MORE ON POINTS AND ARCS

Vsevolod F. Lev
Department of Mathematics, The University of Haifa at Oranim, Tivon 36006, Israel
seva@math.haifa.ac.il

Received: 11/30/05, Accepted: 2/12/06

Abstract

Let z_{1}, \ldots, z_{N} be complex numbers, situated on the unit circle $|z|=1$ so that any open arc of length $\varphi \in(0, \pi]$ of the circle contains at most n of them. Write $S:=z_{1}+\cdots+z_{N}$. Complementing our earlier result, we show that $$
|S| \leq n \frac{\sin (\varphi N / 2 n)}{\sin (\varphi / 2)}
$$

Consequently, given that $|S| \geq \alpha N$ with $\alpha \in(0,1]$, there exists an open arc of length φ containing at least $$
\frac{\varphi / 2}{g^{-1}(\alpha g(\varphi / 2))} N
$$ of the numbers z_{1}, \ldots, z_{N}; here $g(x)=\sin x / x$ and g^{-1} is the function, inverse to g on the interval $0<x \leq \pi$.

Let $\mathbb{U}:=\{z \in \mathbb{C}:|z|=1\}$ and suppose that for integers $N \geq n \geq 1$ and real $\varphi \in(0, \pi]$, the numbers $z_{1}, \ldots, z_{N} \in \mathbb{U}$ have the property that any open arc of \mathbb{U} of length φ contains at most n of them. Extending a well-known lemma of Freiman [F62, Lemma 1], we showed in [L05] that, writing $S:=z_{1}+\cdots+z_{N}$, one has

$$
\begin{equation*}
|S| \leq 2 n-N+2(N-n) \cos (\varphi / 2) \tag{1}
\end{equation*}
$$

thus, if $|S| \geq \alpha N$ with $\alpha \in[0,1]$, then there is an open arc of \mathbb{U} of length φ containing at least

$$
\begin{equation*}
\frac{\alpha+1-2 \cos (\varphi / 2)}{2(1-\cos (\varphi / 2))} N \tag{2}
\end{equation*}
$$

of the numbers z_{1}, \ldots, z_{N}. Estimate (1) is sharp in the range $N / 2 \leq n \leq N$: equality is attained, for instance, if $2 n-N$ of the numbers z_{1}, \ldots, z_{N} equal 1 , and the remaining $2 N-2 n$ of them are evenly split between $\exp (i \varphi / 2)$ and its conjugate $\exp (-i \varphi / 2)$. Accordingly, the bound (2) is sharp if $\alpha \geq \cos (\varphi / 2)$. Indeed, if in this case n is the smallest integer, greater than or equal to the expression in (2), then $N / 2 \leq n \leq N$ and the configuration just described provides an example of z_{1}, \ldots, z_{N} with $|S| \geq \alpha N$ (as it follows from a brief computation) and no open arc of length φ containing more than n of the numbers z_{1}, \ldots, z_{N}.

On the other hand, (1) and (2) can be far from sharp if $n<N / 2$ and $\alpha<\cos (\varphi / 2)$, respectively. For instance, straightforward averaging shows that there is an arc of length φ, containing at least $(\varphi / 2 \pi) N$ of z_{1}, \ldots, z_{N}. This nearly trivial bound is better, than (2), if

$$
\alpha<1-(2-\varphi / \pi)(1-\cos (\varphi / 2)) ;
$$

that is, when both φ and α are small. Below we establish an estimate which remains reasonably sharp for small values of n and α and, in particular, is better than the trivial estimate for the whole range of parameters.

Theorem 1. Let N and n be positive integers and let $\varphi \in(0, \pi]$. Suppose that the numbers $z_{1}, \ldots, z_{N} \in \mathbb{U}$ have the property that any open arc of \mathbb{U} of length φ contains at most n of them. Then, writing $S:=z_{1}+\cdots+z_{N}$, we have

$$
|S| \leq n \frac{\sin (\varphi N / 2 n)}{\sin (\varphi / 2)}
$$

For the rest of the note, we write $g(x):=\sin x / x$ and denote by g^{-1} the function, inverse to g on the interval $0<x \leq \pi$. Notice, that g^{-1} is defined and monotonically decreasing on $[0,1)$.

Corollary 1. Let N be a positive integer and let $\varphi \in(0, \pi]$. Suppose that $z_{1}, \ldots, z_{N} \in \mathbb{U}$ and write $S:=z_{1}+\cdots+z_{N}$. If $|S| \geq \alpha N$ with $\alpha \in(0,1]$, then there is an open arc of \mathbb{U} of length φ containing at least

$$
\frac{\varphi / 2}{g^{-1}(\alpha g(\varphi / 2))} N
$$

of the numbers z_{1}, \ldots, z_{N}.

To deduce Corollary 1 from Theorem 1 observe that if $N, \varphi, z_{1}, \ldots, z_{N}, S$, and α are as in the corollary, and if n is the largest number of points among z_{1}, \ldots, z_{N} on an open arc of length φ, then $\alpha N \leq n \frac{\sin (\varphi N / 2 n)}{\sin (\varphi / 2)}$ by Theorem 1, whence $\alpha \frac{\sin (\varphi / 2)}{\varphi / 2} \leq \frac{\sin (\varphi N / 2 n)}{\varphi N / 2 n}$. Equivalently, $\alpha g(\varphi / 2) \leq g(\varphi N / 2 n)$, and the assertion follows by applying g^{-1} to both sides.

Note that the bound of Corollary 1 is attained if $\alpha=\sin (d \varphi / 2) /(d \sin (\varphi / 2))$, where $1 \leq d \leq$ $2 \pi / \varphi$ is an integer and N is divisible by d. For, set in this case $n:=N / d$ and consider a d-term geometric progression with the ratio $\exp (i \varphi)$, situated on \mathbb{U}. Placing exactly n points at each term of this progression, we obtain a system of N complex numbers such that no open arc of \mathbb{U} of length φ contains more than $n=(\varphi / 2) N / g^{-1}(\alpha g(\varphi / 2))$ of them, while their sum equals αN in absolute value.

Finally, we notice that the bound of Corollary 1 is better than (2) for all α and φ such that $\alpha \leq \cos (\varphi / 2)$; we omit the (rather tedious) verification.

The remainder of the note is devoted to the proof of Theorem 1. We start with a lemma.
Lemma 1. Suppose that the function $f \in L^{1}[-\pi, \pi]$ attains values in the interval $[0,1]$. If $\int_{-\pi}^{\pi} f(\theta) d \theta=2 c$ (with a real c), then

$$
\int_{-\pi}^{\pi} f(\theta) \cos \theta d \theta \leq 2 \sin c .
$$

Proof. Let I_{c} denote the indicator function of the interval $[-c, c]$. Then

$$
f(\theta)(\cos \theta-\cos c) \leq I_{c}(\theta)(\cos \theta-\cos c)
$$

for all $\theta \in[-\pi, \pi]$, and it follows that

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(\theta) \cos \theta d \theta & =\int_{-\pi}^{\pi} f(\theta)(\cos \theta-\cos c) d \theta+2 c \cos c \\
& \leq \int_{-c}^{c}(\cos \theta-\cos c) d \theta+2 c \cos c \\
& =2 \sin c
\end{aligned}
$$

Remark. The estimate of Lemma 1 is attained for $f=I_{c}$. Thus, what the lemma actually says is that for a given value of $\int_{-\pi}^{\pi} f(\theta) d \theta$, the integral $\int_{-\pi}^{\pi} f(\theta) \cos \theta d \theta$ is maximized if f is concentrated around 0 (where $\cos \theta$ is maximal).

Proof of Theorem 1. Without loss of generality we can assume that S is real.
For $\theta \in[-\pi, \pi]$, let $K(\theta)$ denote the number of those indices $j \in[1, N]$ such that there is a value of $\arg z_{j}$ which is within less than $\varphi / 2$ from θ; with a little abuse of notation, we can write

$$
K(\theta):=\#\left\{j \in[1, N]:\left|\arg z_{j}-\theta\right|<\varphi / 2\right\} .
$$

Notice that $K(\theta)$ is piecewise continuous and attains values in $[0, n]$. Furthermore, it is readily verified that

$$
\int_{-\pi}^{\pi} K(\theta) d \theta=\varphi N
$$

and applying Lemma 1 to the function $f(\theta):=K(\theta) / n$ we conclude that

$$
\int_{-\pi}^{\pi} K(\theta) \cos \theta d \theta \leq 2 n \sin \frac{\varphi N}{2 n}
$$

To complete the proof we observe that the integral in the left-hand side is

$$
\Re\left(\sum_{j=1}^{N} \int_{\arg z_{j}-\varphi / 2}^{\arg z_{j}+\varphi / 2} \exp (i \theta) d \theta\right)=\Re\left(\sum_{j=1}^{N} z_{j} \cdot 2 \sin (\varphi / 2)\right)=2 S \sin (\varphi / 2)
$$

References

[F62] G.A. Freiman, Inverse problems of additive number theory, VII. On addition of finite sets, IV, Izv. Vyss. Ucebn. Zaved. Matematika 6 (31) (1962), 131-144.
[L05] V.F. Lev, Distribution of points on arcs, INTEGERS: The Electronic Journal of Combinatorial Number Theory 5(2) (2005), A11, 8 pp . (electronic).

