).

For nonnegative integers k1 and k2 with k1 < k2, and primes q1 and q2, let

Sk1,k2(x, q1, q2) = {n ≤ x : q1 | ϕk1(n), q2 | ϕk2(n)}.

Lemma 11. Suppose that k1, k2 and K are integers with 0 ≤ k1 < k2 ≤ K and q1 and q2

are primes with q2 > y and q2 not a divisor of ϕk2−k1(q1). Then

#(Sk1,k2(x, q1, q2)− SK(x, y)) ≤ x

q1q2
(3c0 log log x)k1+k2 .

Proof. We first show that if ϕj(m) is not divisible by the square of any prime exceeding y
for 0 ≤ j ≤ k − 1, then for each prime q | ϕk(m) with q > y, there is a prime p | m with
q | ϕk(p). Indeed take k = 1. Either there is a prime p | m with q | ϕ(p) or p2 | m. By the
hypothesis, the latter case does not occur. Thus, the result is true at k = 1. Assume that
it is true at k and assume the hypothesis at k + 1. Then either there is a prime p′ | ϕk(m)
with q | ϕ(p′), or q2 | ϕk(m). Again, the latter case does not occur, so we have the former
case. By the induction hypothesis, there is a prime p | m with p′ | ϕk(p). Then q | ϕk+1(p),
and the assertion always holds.

Suppose that n ∈ Sk1,k2(x, q1, q2)− SK(x, y), where k1, k2,K, q1 and q2 are as given in the
lemma. By the above with m = ϕk1(n), there is a prime p | ϕk1(n) with q2 | ϕk2−k1(p). By
the hypothesis of the lemma, we have p '= q1. Thus, pq1 | ϕk1(n). It follows that

# (Sk1,k2(x, q1, q2)− SK(x, y)) ≤
∑

p : q2|ϕk2−k1
(p)

Sk1(x, pq1)

≤
∑

p : q2|ϕk2−k1
(p)

x

pq1
(3c0 log log x)2k1 ,

by Lemma 10. But from the remark on p. 190 of [4], we have

∑

p : q2|ϕk2−k1
(p)

1

p
≤ 1

q2
(2c0 log log x)k2−k1 .

Putting this inequality in the prior one gives the lemma.

Proof of Proposition 8. The count in Proposition 8 is at most

SK(x, y) +
∑

p>y

∑

0≤k1<k2≤K

#(Sk1,k2(x, p, p)− SK(x, y)) .
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By Lemma 10 with q1 = q2 = p, we have

SK(x, y) ≤
∑

p>y

∑

0≤k≤K

x

p2
(3c0 log log x)2k & x

y
(3c0 log log x)2K .

We also take q1 = q2 = p in Lemma 11. Thus,

∑

p>y

∑

0≤k1<k2≤K

#(Sk1,k2(x, p, p)− SK(x, y)) &
∑

p>y

x

p2
K(3c0 log log x)2K

& x

y
K(3c0 log log x)2K .

Thus, the proposition follows with c2 any number larger than 3c0.

The next two results will be helpful in establishing Proposition 9. The proofs are suggested
in Exercise 05 in [5].

Lemma 12. Uniformly for 1 < z < 2, we have

∑

n≤x

zΩ(n) & x(log x)z−1

2− z
.

Proof. Let g be the multiplicative function with g(pa) = za − za−1 for primes p and positive
integers a. Then zΩ(n) =

∑
d|n g(d). Thus, the sum in the lemma is equal to

∑

m≤x

g(m)
⌊ x

m

⌋
≤ x

∑

m≤x

g(m)

m
≤ x

∏

p≤x

(
1 +

z − 1

p
+

z2 − z

p2
+ · · ·

)

= x
∏

p≤x

p− 1

p− z
=

x

2− z

∏

3≤p≤x

p− 1

p− z
& x

2− z
(log x)z−1.

This completes the proof of the lemma.

Lemma 13. Uniformly for each positive integer k,

∑

n≤x
Ω(n)≥k

1& k

2k
x log x.

Proof. This merely involves applying Lemma 12 with z = 2− 1/k. Indeed, if N is the sum
in the present lemma, then Lemma 12 implies that

N & x(log x)1−1/k

(1/k)(2− 1/k)k
,

and it remains to note that (2− 1/k)k = 2k(1− 1/(2k))k ≥ 2k−1.
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A version of Lemma 13 above appears also in [7].

Proof of Proposition 9. By Lemma 13, if 0 < t ≤ x, the number of primes p ≤ t with
Ω(p− 1) > 5 log log x is O(t/ log2 x). This holds since 5 log 2− 1 > 2, and indeed the same
estimate holds for the number of integers n ≤ t with Ω(n) > 5 log log x. Thus, by partial
summation, ∑

p≤x
Ω(p−1)>5 log log x

1

p
& 1

log x
. (3)

If Ω(n) ≤ 5 log log x and if each prime p dividing FK−1(n) has the property that Ω(p− 1) ≤
5 log log x, then for all positive integers 0 ≤ k ≤ K we have Ω(ϕk(n)) ≤ (5 log log x)k+1, so
that Ω(FK(n)) ≤ 2(5 log log x)K+1. We conclude that if Ω(FK(n)) > 2(5 log log x)K+1, then
either Ω(n) > 5 log log x or there is some prime p | FK−1(n) with Ω(p − 1) > 5 log log x.
It follows from Lemma 13, that the number of n in the first category is O(x/ log2 x),
while it follows from (3) and Proposition 7 that the number of n in the second category
is O((x/ log x)(c1 log log x)K−1). This completes the proof of the proposition.

4. Thoughts on the Normal Order of D(n)

Let kϕ(n) be the least integer k with ϕk(n) = 1. Further, let λ(n) denote Carmichael’s
function, so that λ(n) is the order of the largest cyclic subgroup of the multiplicative group
(Z/nZ)×. With λk as the iterated Carmichael function, let kλ(n) be the least k with λk(n) =
1. It is easy to see that the prime factors of

∏
k≥1 ϕk(n) are the same as the prime factors

of
∏

k≥1 λk(n), so that we might have stated Theorem 2 in terms of the iterated λ-function
rather than the iterated ϕ-function. Thus,

D(n) = ϕ(nF (n)) ≤ nF (n) ≤ nkλ(n)+1. (4)

It is suggested in [6] that for all n lying outside a set of asymptotic density 0, the inequality
kλ(n)& log log n holds. If so, then apart from a factor of order log log log n in the exponent,
Theorem 3 is best possible.

Let r(n) denote the radical of ϕ(n), that is, the largest squarefree divisor of ϕ(n), and
let kr(n) be the number of iterates of r that brings n to 1. We have kr(n) ≤ kλ(n) and
D(n) ≤ nkr(n)+1, thus strengthening (4). This inequality and Theorem 3 imply that kr(n) ≥
(1 + o(1)) log log n/ log log log n for a set of n of asymptotic density 1. It is easy to see that
kλ(n) % log n for infinitely many n; just take n of the form 2m (and with n = 3m, we get a
slightly better constant). We do not know how to show that kr(n) % log n infinitely often,
and perhaps we always have kr(n) = o(log n). Surely it must be true that kr(n) = o(log n)
on a set of asymptotic density 1, but we do not know how to prove this assertion. We also
do not know how to prove the analogous assertion for kR(n), where R(n) is defined as the
largest prime factor of ϕ(n). We cannot even prove that kR(n) = o(log n) for a fixed positive
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proportion of integers n, nor can we show that kR(n) = o(log n) for infinitely many primes
n. Here is one more statement showing our state of ignorance. Let Prime(n) denote the
smallest prime that is congruent to 1 modulo n, and let Primek(n) denote the kth iterate.
For example, Prime2(3) = Prime(7) = 29. Presumably, the sequence Primek+1(n)/Primek(n)
is unbounded as k →∞ for each fixed n, but we cannot show this is true for any n. Note that
if this sequence is bounded for some n, then kR(n) % log n for infinitely many n. However,
we conjecture both of these assertions are false. For some related considerations, see the
paper [1].

We close by remarking that we have kλ(n) % log log n almost always, that is, for all n
outside a set of density 0. Indeed, we have from Theorem 4.5 of [4] that there is a positive
constant c3 such that for almost all n, there is some iterate ϕj(n) divisible by every prime up
to (log n)c3 . Since every prime that divides some iterate of ϕ at n also divides some iterate
of λ at n (as remarked above), we have

kλ(n) ≥ max
p≤(log n)c3

kλ(p).

Further, by Linnik’s theorem, there exists a positive constant c4 such that for all sufficiently
large values of x, there is a prime p ≤ x with 2u | p − 1 for some integer u with 2u > xc4 .
For this prime p, we have kλ(p) > u/2 % log x. Applied with x = (log n)c3 , we have the
assertion.
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