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Abstract

We give a brief survey of some recent developments in Ramsey theory on the set of integers
and mention several unsolved problems, giving a partial answer to one.

–For Ron Graham on his 70th birthday

1. Introduction

The purpose of this note is to provide a brief survey of some recent progress in the area
of Ramsey theory on the set of integers, and to present several open problems and conjec-
tures. Most of the results in this paper are solutions (or partial solutions) to open problems
mentioned in [22].

We will use the following notation and terminology. For an arithmetic progression A =
{a + id : 0 ≤ i ≤ k− 1}, we say that A is a k-term a.p. with gap d. We denote the family of
all arithmetic progressions by AP . For t a positive integer, we denote the set {1, 2, ..., t} by
[1, t]. An r-coloring of a set S is a function χ : S → {0, 1, ..., r− 1} (obviously, an r-coloring
of S may be thought of as a partition of S into r subsets). A coloring χ is monochromatic
on S if it is constant on S. For positive integers r and t, a specific r-coloring of [1, t] may
be denoted by an r-ary string. For example, the 3-coloring of [1, 5] defined by χ(1) = 0,
χ(2) = χ(3) = χ(4) = 2, and χ(5) = 1 may be denoted by 02221. We shall use exponential
notation to mean repetition so that, for example, 04120 represents the coloring 0000110.

In one way or another, all of the topics covered in this article are variations of the classical
theorem known as van der Waerden’s theorem [29], which states:
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Theorem 1. For any positive integers k and r, there exists a least positive integer n = w(k; r)
such that every r-coloring of [1, n] admits a monochromatic k-term a.p.

For a family C of sets, and r a positive integer, we say that C is r-regular if there exists
an n such that every r-coloring of [1, n] yields a monochromatic member of C. If a family
is r-regular for all r ∈ Z+, the family is said to be regular. By van der Waerden’s theorem,
for each k the family of k-term a.p.’s is regular. We may also say, more simply, that AP is
regular. One of the most celebrated results regarding the van der Waerden numbers is the
upper bound of Timothy Gowers [16], which for the case of r = 2 states:

w(k; 2) ≤ 2222
2k+9

for k ≥ 2. In sharp contract, the best known lower bound is w(p + 1; 2) ≥ p2p for p prime,
and is due to Berlekamp [5]. Finally, we mention that an equivalent (and well-known) form
of Theorem 1 is the following statement.

For all positive integers r, every r-coloring of Z+ yields arbitrarily long monochromatic a.p.’s.

2. Ascending Waves

By van der Waerden’s theorem, any superset of AP is regular. Brown, Erdős, and Freedman
[8] considered one such set, namely the family of ascending waves.

Definition. A k-term ascending wave is an increasing sequence a1, a2, ..., ak ∈ Z+, such that
ai+1 − ai ≥ ai − ai−1 for i = 2, 3, ..., k − 1.

They showed that k2− k + 1 ≤ AW (k; 2) ≤ 1
3(k

3− 4k + 9), where AW (k; 2) denotes the
function that differs from the function w(k; 2) only in that the family AP is replaced by the
family of ascending waves. Alon and Spencer [1] improved the lower bound, showing that

AW (k; 2) ≥ k3

1021
(1 + o(1)).

Recently, LeSaulnier and Robertson [25] improved the upper bound, and also extended
upper and lower bounds to r colors. They showed

1. AW (k; 2) ≤ k3

6 (1 + o(1)).

2. AW (k; r) ≤ k2r−1

(2r−1)!(1 + o(1)).

3. For any ε > 0, AW (k; r) ≥ k2r−1−ε(1 + o(1)).

It would be desirable to find (or get closer to) a constant c such that AW (k; 2) = ck3(1+o(1))
(from the above discussion we know that 1

1021 ≤ c ≤ 1
6), and likewise in the general case of r

colors.
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3. Large Sets and Accessible Sets

While all supersets of AP are regular, for subsets of AP , regularity is not guaranteed. For
example, the coloring 010101.... shows that the subset of AP consisting of all a.p.’s having
odd gaps is not regular (it is not even 2-regular). This prompts the following notions.

If D ⊆ Z+, denote by APD the family of a.p.’s with gaps in D. For D ⊆ Z+ and r ≥ 1
fixed, we say that D is r-large if every r-coloring of Z+ yields arbitrarily long monochromatic
members of APD. We say D ⊆ Z+ is large if it is r-large for all r ≥ 1.

Some deep results of Furstenberg [12] and Bergelson and Leibman [4], employing dy-
namical systems methods, provide sufficient conditions for a set to be large. Other results,
obtained by combinatorial means, are given in [9]. However, the general question of which
sets of positive integers are large is still rather wide-open.

Related to the concept of largeness, but a property that is more easily satisfied, is that
of accessibility. For D ⊆ Z+, we call a sequence of positive integers {x1, x2, ..., xk} a k-term
D-diffsequence if xi − xi−1 ∈ D for 2 ≤ i ≤ k. Given r ∈ Z+ and D a set of positive
integers, we say that D is r-accessible if whenever Z+ is r-colored, there are arbitrarily long
monochromatic D-diffsequences. Further, D is called accessible if D is r-accessible for all
positive integers r.

It is obvious that any large set is accessible. Jungic [18] recently showed that the converse
is false.

It is not difficult to show that for each positive integer r there are sets that are r-accessible
but that fail to be (r + 1)-accessible (see [22]). As one example, {2i : i ≥ 0} is 2-accessible
but not 3-accessible. On the other hand, a still unsolved conjecture [9] states that whenever
a set is 2-large, then it is, in fact, a large set.

It was recently shown [23] that the set of primes, P , is not 3-accessible, and that all odd
translations of P are 2-accessible. It is not known whether there exist any even translations
of P (including P itself) that are 2-accessible. Another open problem is determining, for an
odd number c, the maximum value of r such that P + c is r-accessible.

4. Generalizations of Arithmetic Progressions

An arithmetic progression {x + id : 0 ≤ i ≤ (k − 1)} is determined by the parameters x,
d, and k. By introducing additional parameters, the van der Waerden numbers become one
special case of a more general function. The following generalization of 3-term a.p.’s was
considered in [21].

For 1 ≤ a ≤ b, an (a, b)-triple is a set {x, ax + d, bx + 2d}, where x, d ∈ Z+.
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Denote by n = n(a, b; r) the least positive integer (if it exists) such that every r-coloring
of [1, n] admits a monochromatic (a, b)-triple. For convenience, we will say that (a, b) is
regular if n(a, b; r) < ∞ for all r ≥ 1. By Theorem 1, (1, 1) is regular. If (a, b) is not regular,
the degree of regularity of (a, b), denoted dor(a, b), is the largest integer r such that (a, b) is
r-regular. In [21], the following results were obtained.

1. dor(a, b) = 1 iff b = 2a.

2. dor(a, 2a− 1) = 2 for all a ≥ 2

3. Let 1 ≤ a < b. If b ≥ (23/2−1)a+2−23/2, then dor(a, b) ≤ (2 log2 c), where c = (b/a).

The authors of [21] conjectured that:

(i) (1, 1) is the only regular pair, and

(ii) for all pairs (a, b), if (a, b) is not regular, then dor(a, b) ≤ 2.

Conjecture (i) has been verified, independently, in [14] and [15]. In fact, Fox and Radoicic
show that dor(a, b) ≤ 6 for all (a, b) *= (1, 1). Their proof makes use of a result, due to Fox
and Kleitman [13], which states that if a linear homogeneous equation in three variables
is 24-regular, then it is regular. In [15], it is shown that 2 ≤ dor(a, 2a − 2) ≤ 4 for all
a ≥ 2; that dor(a, 2a + j) ≤ 4 for 1 ≤ j ≤ 5; and that dor(a, 2a + 1) ≤ 3 for all a ≥ 1. A
counterexample to (ii) is given in [15]: dor(2, 2) = 3, and furthermore n(2, 2; 3) = 88.

Several interesting questions concerning (a, b)-triples remain unanswered. We would like
to know which pairs besides (2, 2) have degree of regularity greater than 2? In particular,
are there infinitely many such pairs? Are there any not of the form (a, 2a− 2)?

Bialostocki, Lefmann, and Meerdink [6] considered the following generalization of 3-term
arithmetic progressions. For b ≥ 0, let g(b) be the least positive integer (if it exists) such that
for every 2-coloring of [1, g(b)] there is a monochromatic set of the form x, x + d, x + 2d + b.
They showed that for b even, 2b + 10 ≤ g(b) ≤ 13

2 b + 1. The upper bound was improved by
the present paper’s second author, to (9

4b) + 9, who also conjectured that for b ≥ 10 even,
g(b) = 2b + 10 [20]. In 2004, Grynkiewicz [17] proved the conjecture.

One apparently unexplored problem related to the function g(b) is that of the more
general function gk(b), the van der Waerden-type number associated with sequences of the
form a, a + d, a + 2d, ..., a + (k− 2)d, a + (k− 1)d + b. In particular, we wonder what can be
said about the function g4(b) = g4(b; 2). In [6] it is shown that g(b; 8) does not exist. More
generally, we wonder what can be said about the existence of gk(b; r). In particular, can the
upper bound of g(b; 3) ≤ 55

6 + 1 for b a multiple of 6, which is proved in [6], be improved?

Another way to generalize the definition of an arithmetic progression is via the following
definition.
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Definition. If 1 ≤ s1 < s2 < · · · < sk−1, then a homothetic copy of (1, 1 + s1, 1 + s2, ..., 1 +
sk−1) is a k-tuple (a, a + ds1, a + ds2, . . . , a + dsk−1) where d ∈ Z+.

Hence the family of k-term a.p.’s is precisely the family of homothetic copies of (1, 2, . . . , k).
Denote by h(s1, s2, . . . , sk−1) the least positive integer n such that every 2-coloring of [1, n] ad-
mits a monochromatic homothetic copy of (s1, s2, . . . , sk−1). Thus, w(k) = h(1, 2, . . . , k−1).
Brown, Landman, and Mishna [10] showed that h(s1, s2) ≤ 4s2 + 1. They also showed that
this is an equality for most cases, and gave tight bounds for the remaining cases. Exact
values for these remaining cases have very recently been found by Kim and Rho [19]. How
h behaves when k > 2 is a wide open problem, as is the corresponding question (even when
k = 2) if more than 2 colors are used.

5. Mixed van der Waerden Numbers

Denote by w(k0, k2, . . . , kr−1; r) the least positive integer n such that for every r-coloring
χ : [1, n] −→ {0, 1, ..., r − 1} there is, for some i, 0 ≤ i ≤ r − 1, a ki-term arithmetic
progression of color i. For example, if ki = k for all i, we have the classical van der Waerden
numbers w(k; r), or what might be called the “diagonal” van der Waerden numbers. For
example, w(3, 3; 2) = w(3; 2) = 9.

All of the non-trivial exact values of w(k0, ..., kr−1; r) that are known to date, are presented
(chronologically) in [11, 7, 28, 3, 2, 24]. The known values cover all cases in which s =∑r−1

i=0 ki ≤ 10, and those in which s = 11 except for w(6, 5; 2). Also covered are the values
of w(k, 3; 2) for 9 ≤ k ≤ 13, as well as the values of w(6, 4, 2; 3), w(7, 3, 2; 3), w(4, 4, 2, 2; 4),
w(5, 3, 2, 2; 4), w(4, 3, 3, 2; 4), w(3, 3, 3, 3; 4), w(6, 3, 2, 2), w(7, 3, 2, 2), w(3, 3, 2, 2, 2), and
w(3, 3, 3, 2, 2).

In [24], the function w(k, 2, 2, ..., 2; r) is considered. For convenience, we will denote it
by w2(k; r). The authors proved the following theorem which, for k > r, gives upper bounds
and (provided k/r is sufficiently large) exact values of this function.

Before stating the theorem, we adopt the following notation. Let p1 < p2 < · · · be
the sequence of primes. Let π(r) denote the number of primes not exceeding r, and #r =
p1p2 · · · pπ(r). Further, let jk,r = min{j ≥ 0 : gcd(k − j, #r) = 1}, and $k,r = min{$ ≥ 0 :
gcd(k − $,#r) = r}.

Theorem 2. Let k > r ≥ 2. Let j = jk,r, $ = $k,r, and m = min{j, $}. Then

(1) w2(k; r) = rk if j = 0.

(2) w2(k; r) = rk − r + 1 if either (i) j = 1; or (ii) r is prime and $ = 0.

(3) If r is composite and j ≥ 2 then w2(k; r) ≥ rk− j(r− 2), with equality provided either
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(i) j = 2 and k ≥ 2r − 3;
or (ii) j ≥ 3 and k ≥ (π(r))3(r − 2).

(4) If r is prime, j ≥ 2, and $ ≥ 1, then w2(k; r) ≥ rk −m(r − 2), with equality provided
either (i) $ = 1, (ii) m = 2 and k ≥ 2r − 3, or (iii) m ≥ 3 and k ≥ (π(r))3(r − 2).

There are many open questions we may ask about mixed van der Waerden numbers.
Here are some natural ones:

1. What is the value of w(4, 4, 4; 3) (this is the classical van der Waerden number w(4; 3))?

2. What is the value of w(8, 4; 2)?

3. Can the restrictions on the magnitude of k in comparison to r in Theorem 2 be weak-
ened, especially to guarantee equality in Cases (3)(ii) and (4)(iii)?

4. What is the value of w2(k; r) when k < r?

5. Can we find a “nice” upper bound on w(3, 3, 2, 2, 2, ..., 2; r)? More generally, what
can we say about the magnitude of the mixed van der Waerden number w′(k, $) =
w(2, 2, . . . , 2, 3, 3, . . . , 3; k + $), where there are k 2’s and $ 3’s?

6. Estimates of w2(k; r)

The next two theorems give a partial answer to one of the open problems mentioned in
Section 5, namely, the determination of the magnitude of w2(k; r) when k < r.

Theorem 3. Let k < r <
3

2
(k − 1). Then w2(k; r) ≤ r(k − 1).

Proof. Let f be an arbitrary r-coloring of [1, r(k − 1)]. For a contradiction, assume that f
avoids k-term monochromatic a.p.’s of color 0, and 2-term monochromatic a.p.’s of colors
1, 2, ..., r − 1. We may assume that f is the string

0b1x10
b2x2....0

br−1xr−10
br ,

where 0 ≤ bi ≤ k − 1 for all 1 ≤ i ≤ r and where f(xj) = j for j = 1, ..., r − 1.

Let di = xi− xi−1 for i = 2, 3, ..., r− 1. Let X = {x1, ..., xr−1} and let D = {d2, d3, ..., dr−1}.
Clearly, we have

xi − xi−1 ≤ k for all 2 ≤ i ≤ r − 1 (1)

and
xr−1 − x1 ≥ r(k − 1)− 2(k − 1)− 1. (2)
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Now we consider two cases.

Case 1. At most r − k members of D equal k. We consider two subcases.

Subcase 1.1. At least r − k + 1 elements of D are equal to k − 1.
In this case the number of distinct residue classes modulo k − 1 that are covered by X is at
most k − 2. Hence for some j, 1 ≤ j ≤ k − 1,

{j + i(k − 1) : 0 ≤ i ≤ k − 1} ⊆ [1, k(k − 1)]

is an arithmetic progression of color 0, a contradiction.

Subcase 1.2. Fewer than r − k + 1 elements of D are equal to k − 1.
We claim that at least r − k + 2 elements of D equal k − 2. We verify this claim by
contradiction. If it were false, then

s =
∑r−1

i=2 di ≤ k(r − k) + (k − 1)(r − k)+
(k − 2)(r − k + 1) + (k − 3)(r − 2− 3r + 3k − 1)

= kr − 8k + 3r + 7.

Now, by (2), s ≥ r(k − 1) − 2(k − 1) − 1 = kr − r − 2k + 1. But this is a contradiction
because kr− r− 2k + 1 > kr + 3r− 8k + 7, since by hypothesis 6k > 4r + 6. Therefore, the
claim is true, and hence X covers at most r−1− (r−k +3)+1 = k−3 different congruence
classes modulo k − 2. Therefore for some j, 1 ≤ j ≤ k − 2, no member of

A = {j + i(k − 2) : 0 ≤ i ≤ k − 1) ⊆ [1, k − 2 + (k − 1)(k − 2)] = [1, k(k − 2)]

intersects X. Thus A is a k-term arithmetic progression with color 0, a contradiction.

Case 2. At least r − k + 1 members of D equal k.
This implies that at most k − 2 different congruence classes modulo k are covered by X.
Hence, for some j, 1 ≤ j ≤ k − 1, the arithmetic progression {j + ik : 0 ≤ i ≤ k − 1} ⊆
[1, k2 − 1], has color 0, a contradiction.

Note that the upper bound of Theorem 3 is less than the bounds of Theorem 2 which
deals with k > r.

Although Theorem 3 may seem to apply to only a very restricted set of pairs (k, r), the
next theorem shows that the upper bound of Theorem 3 would hold for all k and r such that
k < r provided only that it holds whenever 3

2(k − 1) ≤ r ≤ 2k + 1.

Theorem 4. Let k ≥ 2 and assume that w2(k; r) ≤ (k − 1)r for 3
2(k − 1) ≤ r ≤ 2k + 1.

Then w2(k; r) ≤ (k − 1)r for all r > k.

Proof. The proof is by induction on r, with k fixed. By the hypothesis and Theorem 3, the
statement is true for all r such that k < r ≤ 2k + 1.
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Now assume r ≥ 2k + 1 is such that w2(k; r) ≤ (k − 1)r. To prove w2(k; r + 1) ≤
(k− 1)(r + 1), let f be any (r + 1)-coloring of [1, (k− 1)(r + 1)]. Since r− k ≥ k + 1, by the
inductive hypothesis w2(k; r−k) ≤ (k−1)(r−k). Hence f must have at least r−k non-zero
colors in [1, (k − 1)(r − k)] to avoid a k-term a.p. of color 0 or a 2-term a.p. of a non-zero
color. This forces f to have at most k non-zero colors in [(k − 1)(r− k) + 1, (k − 1)(r + 1)].
By assumption w2(k; k + 1) ≤ (k − 1)(k + 1). Therefore, f has a k-term a.p. of color 0 or a
monochromatic 2-term, a.p. of a non-zero color in [(k − 1)(r − k) + 1, (k − 1)(r + 1)]. This
completes the proof.

Table 1 shows the mixed van der Waerden numbers w2(k; r), obtained by computer, for
k = 3, 4, 5 and k < r ≤ 13. By Theorem 4 we obtain:

Corollary 5. Let k = 3, 4, 5. Then w2(k; r) ≤ (k − 1)r for all r > k.

r 4 5 6 7 8 9 10 11 12 13
k
3 8 10 12 15 16 17 18 19 21 22
4 14 16 18 20 22 24 26 29 31
5 20 22 24 27 30 33 35 38

Table 1. Values of w2(k; r)

7. A Conjecture

We conclude with the following conjecture (which has obvious extensions to r > 2 colors).
The conjecture, and its extensions to r > 2 colors, are supported by all known values of
w(k0, ..., kr−1; r) (see [24] for a table of known values).

Conjecture. Let k ≥ $ > 2. Then

w(k, $; 2) ≥ w(k + 1, $− 1) ≥ w(k + 2, $− 2) ≥ · · · .
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