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Abstract

A finite simple graph G is said to be lattice-ordered if the poset of unlabeled induced
subgraphs of G, ordered by inclusion, is lattice-ordered. In this paper, we prove that a graph
is lattice-ordered if and only if it or its complement is complete multipartite. Furthermore,
if two lattice-ordered graphs have isomorphic unlabeled induced subgraph lattices, then one
can be obtained from the other via conjugations and complementations.

An induced subgraph G[S] of a (finite simple) graph G is defined as a set S ⊆ V (G) of
vertices together with edge set {vw : v, w ∈ S}. Throughout, we shall use G # H to denote
that G is an induced subgraph of H. The set of unlabeled induced subgraphs (i.e. with
isomorphic induced subgraphs identified) of any graph can be partially ordered by inclusion;
our ultimate goal is to determine when a graph is determined by the form of its “induced
poset”.

A lattice-ordered set is a poset with the property that for any two elements a, b we can
uniquely define inf{a, b} and sup{a, b}. It is clear that the poset of labeled induced subgraphs
(ordered by inclusion) is lattice-ordered. Numerous authors (see [4, 5, 6, 8, 9]) have discussed
the lattices which come from the poset of connected induced subgraphs. Others (see [1, 2, 3])
have investigated posets of all simple graphs with a fixed order. We wish to investigate when
the (unlabeled) induced poset of a graph is lattice-ordered. (We shall use lattice-ordered to
refer to such graphs, for simplicity’s sake.)

Lemma 1. Let G and H be graphs, and G and H their complements. If G = H[S] for some
vertex subset S, then G = H[S].
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Lemma 2. G is a lattice-ordered graph if and only if G is lattice-ordered.

Proof. We show that G being lattice-ordered implies that G shares this property; the result
then follows from complementation being its own inverse.

Suppose that H1, H2 # G; since G is lattice-ordered we can find induced subgraphs H+ =
sup{H1, H2} and H− = inf{H1, H2}. Turning to the complements, it is clear that H

+
=

G[S+] contains both H1 and H2 as induced subgraphs, and that both in turn contain H
−
. If

K # H1 and K # H2, then likewise K # H1, H2 and so K # H− by the lattice-ordering on
G; invoking Lemma 1 one more time, this implies that K # H

−
, and so H

−
= inf{H1, H2}.

A similar argument shows that H
+

= sup{H1, H2}

We shall require a pair of technical lemmas, one from the folklore of graph theory and the
other following from the properties of lattices; we state these without proof.

Lemma 3. Either G or G is connected.

Lemma 4. If G is lattice-ordered and H # G, then H is lattice-ordered.

The smallest graphs that are not lattice-ordered are all of order 4. The paw (a triangle
with a pendant edge) is not lattice-ordered. To see this, note that the induced subgraphs P3

and K1∪P2 both feature K2 and K1∪K1 as induced subgraphs, and hence inf{P3,K1∪P2}
is undefined. By Lemma 2, the complement of the paw is likewise not lattice-ordered. This
observation, together with Lemma 4, will allow us to make use of the following theorem of
Olariu from [7]:

Theorem 5. A graph is paw-free if and only if it is triangle-free or complete multipartite.

The third and final non-lattice-ordered graph of order 4 is P4 (which is self-complementary),
for the same reason given above for the paw.

One might notice that all of the other graphs of order 4 – as well as all graphs of orders
3 and below – have this in common: they are either complete multipartite graphs, or else
disjoint unions of cliques (i.e. the complements of complete multipartite graphs). This might
lead one (as it has led us) to guess that this is no coincidence.

We define the obvious bijection between the integer partitions of n and the complete
multipartite graphs on n vertices by mapping the partition π to Kπ. If π, µ are integer
partitions we shall use the notation π ≤ µ to denote that π is contained in µ (or actually,
that the Ferrers diagram of π is contained in that of µ).

Theorem 6. A graph is lattice-ordered if and only if it or its complement is complete mul-
tipartite.
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Proof. (⇒) Suppose that G is a lattice-ordered graph and neither G nor G is complete mul-
tipartite. From a previous observation we know that G is paw-free, so Theorem 5 implies
that both G and G are triangle-free. The Ramsey number R(3, 3) = 6 implies that the order
of G is at most 5, and checking all graphs of order ≤ 5 yields no such G.

(⇐) By Lemma 2 it suffices to assume that G is complete multipartite and show that it
is lattice-ordered; we note first that every induced subgraph of a complete multipartite is
itself complete multipartite. If π ≤ µ, then clearly Kπ # Kµ, and the reverse is also true;
therefore, inclusion of induced subgraphs corresponds exactly with partition containment.
But containment is well-known to be a lattice ordering of integer partitions, and therefore
induced subgraph inclusion must be a lattice ordering on complete multipartite graphs (and
hence their complements).

The correspondence between lattice-ordered graphs and integer partitions reveals a way
other than complementation that two lattice-ordered graphs might yield the same lattice of
induced subgraphs. Recall that two integer partitions are conjugate if their Ferrers diagrams
are mirror-images of each other along the main diagonal.

Corollary 7. Let π be an integer partition, and π" its conjugate. Then the lattices of induced
subgraphs of Kπ and Kπ! are isomorphic.

Proof. This follows inductively from the fact that for any partition π, the conjugates of the
vertex-deleted subgraphs of Kπ are isomorphic to the vertex-deleted subgraphs of Kπ! .

In what follows, when G is a lattice-ordered graph and we talk about the conjugate of G
we are referring to the graph corresponding to the conjugate of the defining partition of G.

These two operations, complementation and conjugation, completely determine all lattice-
ordered graphs that share the same poset structure. To prove this, we need first to construct
some infrastructure.

Let P = (S,≤) be a poset. A chain in P is a set {a1, a2, . . . ak} ⊆ S such that ai ≤ ai+1

for all positive i < k; the length of a chain (here k) is its size as a set. If x, y ∈ S such that
x ≤ y, then the interval 〈x, y〉 is defined as the set {z ∈ S : x ≤ z ≤ y}. An induced chain
in P is an interval that is also a chain.

Let us apply these concepts to the induced-subgraph lattices. Let π be an integer par-
tition, and consider the induced chains of the form 〈[1], τ〉 in the lattice of π. Notice that
the partition [2, 1] cannot be a member of any such induced chain, since the sub-interval
〈[1], [2, 1]〉 would not be a chain. Hence, τ must have one of the forms [k] (for some positive
integer k) or [1, . . . , 1]; in the corresponding lattice-ordered graphs, these correspond to in-
dependent sets and cliques. Thus, the set of lengths of maximum induced chains of this form
in the lattice of π equals {α(Kπ),ω(Kπ)}, where α(G) and ω(G) denote the independence
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and clique numbers, respectively, of a graph G. Thus, given the lattice of induced subgraphs
for a lattice-ordered graph, we can determine a pair of numbers containing the independence
number and the clique number of the corresponding graph, though we cannot tell which is
which.

Given an integer partition π = [p1, . . . , pr], let us define the following constructions. The
shell πs of π is defined as the partition [p1, 2, 1, . . . 1] with an equal number of parts as π.
The heart πh of π is defined as the partition [p2−1, p3−1, . . . , pr−1] (with any parts of size
0 omitted). The shell of a partition is always defined; the heart is defined for all partitions
containing [2, 2]. (i.e. the only exceptions are those of the form [k, 1, . . . , 1].)

Lemma 8. Let π be an integer partition with lattice L(π). If πh is well-defined, then the
interval 〈πs,π〉 in L(π) is isomorphic as a lattice to L(πh).

Proof. Notice first that 〈πs,π〉 consists precisely of all those partitions τ # π such that
τs = πs. We show that the mapping τ → τh defines a bijection between 〈πs,π〉 and L(π).
Assume that πh is well-defined. Then π has at least two parts of size at least two, and hence
(πs)h is defined and equal to [1]. If τ ∈ 〈πs,π〉 then τh is well-defined (by transitivity), and
from the definition of the heart it follows that τh # πh. Suppose that σ = [s1, . . . sj] and
τ = [t1, . . . , tk] are in 〈πs,π〉 and σh = τh; this implies that si = ti for all i between 2 and
some m ≤ min{j, k}, and further that for all i > m, si = 1 and ti = 1 if the partition in
question has a positive ith part. Thus, the only places that σ and τ can differ from each
other would appear in the first row and/or column of their respective Ferrers diagrams. But
this would imply that their shells are different, while we know that σs = τs from our first
remark; hence the mapping τ → τh is a bijection. To show isomorphism, it suffices to note
that if σ, τ ∈ 〈πs,π〉 such that σ # τ , then σh # τh.

In terms of complete multipartite graphs, the transformation of an integer partition π to
πh corresponds to deleting from Kπ a maximum part and a single vertex from each of the
remaining parts. πh is not well-defined, then the resulting graph is null. If G is a complete
multipartite graph, let G♥ denote the result of this operation.

Theorem 9. If two lattice-ordered graphs have isomorphic unlabeled induced subgraph lat-
tices, then one can be obtained from the other via conjugations and complementations.

Proof. Lemma 2 and Corollary 7 show that conjugations and complementations do not
change the isomorphism class of the unlabeled induced subgraph lattice. We will use induc-
tion to show that given a lattice-ordered graph, these operations generate all graphs in its
isomorphism class, but first we must establish the base cases.

Suppose that G and H are two lattice-ordered graphs with isomorphic lattices such that
neither one can be obtained from the other by way of complementation or conjugation.
We may assume that both G and H are complete multipartite graphs, and further that
α(G) ≤ ω(G) and α(H) ≤ ω(H). (We may ensure both of these assumptions through taking
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complements and conjugates, if necessary.) Since the two graphs have the same lattice
structure, this implies that α(G) = α(H) and ω(G) = ω(H).

It seems clear that G♥ is null if and only if H♥ is. Should both of these graphs be null,
then we know precisely the structures of G and H, specified completely by their clique
and independence numbers, and hence G and H are isomorphic. We shall now proceed by
induction, using these as our base cases.

Suppose that G and H are the minimum graphs that satisfy the conditions listed above
(complete multipartite graphs with isomorphic lattices, independence numbers and clique
numbers equal, and the latter being at least equal to the former); by the discussion in the
last paragraph, G♥ and H♥ must both be non-null graphs. For convenience, let G = Kσ and
H = Kτ . From our assumptions about clique and independence numbers of the graphs, we
know that σs = τs; this, together with the isomorphism of the lattices of σ and τ and Lemma 8
implies that the lattices of σh and τh must be isomorphic. The induction hypothesis then
requires that these partitions be either equal or conjugate; assume the latter, since otherwise
we have shown G and H to be isomorphic. There are now several possibilities:

• If α(G) = ω(G) for the two original graphs, then σ"
h = τh implies that σ" = τ , which

satisfies our theorem.

• If α(G) < ω(G) and α(G♥) > ω(G) − 1, then σh and τh can’t be conjugates of each
other, since the conjugate of σh could not “fit” in the shell τs. Hence the two graphs
must be isomorphic.

• Otherwise, G and H must each have a part consisting of a single vertex. Delete such
a vertex from each of G and H, and the result follows from the inductive hypothesis.

This completely characterizes both which graphs are lattice-ordered, and what graphs a
given lattice will correspond to (if any). One future direction for our work is to derive a
similar such result for those graphs where the poset of induced subgraphs is not lattice-
ordered; specifically, we would like to see a characterization of those posets that might
represent the induced subgraphs of some graph. Additionally, we would like to determine if
there is an easy set of relationships between two graphs that share their poset structure, as
there is in the case of lattice-ordered graphs.

Another direction would be to apply our techniques to the more popularly studied posets
of connected induced subgraphs, and the determination of which graphs are lattice-ordered
in this sense. One application of our work is in the construction of several small examples
of graphs where the “cisposet” is not lattice-ordered.

Additionally, we can use Theorem 6 to find a family of graphs where this poset is lattice-
ordered:
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Corollary 10. The poset of connected induced subgraphs of a (connected) complete multi-
partite graph is lattice-ordered.

Proof. The poset in question is identical to the lattice of induced subgraphs, save that the
chain of empty graphs is omitted. It is easy to see that the meet of two connected graphs
in the original lattice will never be a collection of isolates, and thus this deletion does not
disrupt the lattice-ordering.

The authors would like to thank the anonymous reviewer for his or her several helpful
suggestions.
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