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Abstract

For a ring R and system L of linear homogeneous equations, we call a coloring of the nonzero
elements of R minimal for L if there are no monochromatic solutions to L and the coloring
uses as few colors as possible. For a rational number q and positive integer n, let E(q, n)
denote the equation

∑n−2
i=0 qixi = qn−1xn−1. We classify the minimal colorings of the nonzero

rational numbers for each of the equations E(q, 3) with q ∈ {3
2 , 2, 3, 4}, for E(2, n) with

n ∈ {3, 4, 5, 6}, and for x1 + x2 + x3 = 4x4. These results lead to several open problems and
conjectures on minimal colorings.

1. Introduction

The early developments in Ramsey theory focused mainly on partition regularity of systems
of linear equations. A system L of linear homogeneous equations with coefficients in a ring
R is called r-regular over R if, for every r-coloring of the nonzero elements of R, there is a
monochromatic solution to L. A system L of linear homogeneous equations is called regular
over R if it is r-regular over R for all positive integers r.

In 1916, Schur [Sch16] proved that the equation x+ y = z is regular over Z. In 1927, van
der Waerden [vdW27] proved his celebrated theorem that every finite coloring of the positive
integers contains arbitrarily long monochromatic arithmetic progressions. In his 1933 thesis,
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Rado [Rad33] generalized the theorems of Schur and van der Waerden by classifying those
systems of linear homogeneous equations that are regular over Z. In particular, a linear
homogeneous equation with nonzero integer coefficients is regular over Z if and only if some
nonempty subset of the coefficients sums to zero. In 1943, Rado [Rad43] generalized the
theorem further by classifying those systems of linear equations that are regular over a
subring of the complex numbers. More recently, analogues of Rado’s theorem have been
proven for abelian groups [Deu75], finite fields [BDH92], and commutative rings [BDHL94].

Some of the major remaining open problems on partition regularity concern the properties
of colorings that are free of monochromatic solutions to a system of equations.

Definition. A coloring of the nonzero elements of a ring R (or more generally, a set of
numbers S) is called minimal for a system L of linear homogeneous equations if it is free of
monochromatic solutions to L and uses as few colors as possible.

Three basic questions arise for a given ring R and system L of linear homogeneous
equations.

Question 1. What are the minimal colorings for L?

Question 2. How many colors are used in a minimal coloring for L?

Question 3. How many minimal colorings, up to isomorphism, are there for L?

Rado made the following unresolved conjecture in his thesis on Question 2.

Conjecture 4 (Rado, [Rad33]). For all positive integers m and n, there exists a positive
integer k(m,n) such that if a system of m linear equations in n variables is k(m,n)-regular
over Z, then the system is regular over Z.

Conjecture 4 is commonly known as Rado’s Boundedness Conjecture [HLS03]. Rado
proved that Conjecture 4 is true if it is true in the case when m = 1, that is, for single linear
equations. Rado also settled his conjecture in the simple cases n = 1 and n = 2. Kleitman
and the second author [FK05] recently proved Rado’s Boundedness Conjecture for n = 3.
They proved that if a linear equation in 3 variables is 36-regular over Z, then it is regular
over Z.

Rado also made the following conjecture in his thesis.

Conjecture 5 (Rado, [Rad33]). For each positive integer n, there is a linear equation that
is n-regular over Z but not (n + 1)-regular over Z.

While Conjecture 5 has remained open, Radoičić and the second author found a family
of linear homogeneous equations that they conjecture verifies Conjecture 5. For a rational
number q and positive integer n, let E(q, n) denote the equation

x0 + qx1 + · · · + qn−2xn−2 = qn−1xn−1.
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Definition. For a nonzero rational number q and prime number p, there is a unique repre-
sentation of q as q = pva/b with a, b, and v integers, b positive, gcd(a, b) = 1, and p ! a, b.
Define vp(q) to be the integer v and wp(q) ∈ {1, . . . , p− 1} by wp(q) ≡ ab−1 (mod p).

For a prime p and positive integer n, let cp,n : Q\{0}→ {0, 1, . . . , n−1} be the n-coloring
of the nonzero rational numbers defined by cp,n(q) ≡ vp(q) (mod n).

To avoid any possible confusion, we now define what it means for two colorings of a set
to be isomorphic.

Definition. Two colorings c1 : S → C1 and c2 : S → C2 of the same set S are isomorphic if
there is a bijection φ : C2 → C1 such that c1 = φ ◦ c2.

Radoičić and the second author [FR05] proved that the n-coloring cp,n is free of mono-
chromatic solutions to E(p, n). Hence, the equation E(p, n) is not n-regular over Z. They
also conjecture that E(2, n) is (n− 1)-regular over Z, which would imply Conjecture 5. We
make the following stronger conjecture.

Conjecture 6. For n > 2, c2,n is the only n-coloring, up to isomorphism, of the nonzero
rational numbers without a monochromatic solution to E(2, n).

In Section 2, we verify Conjecture 6 for n = 3 and n = 4. With a computer-generated
proof, we have also verified Conjecture 6 for n = 5 and n = 6, and that E(2, 7) is 6-regular.
For brevity, we do not include these proofs. By the same technique, it can be shown that c3,3

is the only minimal coloring of the nonzero rational numbers that is free of monochromatic
solutions to E(3, 3). We do, however, include a proof of the following result.

Proposition 7. The only 3-colorings, up to isomorphism, of the nonzero rational numbers
without a monochromatic solution to E(3

2 , 3) are c2,3 and c3,3.

As it pertains to Question 3, the following definition is natural.

Definition. For a system L of linear homogeneous equations over a ring R, let ∆(L; R)
denote the number (as a cardinality) of minimal colorings, up to isomorphism, of the nonzero
elements of R for L.

For example, we have ∆(E(2, n); Q) = 1 for n ∈ {3, 4, 5, 6} and ∆(E(3
2 , 3); Q) = 2.

The following conjecture would reduce the problem of finding ∆(E(q, n); Q) to the case
when q is a prime power.

Conjecture 8. If a, b, and n are integers, n > 2, a > 1, |b| > 1, and gcd(a, b) = 1, then

∆(E(a, n); Q) = ∆(E(−a, n); Q)

and
∆(E(ab, n); Q) = ∆(E(a/b, n); Q) = ∆(E(a, n); Q) + ∆(E(b, n); Q).

Let Q \ {0} = Q0 ∪Q1 be the partition of the nonzero rational numbers given by q ∈ Q0 if
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and only if v2(q) is even. Consider the 3-coloring c of Q0 given by c0(q) = i if and only if
v2(q) ≡ 2i (mod 6). For a permutation π of the set {0, 1, 2}, define the 3-coloring cπ of the
nonzero rational numbers by cπ(q) = c(q) for q ∈ Q0 and cπ(q) = π(c(2q)) for q ∈ Q1. It is
easy to check that the six colorings of the form cπ are each minimal for the equation E(4, 3).
It can be shown that these are all the minimal colorings of the nonzero rational numbers
for the equation E(4, 3), but we leave it out for brevity. This construction can be easily
generalized to give (n!)r−1 different n-colorings that are free of monochromatic solutions to
E(2r, n). It seems likely that these are the only minimal colorings for E(2r, n).

For each odd prime p and integer n > 2, we can find (n!)
p−3
2 different n-colorings of

the nonzero rational numbers that are free of monochromatic solutions to E(p, n). These
n-colorings c are given by the following two properties:

1. For every nonzero rational number q, we have c(q) = c(pjq) if and only if j is a multiple
of n.

2. If vp(q1) = vp(q2) and wp(q1) ≡ ±wp(q2) (mod p), then c(q1) = c(q2).

For an odd prime p, positive integers n and r with n > 2, the observations above can be
generalized to construct a family of (n!)r+ p−5

2 different n-colorings of the nonzero rational
numbers that are free of monochromatic solutions to E(pr, n). It seems plausible, though
we have shown little evidence to support it, that these are all the minimal colorings for
E(pr, n). This would imply that ∆(E(pr; n); Q) = (n!)r+ p−5

2 for n > 2, p an odd prime, and
r a positive integer.

The total number of colorings of the nonzero rational numbers is 2ℵ0 . Hence, for every
system L of equations, we have ∆(L; Q) ≤ 2ℵ0 . This upper bound can be achieved, as the
following proposition demonstrates.

Proposition 9. We have

∆(x1 + x2 + x3 = 4x4; Q) = 2ℵ0 .

In fact, we classify all of the 2ℵ0 minimal colorings for x1 + x2 + x3 = 4x4 in Section 3.

For a prime number p, let Cp be the (p − 1)-coloring of the nonzero rational numbers
defined by Cp(q) = wp(q). For any set A = {a1, . . . , an} such that no non-empty subset of A
sums to zero, Rado proved that the equation a1x1 + · · ·+anxn = 0 is not regular by showing
that if p is a sufficiently large prime number, then the coloring Cp is free of monochromatic
solutions to a1x1 + · · · + anxn = 0. It turns out that the 4-coloring C5 is minimal for the
equation x1 + x2 + x3 = 4x4.

Let Πp = (πn)n∈Z be a sequence of permutations of the set {1, . . . , p − 1} of nonzero
elements of Zp such that π0 is the identity permutation. For each such sequence Πp, we define
the coloring cΠp of the nonzero rational numbers by cΠp(q) = πvp(q)(wp(q)). In particular,
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the coloring cΠp is the same as Cp if πn is the identity permutation for all integers n. It is a
straightforward exercise to show that each of the (p−1)-colorings cΠp is free of monochromatic
solutions to the equation x1 + · · · + xp−2 = (p− 1)xp−1. For p = 5, we can say even more.

Proposition 10. Each of the 4-colorings cΠ5 is minimal for x1 + x2 + x3 = 4x4, and there
are no other minimal colorings for x1 + x2 + x3 = 4x4.

There are exactly 2ℵ0 colorings of the form cΠ5 , which establishes Proposition 9.

In all the examples above, either an equation has finitely many or 2ℵ0 minimal colorings
of the nonzero rational numbers. It seems likely that this is always the case.

Conjecture 11. For every nonregular finite system L of linear homogeneous equations,
either ∆(L, Q) is finite or 2ℵ0 . In particular, there is no L satisfying ∆(L, Q) = ℵ0.

1.1. Minimal Colorings Over the Real Numbers

When studying colorings of the real numbers, we must be careful about which axioms we
choose for set theory. In this subsection, we assume that q is any rational number other than
−1, 0, or 1.

Radoičić and the second author [FR05] showed that it is independent of Zermelo-Fraenkel
(ZF) set theory that the equation E(q, 3) is 3-regular over R. They also showed that it is
independent of ZF that E(2, 4) is 4-regular over R. We extend these results by showing that
for n = 5 and n = 6, it is independent of ZF that E(2, n) is n-regular over R. Also, we show
that it is independent of ZF that x1 + x2 + x3 = 4x4 is 4-regular over R.

They also show that in the Zermelo-Fraenkel-Choice (ZFC) system of axioms, if r is
a positive integer and L is a finite system of linear homogeneous equations with rational
coefficients, then L is r-regular over R if and only if L is r-regular over Z. It follows, in
ZFC, that the equation E(q, 3) is not 3-regular over R. In Section 4, we prove in ZFC that
for every integer n ≥ 3, there are 22ℵ0 different n-colorings of the nonzero real numbers
without a monochromatic solution to E(q, n). Hence, in ZFC, we have ∆(E, R) = 22ℵ0 for
E = E(q, 3) or E = E(2, n) with n ∈ {3, 4, 5, 6}.

Solovay [Sol70] proved that the following axiom is relatively consistent with ZF.

Axiom 12. Every subset of the real numbers is Lebesgue measurable.

We will use LM to denote Axiom 12. Notice that the axiom LM is not consistent with ZFC
because, with the axiom of choice, there are subsets of R that are not Lebesgue measurable.

The following lemma is useful in proving in ZF+LM that a given linear equation is
r-regular over R for appropriate r.

Lemma 13. Suppose c is a coloring of the nonzero real numbers that uses at most countably



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A01 6

many colors and there are positive real numbers a, b, d such that loga b is irrational and
c(x) = c(ax) = c(bx) *= c(dx) for all nonzero real numbers x. Then there is a color class of c
that is not Lebesgue measurable.

In ZF+LM, if n ∈ {3, 4, 5, 6}, then for every n-coloring c of the nonzero real numbers
without a monochromatic solution to E(2, n), we have c(x) = c(3x) = c(5x) *= c(2x) for all
non-zero rational numbers x, and log3 5 is irrational. Hence, by Lemma 13, the equation
E(2, n) is n-regular in ZF+LM for n ∈ {3, 4, 5, 6}. For every 4-coloring c of the nonzero real
numbers without a monochromatic solution to the equation x1 + x2 + x3 = 4x3, we have
c(x) = c(6x) = c(11x) *= c(2x) for all nonzero rational numbers x and log6 11 is irrational.
Hence, by Lemma 13, the equation x1 + x2 + x3 = 4x4 is 4-regular in ZF+LM.

2. Minimal Colorings Over the Rationals

The following straightforward lemma [FK05] is useful in proving that certain colorings are
free of monochromatic solutions to particular linear equations.

Lemma 14. Suppose t1, . . . , tn are nonzero rational numbers and p is a prime number such
that vp(t1) ≤ vp(t2) ≤ · · · ≤ vp(tn) and

∑n
i=1 ti = 0. Then vp(t1) = vp(t2).

The following proposition is due to the second author and Radoičić [FR05].

Proposition 15. For each integer n > 1, the n-coloring c2,n is free of monochromatic
solutions to E(2, n).

Proof. For n > 1, if x0 + 2x1 + · · ·+ 2n−2xn−2 − 2n−1xn−1 = 0 is a solution to E(2, n) in the
nonzero rationals, then we have by Lemma 14 that for some i and j with 0 ≤ i < j < n,

v2(2
ixi) = v2(2

jxj).

It follows that v2(xi) = (j − i) + v2(xj) and v2(xj) − v2(xi) ∈ {1, . . . , n − 1}. Therefore,
v2(xj) − v2(xi) is not a multiple of n. Hence, xi and xj are not the same color, and the
coloring c2,n is free of monochromatic solutions to E(2, n). !

They [FR05] also prove the following structural result for 3-colorings of the nonzero
rational numbers without a monochromatic solution to E(q, 3).

Lemma 16. Let x and q be nonzero rational numbers with q *= ±1, m and n be integers,
and let a = q+1

q2 and b = q(q − 1). For every 3-coloring c of the nonzero rational numbers
without a monochromatic solution to E(q, 3), we have c(x) = c(ambnx) if and only if m + n
is a multiple of 3.

Proof. Since x+ q(x) = q2(ax), ax must be a different color than x. Since bx+ q(x) = q2(x),
then bx must be a different color than x. Since x + q(abx) = q2(x), then abx must be a
different color than x. Hence, c(x) *= c(rx) for r ∈ {a, b, ab}.
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Recall that for a group G and subset S ⊂ G, the Cayley graph Γ(G,S) has vertex set
G and two elements x and y are adjacent if there is an element s ∈ S such that x = sy or
y = sx.

We associate each rational number ambnx (with m and n integers) with the lattice point
(m,n). Let S = {(1, 0), (0, 1), (1, 1)} and consider the Cayley graph Γ(Z2, S). Define the
3-coloring χ of Z2 by χ(m,n) = c(ambnx). Since c(rx) *= c(x) for r ∈ {a, b, ab}, then χ is a
proper 3-coloring of the vertices of Γ(Z2, S). By induction, it is a straightforward check that
there is only one proper coloring of Γ(Z2, S) up to isomorphism and this coloring is given by
χ(m,n) ≡ m+n (mod 3). Hence, c(x) = c(ambnx) if and only if m+n is a multiple of 3. !

2.1. The Minimal Coloring for E(2, 3)

We prove that c2,3 is the only minimal coloring of the nonzero rational numbers, up to
isomorphism, for the equation E(2, 3). By Proposition 15, we know that the 3-coloring c2,3

is free of monochromatic solutions to E(2, 3). By Lemma 16, the numbers 2, 3, and 4 must
be all different colors, so E(2, 3) is 2-regular. Hence c2,3 is a minimal coloring of the nonzero
rational numbers for E(2, 3).

Proposition 17. The only minimal coloring of the nonzero rational numbers for E(2, 3) is
c2,3.

Proof. Suppose c is a 3-coloring of the nonzero rational numbers without a monochromatic
solution to E(2, 3). By Lemma 16, for every nonzero rational number x and integers m and
n, we have c((3

4)
m2nx) = c(x) if and only if m + n is a multiple of 3. Equivalently, for every

nonzero rational number x and integers m and n, c(2m3nx) = c(x) if and only if m is a
multiple of 3.

For nonzero rational numbers x and r with r positive, we now show that c(x) = c(rx)
if and only if v2(r) ≡ 0 (mod 3). By induction, it suffices to prove that c(x) = c(px) for
every odd positive integer p and nonzero rational number x. For p = 1 or 3, we have already
established that c(x) = c(px) for every nonzero rational number x. So let p be an odd
integer greater than 3 and suppose that for every positive odd integer p′ < p and rational
number x, c(p′x) = c(x). The numbers px and 4x are different colors because otherwise
(x0, x1, x2) = (4(p − 2)x, 4x, px) is a monochromatic solution to E(2, 3). We have px and
2x are different colors because otherwise (16x, 2(p− 4)x, px) is a monochromatic solution to
E(2, 3). Since c(x), c(2x), and c(4x) are all different colors, then c(px) = c(x). By induction,
for nonzero rational numbers x and r with r positive, we have c(x) = c(rx) if and only if
v2(r) ≡ 0 (mod 3).

To finish the proof, we need to show that c(x) = c(−x) for every nonzero rational number
x. Since (10x,−x, 2x) is a solution to E(2, 3) and 10x and 2x are the same color, then −x
and 2x are different colors. Since (12x,−8x,−x) is a solution to E(2, 3), −8x and −x are the
same color, and 12x is the same color as 4x, then −x and 4x are differently colored. Since
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x, 2x, and 4x are all different colors, then c(−x) = c(x). Therefore, c2,3 is the only minimal
coloring, up to isomorphism, of the nonzero rational numbers without a monochromatic
solution to E(2, 3). !

Using a very similar argument to the proof of Proposition 17, it is not difficult to show
that there are only two minimal colorings of the positive integers for the equation E(2, 3).
These two minimal colorings consist of c2,3 with its domain restricted to the positive integers
and a coloring c′2,3 that is identical to c2,3 with its domain restricted to the positive integers
except that the color of 1 is different. Formally, c′2,3 : N → {0, 1, 2} is the coloring of the
positive integers such that c′2,3(1) = 2 and c′2,3(n) = c2,3(n) for n > 1.

Proposition 18. The only two minimal colorings of the positive integers for the equation
E(2, 3) are the colorings c2,3 with its domain restricted to the positive integers and c′2,3.

2.2. The Minimal Coloring for E(2, 4)

In this subsection we prove that the only minimal coloring of the nonzero rational numbers,
up to isomorphism, for E(2, 4) is c2,4. The proof uses the following lemma from [FR05],
proven below.

Lemma 19. For every 4-coloring c of the nonzero rational numbers without a monochro-
matic solution to E(2, 4) and for nonzero rational number x and integers m and n, we have
c(x) = c(2m3nx) if and only if m is a multiple of 4.

In particular, Lemma 19 implies that E(2, 4) is 3-regular since in every 4-coloring of the
nonzero rational numbers without a monochromatic solution to E(2, 4), the numbers 1, 2,
4, and 8 are different colors. It follows that c2,4 is minimal for E(2, 4). Moreover, we have
the following proposition.

Proposition 20. The coloring c2,4 is the only minimal coloring of the nonzero rational
numbers without a monochromatic solution to E(2, 4).

Proof of Lemma 19. By induction on m and n, it suffices to prove that for all nonzero rational
numbers q, we have c(q) = c(3q) = c(16q) and c(q) /∈ {c(2q), c(4q), c(8q)}. By considering all
solutions to E(2, 4) with exactly two distinct variables, for r ∈ {n+1

n : n ∈ Z and 1 ≤ n ≤ 7},
we have that q and rq are different colors (call these ratios r forbidden). Note immediately
that c(x) *= c(2x) by the forbidden ratio 2.

We begin by showing that c(x) *= c(4x). Proceeding by contradiction, suppose c(x) =
c(4x) instead for some x. By forbidden ratios amongst themselves, we have that c(x) = c(4x),
c(2x), c(3x), and c(3

2x) are distinct colors. Then c(9
4x) = c(2x) by forbidden ratios from

3x and 3
2x and because of the solution (x, 4x, 9

4x, 9
4x). Similarly, c(6x) = c(3

2x) because of
forbidden ratios from 4x and 3x and because of the solution (6x, 2x, 2x, 9

4x). Finally, 18
7 x

cannot be colored with any colors because of forbidden ratios from 9
4x and 3x as well as the

solutions (18
7 x, x, 4x, 18

7 x) and (18
7 x, 6x, 3

2x, 18
7 x).
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We now show that c(x) = c(3x). Assume otherwise, so that c(x) *= c(3x) for some x.
Once again, by forbidden ratios amongst themselves, we have that c(x), c(3x), c(2x), and
c(4x) are distinct; furthermore, c(3

2x) = c(4x) also by forbidden ratios. We have c(4
3x) =

c(3x) by forbidden ratios from x and 2x as well as the solution (4x, 4
3x, 4

3x, 3
2x). Next,

c(5
3x) = c(x) by forbidden ratios from 4

3x and 2x as well as the solution (4x, 5
3x, 3

2x, 5
3x).

Similarly, c(6x) = c(2x) by forbidden ratios from 3x and 3
2x and the solution (6x, 5

3x, x, 5
3x).

Finally, 9
4x cannot be colored with any colors, because of forbidden ratios from 3x and 3

2x
as well as the solutions (x, 5

3x, 9
4x, 5

3x) and (6x, 2x, 2x, 9
4x).

Clearly, c(x) *= c(8x) since otherwise (8x, 8
3x, 8

3x, 3x) would be a monochromatic solution.
Completing the proof, both c(x) and c(16x) must be different from all of c(2x), c(4x), and
c(8x) (which are distinct), so c(x) = c(16x). !

Proof of Proposition 20. The proof is similar to the proof of Proposition 17. Suppose
c is a 4-coloring of the nonzero rational numbers without a monochromatic solution to
E(2, 4). By Lemma 19, for every nonzero rational number x and integers m and n, we have
c(x) = c(2m3nx) if and only if m is a multiple of 4. We now show that for every positive
rational number r with v2(r) ≡ 0 (mod 4), we have c(x) = c(rx). By induction, it suffices
to prove that c(x) = c(px) for every positive odd integer p and nonzero rational number x.
For p = 1 or 3, Lemma 19 implies that c(x) = c(px) for every nonzero rational number x.

For p = 5, we have (18x, 5x, 5x, 6x) is a solution to E(2, 4) and c(18x) = c(2x) = c(6x),
so 5x and 2x are different colors. Also, (12x, 4x, 5x, 5x) is a solution to E(2, 4) and c(12x) =
c(4x), so 5x and 4x are different colors. Finally, (5x, 3

2x, 8x, 5x) is a solution to E(2, 4) and
c(3

2x) = c(8x), so c(5x) and c(8x) are different colors. Since x, 2x, 4x, and 8x are all different
colors, then c(5x) must be the color of c(x).

The rest of the proof is by induction on p. Suppose p is an odd integer greater than 5 and
that for all positive odd p′ < p and rational x, c(p′x) = c(x). Then for all x, we know that px
and 2x are different colors since (32

3 x, 32
3 x, 2(p−4)x, px) would otherwise be a monochromatic

solution. Similarly, px and 4x are different colors because of (64
5 x, 4(p−2)x, 4

5x, px). Finally,
px and 8x are different colors because of (8(p−2)x, 8

3x, 8
3x, px). Since c(x), c(2x), c(4x), and

c(8x) are all distinct, it follows that c(px) = c(x) as desired.

To finish the proof, we need to show that c(x) = c(−x) for every nonzero rational number
x. Since (10x,−x, 2x, 2x) is a solution to E(2, 4) and c(10x) = c(2x), then c(−x) and c(2x)
are different colors. Since (28x,−16x,−x,−x) is a solution to E(2, 4), c(−16x) = c(−x),
and c(28x) = c(4x), then −x and 4x are different colors. Since (88x,−16x,−16x,−x) is
a solution to E(2, 4), c(−16x) = c(−x), and c(88x) = c(8x), then −x and 8x are different
colors. Since x, 2x, 4x, and 8x are all different colors, then c(−x) = c(x). Therefore, c2,4

is the only minimal coloring, up to isomorphism, of the nonzero rational numbers without a
monochromatic solution to E(2, 4). !
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2.3. The Minimal Colorings for E(3
2 , 3)

In this subsection we prove that the two minimal colorings of the nonzero rational numbers
for E(3

2 , 3) are c2,3 and c3,3. By a proof similar to Lemma 15, it is clear that c2,3 and c3,3

are free of monochromatic solutions to E(3
2 , 3). The equation E(3

2 , 3) is 2-regular since in
any coloring of the nonzero rational numbers without a monochromatic solution to E(3

2 , 3),
the numbers 9, 10, and 12 are all different colors (by Lemma 16). Hence c2,3 and c3,3 are
minimal colorings for E(3

2 , 3). Again from Lemma 16, it follows that for every nonzero
rational number x and integers m and n, we have c(x) = c((6

5)
m(10

9 )nx) if and only if m + n
is a multiple of 3. In particular, c(x) = c(rx) for r ∈ {8

5 ,
64
27 ,

40
27} and c(x) *= c(rx) for

r ∈ {6
5 ,

10
9 , 4

3}.

For the rest of this subsection, we suppose that c is a 3-coloring that is free of monochro-
matic solutions to E(3

2 , 3) and we will deduce that c is either c2,3 or c3,3. We first build up
structural properties about c if there is a nonzero rational number x such that c(x) = c(2x)
and deduce that c is the coloring c3,3. We then prove properties about c if c(x) *= c(2x) for
every nonzero rational number x. We deduce in this case that c is the coloring c2,3.

Lemma 21. If x is a nonzero rational number such that c(2x) = c(x), then c(2nx) = c(x)
for every nonnegative integer n.

Lemma 22. If x is a nonzero rational number such that c(2x) = c(x), then for all non-
negative integers k, m, and n we have c(2k3m5nx) = c(x) if and only if m is a multiple of
3.

Lemma 23. If x is a nonzero rational number such that c(2x) = c(x), then c(3x) = c(6x).

From Lemma 22 and Lemma 23, we have the following result.

Lemma 24. If c is a 3-coloring of the nonzero rational numbers without a monochromatic
solution to E(3

2 , 3) and x is a rational number such that c(2x) = c(x), then for all integers
m1, n1, p1, m2, n2, p2, we have c(2n13m15p1x) = c(2n23m25p2x) if and only if m1 ≡ m2

(mod 3).

The following lemma gets us much closer to proving that c3,3 is the only 3-coloring of
the nonzero rational numbers for which there is a nonzero rational number x such that
c(x) = c(2x).

Lemma 25. If x is a nonzero rational number such that c(x) = c(2x), then for every positive
integer n, we have c(nx) = c(x) if and only if v3(n) is a multiple of 3.

Finally, to finish the proof that c3,3 is the only 3-coloring c of the nonzero rational numbers
without a monochromatic solution to E(3

2 , 3) and for which there is a rational number x such
that c(x) = c(2x), it suffices to prove that c(y) = c(−y) for all y.

Lemma 26. The only 3-coloring c of the nonzero rational numbers for which there is a
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rational number x such that c(x) = c(2x) is c3,3.

Having completed the case when there is a nonzero rational number x such that c(x) =
c(2x), we now look at those 3-colorings for which c(x) *= c(2x) for all nonzero rational
numbers x.

Lemma 27. If c(x) *= c(2x) for every nonzero rational number x, then c(2ny) = c(y) holds
for integer n and nonzero rational number y if and only if n is a multiple of 3.

Lemma 28. If c(x) *= c(2x) for every nonzero rational x, then c(2m3n5py) = c(y) holds for
nonzero rational number y and integers m, n, and p if and only if m is a multiple of 3.

Lemma 29. If c(x) *= c(2x) for all nonzero rational numbers x, then c(y) = c(−y) for all
nonzero rational numbers y.

Finally, to finish the proof of Proposition 7 that c2,3 and c3,3 are the only 3-colorings
of the nonzero rational numbers without a monochromatic solution to E(3

2 , 3), it suffices to
prove the following lemma.

Lemma 30. If no nonzero rational number x satisfies c(x) = c(2x), then c(nx) = c(x) if
and only if v2(n) is a multiple of 3.

Proof of Lemma 21. By induction on n, it suffices to prove that c(4x) = c(x) if c(x) = c(2x).
Assume for contradiction that c(x) = c(2x) *= c(4x). Then we know that c(3x) must
further be distinct from c(x) and c(4x) because of the forbidden ratio from 4x and the
solution (3x, x, 2x). It follows that c(10

3 x) = c(x) because of forbidden ratios from 3x and
4x. Similarly, c(5

2x) = c(4x) because of forbidden ratios from 3x and 10
3 x. It follows that

c(13
3 x) = c(3x) because of the solutions (x, 13

3 x, 10
3 x) and (5

2x, 13
3 x, 4x). Similarly, c(9

2x) =
c(4x) because of the solutions (9

2x, 2x, 10
3 x) and (3x, 9

2x, 13
3 x). We have c(6x) = c(3x) because

of a forbidden ratio from 9
2x and the solution (6x, x, 10

3 x). Finally, the number 3
4x cannot

be colored with any colors, because of a forbidden ratio from x as well as the solutions
(9

2x, 3
4x, 5

2x) and (3
4x, 6x, 13

3 x). !

Proof of Lemma 22. By the previous lemma, we have c(2nx) = c(x) for all nonnegative
integers n. Since c(5

8y) = c(y) for every nonzero rational number y, then c(2n5px) = c(x)
for all nonnegative integers n and p. To finish the proof, it suffices, by induction, to prove
that neither 3x nor 9x is the same color as x, and 27x is the same color as x. Since 3x and
4x have ratio 3

4 , then c(3x) *= c(4x) = c(x). Since 9x and 16x have ratio (6
5)

−2(10
9 )−2, then

c(9x) *= c(16x) = c(x). Since 27x and 64x have ratio 27
64 , then c(27x) = c(64x) = c(x). !

Proof of Lemma 23. Assume for contradiction that c(3x) *= c(6x). By Lemma 22, c(x) =
c(4x) = c(8x). Since 4x = 4

3(3x) and 8x = 4
3(6x), then x, 3x, and 6x are all different colors.

By Lemma 22, c(3
2x) *= c(3x), since otherwise c(3x) = c(6x). Since 3

4(2x) = 3
2x, then 3

2x and
x are different colors. Hence, c(3

2x) = c(6x). Since 64
27(

3
2x) = 32

9 x, then 32
9 x is the same color

as 6x. Since (6x, 4
3x, 32

9 x) is a solution to E(3
2 , 3), then c(4

3x) and c(6x) are different colors.
Since 4

3x and x have ratio 4
3 , then 4

3x and x are different colors. Hence, 4
3x is the same color
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as 3x. Since 3
4x, x, and 4

3x are all different colors, then 3
4x is the same color as 6x. But then

3
4x and 3

2x are the same color, which implies, by Lemma 22, that 3x and 6x are the same
color, a contradiction. !

Proof of Lemma 24. Clearly, from Lemma 22 and Lemma 23, we have the result for nonneg-
ative integers.

Recall that, for every nonzero rational number y, we have c(y) = c(8
5y) and we also

have y, 4
3y, and 16

9 y are all different colors. Therefore, it suffices, by the remark above and
induction to prove that c(x

2 ) = c(x). Since c(3x) = c(6x) and (6x, x
2 , 3x) is a solution to

E(3
2 , 3), then x

2 is a different color from 3x. We have 80
3 x = 40

27(18x), so 18x and 80
3 x are the

same color as 9x. Since (x
2 ,

80
3 x, 18x) is a solution to E(3

2 , 3), then x
2 and 9x are different

colors. Hence, x
2 is the same color as x, which completes the proof. !

Proof of Lemma 25. Suppose c is a 3-coloring of the nonzero rational numbers without a
monochromatic solution to E(3

2 , 3) and x is a nonzero rational number such that c(x) = c(2x).
By Lemma 24, for integers m1, n1, p1, m2, n2, and p2 we have c(2n13m15p1x) = c(2n23m25p2x)
if and only if m2 −m1 is a multiple of 3. By induction, it suffices to prove for every prime
p > 3, that c(x) = c(px). For p = 5, Lemma 24 implies that c(x) = c(px).

The proof is by induction on the size of p. Suppose p is prime with p > 5. We write
p = 6a+ b, where a and b are nonnegative integers and b ∈ {1, 5}. The induction hypothesis
is that c(q) = c(p′q) for every nonzero rational number q satisfying c(q) = c(2q) and prime p′

satisfying 3 < p′ < p. The induction hypothesis implies that c(q) = c(p′q) for every nonzero
rational number q satisfying c(q) = c(2q) and positive odd integer p′ which is not a multiple
of 3 and satisfies p′ < p. Then we have for all p that c(px) *= c(9x) = c(9

4x) because of the
solution (9

4(p − 6)x, 9x, px). It suffices to show that in the two cases below, c(px) *= c(3x)
since c(x), c(3x), and c(9x) are distinct.

Case 1: p = 6a + 1. For a = 1, we have p = 7, and (3x, 7x, 6x) is a solution to E(3
2 , 3), so

7x and 3x are different colors. For a > 1, we have 0 < 3a + 5 < 6a + 1, so by the induction
hypothesis, we have c((3a + 5)q) = c(q) for every rational number q satisfying c(q) = c(2q),
and in particular, for q = 8

9x. The numbers 6x and 8
9x are the same color as the color of 3x

by Lemma 24. Since (px, 6x, (3a+5)8
9x) is a solution to E(3

2 , 3), then px and 3x are different
colors. Hence, c(px) = c(x).

Case 2: p = 6a + 5. For each prime p > 5 of the form p = 6a + 5 we have 3a + 7 < 6a + 5,
so by the induction hypothesis we have c((3a + 5)q) = c(q) for every rational number q
satisfying c(q) = c(2q), and in particular, for q = 8

9x. The numbers 6x and 8
9x are the same

color as the color of 3x by Lemma 24. Since (px, 6x, (3a + 7)8
9x) is a solution to E(3

2 , 3),
then px and 3x are different colors. Hence, c(px) = c(x). !

Proof of Lemma 26. By Lemma 25, it suffices to prove that c(−y) = c(y) for all nonzero
rational numbers y. By Lemma 25, we have c(85

6 y) = c(9y). Since (−y, 85
6 y, 9y) is a solution

to E(3
2 , 3), then −y and 9y are different colors. By Lemma 25, we have c(14

9 y) = c(3y). Since
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(−y, 3y, 14
9 y) is a solution to E(3

2 , 3), then −y and 3y are different colors. Therefore, we have
c(−y) = c(y), completing the proof. !

Proof of Lemma 27. It suffices to prove that c(y) *= c(4y) for all nonzero rational numbers y.
So suppose for contradiction that there is a nonzero rational number y such that c(y) = c(4y).
Let red be the color of y, blue be the color of 2y, and green be the remaining color. Since
3y = 4

3(4y), then 3y is green or blue.

Case 1: 3y is green. Since 3y, 4y, and 16
3 y are all different colors, then 16

3 y is blue. Since
9
4y = 27

64(
16
3 y), then 9

4y is blue. Since 9
2y = 2(9

4y), then 9
2y is not blue. Since (9y, 2y, 16

3 y) is
a solution to E(3

2 , 3), then 9y is not blue. Since 9y = 2(9
2y), then 9

2y and 9y are different
colors. Therefore, either 9

2y is red and 9y is green or 9
2y is green and 9y is red.

Subcase 1a: 9
2y is red and 9y is green. Since 6y = 4

3(
9
2y), then 6y is not red. Since

6y = 2(3y), then 6y is not green. Hence, 6y is blue. Since 12y = 2(6y), then 12y is not blue.
Since 12y = 4

3(9y), then 12y is red. Since 15
2 y = 5

8(12y), then 15
2 y is red. Then (15

2 y, y, 4y) is
a monochromatic solution to E(3

2 , 3), a contradiction.

Subcase 1b: 9
2y is green and 9y is red. Since 10

3 y = 5
8(

16
3 y), then 10

3 y is blue. Since
3y = 2(3

2y) and 2y = 4
3(

3
2y), then 3

2y is red. Since 5
3y = 10

9 (3
2y) and 5

3y = 5
6(2y), then 5

3y is
green. Finally, 28

9 y can not be colored with any colors because of the solutions (y, 4y, 28
9 y),

(2y, 10
3 y, 28

9 y), and (9
2y, 5

3y, 28
9 y).

Case 2: 3y is blue. Since 3y, 4y, 16
3 y are all different colors, then 16

3 y is green. Since
16
3 y = 2(8

3y), then 8
3y is not green. Since 8

3y = 4
3(2y), then 8

3y is not blue. Hence, 8
3y is

red. Since 3
2y, 2y, 8

3y are all different colors, then 3
2y is green. Since 9

4 = 27
64(

16
3 y), then 9

4y is
green. Since 9

2y = 2(9
4y), then 9

2y is not green. Since (9
2y, y, 8

3y) is a solution to E(3
2 , 3), then

9
2y is not red. Therefore, 9

2y is blue. Since 8y = (6
5)

2(10
9 )2(9

2y), then 8y is not blue. Since
8y = 2(4y), then 8y is not red. Hence, 8y is green. Since 5y = 5

8(8y), then 5y is green. Since
32
9 y = 64

27(
3
2y), then 32

9 is green. Since (y
2 , 5y, 32

9 y) is a solution to E(3
2 , 3), then y

2 is not green.
Since y = 2(y

2), then y
2 is not red. Hence, y

2 is blue.

We found a contradiction in Case 1, so if y and 4y are the same color, then y
2 , 2y, 3y are

the same color. Therefore, y
4 , y, 3

2y must be the same color. But 3
2y is green and y is red, a

contradiction. !

Proof of Lemma 28. It suffices, by induction and Lemma 27, to prove that c(y) = c(3y) =
c(5y) for every y. By Lemma 27, c(y) = c(8y) for every y. Since 8y = 8

5(5y), then 5y is
the same color as 8y, so c(y) = c(5y) for all y. So suppose for contradiction that there is a
nonzero rational number x such that c(x) *= c(3x). So, by Lemma 27, x, 2x, and 4x are all
different colors. Let red be the color of x, blue be the color of 2x, and green be the color of
4x. Since 3x is a different color from x and 4x, then 3x is blue. Since 24x = 8(3x), then 24x
is blue. Since 50x = 25(2x), then 50x is blue. Since 64

9 x = 64
27(3x), then 64

9 x is blue. Since
(3x, 24x, 52

3 x), (3x, 50x, 104
3 x), and (3x, 26

3 x, 64
9 x) are solutions to E(3

2 , 3), then none of the
numbers 26

3 x, 52
3 x, 104

3 x is blue. But 26
3 x, 52

3 x, 104
3 x are all different colors, so one of them
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has to be blue, a contradiction. !

Proof of Lemma 29. By Lemma 28, the numbers 2y and 2
9y are the same color and the

numbers 4y, 4
3y, 4

9y are the same color. Since (2y,−y, 2
9y) and (−y, 4

3y, 4
9y) are solutions to

E(3
2 , 3) and y, 2y, 4y are all different colors, then c(y) = c(−y). !

Proof of Lemma 30. By Lemma 28 and Lemma 29, for integers l, m, n, and p and nonzero
rational number y, we have c((−1)l2m3n5py) = c(y) if and only if m is a multiple of 3. By
induction, it suffices to prove for every odd p ≥ 3, that c(x) = c(px). For p = 3 or p = 5,
Lemma 28 implies that c(x) = c(px).

The proof is by induction on the size of p. Suppose p is an odd number with p > 5.
The induction hypothesis is that c(q) = c(p′q) for every nonzero rational number q and odd
number p′ that is less than p. We know that c(px) *= c(2x) = c(9

4x) = c(6x) because of the
solution (9

4(p−4)x, 6x, px). Similarly, c(px) *= c(4x) = c(3
2x) = c(9

2x) because of the solution
(9

2x, 3
2(p− 2)x, px). Since c(x), c(2x), and c(4x) are distinct, c(px) = c(x). !

3. Minimal Colorings for x1 + x2 + x3 = 4x4

In this section we prove that the minimal colorings for x1 + x2 + x3 = 4x4 are those of the
form cΠ5 . It is a straightforward check that each of the colorings of the form cΠ5 is minimal
for x1 + x2 + x3 = 4x4. We suppose for the rest of this subsection that c is a 4-coloring of
the nonzero rational numbers without a monochromatic solution to x1 + x2 + x3 = 4x4.

Lemma 31. If x is a nonzero rational number and r ∈ {4
3 ,

3
2 , 2}, then c(x) *= c(rx).

Lemma 32. For every nonzero rational number x, we have c(x) *= c(3x).

Lemma 33. For every nonzero rational number x, we have c(x) *= c(4x).

Lemma 34. For every nonzero rational number x and integers m and n, we have c(x) =
c(2m3nx) if and only if w5(2m3n) ≡ 1 (mod 5).

Lemma 35. For every nonzero rational number x, we have c(−x) = c(4x).

To finish the proof of Proposition 10, it suffices by Lemma 35 to prove the following
lemma.

Lemma 36. If x is a nonzero rational number and n is a positive integer satisfying v5(n) = 0
and n ≡ d (mod 5) with d ∈ {1, 2, 3, 4}, then c(nx) = c(dx).

Proof of Lemma 31. Since (4
3x, 4

3x, 4
3x, x), (3

2x, 3
2x, x, x), and (2x, x, x, x) are solutions to

x1 + x2 + x3 = 4x4, then c(x) *= c(rx) for r ∈ {4
3 ,

3
2 , 2}. !

Proof of Lemma 32. We suppose for contradiction that there is a nonzero rational number x
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such that c(x) = c(3x). Without loss of generality, we may take x = 1. The previous lemmas
imply that the ratios 2, 3

2 , and 4
3 are forbidden ratios, that is, c(x) *= c(rx) for r ∈ {2, 3

2 ,
4
3}.

Using these forbidden ratios, we see that c(1) = c(3), c(2), and c(4) must be different colors.

We present a computer-generated proof of the rest of this lemma in Table 1. Without loss
of generality, assume that our set of colors is {0, 1, 2, 3} and that c(1) = c(3) = 0, c(2) = 1,
and c(4) = 2; we must derive a contradiction.

We describe briefly how to read Table 1. In the left-most column, the assumptions that
we make are listed. They are structured in a tree-like fashion, reflecting the trial-and-error
argument. The next column lists the current claim. If this claim is “c(x)!?”, then this means
that c(x) cannot be colored with any color and a contradiction has been obtained (thus we
must backtrack); if the claim is c(x) = a, then this will be the next assumption. If the claim
is c(x) ∈ {a, b}, then we must consider the cases c(x) = a and c(x) = b separately. Finally,
the last four columns describe why c(x) *= 0, etc., if this is needed to support the claim. An
equation of the form y · r = x means that the forbidden ratio r forbids x and y from being
the same color; a 4-tuple (x1, x2, x3, x4) means that if we colored x the color in question,
then this would be a monochromatic solution to x1 + x2 + x3 = 4x4.

For example, the first line of the proof can be read as follows: “c(6) is either 1 or 3
because of forbidden ratios from 3 and 4; we consider these possibilities separately.” !

Proof of Lemma 33. For the sake of contradiction, assume that c(x) = c(4x) for some x.
As in the previous lemma, we will use forbidden ratios; here, they are 2, 3

2 ,
4
3 , and 3. To

begin, note that c(x) = c(4x), c(2x), c(3x), and c(6x) must be different colors by these
forbidden ratios. Now, c(3

2x) = c(6x) by forbidden ratios from x, 2x, and 3x. It follows that
c(9

4x) = c(2x) by forbidden ratios from 3x and 3
2x as well as the solution (4x, 4x, x, 9

4x). Then
c(9

2x) = c(x) by forbidden ratios from 9
4x, 3x, and 3

2x. Next, c(9x) = c(2x) by forbidden
ratios from 9

2x, 3x, and 6x. Further, c(12x) = c(3x) by forbidden ratios from 4x, 9x, and 6x.
Also, c(8x) = c(2x) by forbidden ratios from 4x, 12x, and 6x. Nearing the end, c(1

2x) = c(3x)
by forbidden ratios from x and 3

2x as well as the solution (8x, 1
2x, 1

2x, 9
4x). Finally, there are

no possibilities left for c(3
4x) by forbidden ratios from x, 9

4x, 1
2x, and 3

2x. !

Proof of Lemma 34. By induction, it suffices to prove that c(x) = c(6x) = c(16x) for every
nonzero rational number x. We have x, 2x, 3x, and 4x are all different colors by the previous
three lemmas. Also, 2x, 3x, 4x, and 6x are all different colors by Lemma 31 and Lemma 32.
Hence, c(x) = c(6x). By the previous three lemmas, the numbers 2x, 4x, 6x, and 8x are all
different colors. Hence, c(8x) = c(3x). By the previous three lemmas, 3x, 4x, 6x, and 12x
are all different colors, so c(12x) = c(2x). By the previous three lemmas, 4x, 8x, 12x, and
16x are all different colors, so c(16x) = c(x), completing the proof. !

Proof of Lemma 35. Since c(x) = c(6x) and (−x,−x, 6x, x) is a solution to x1+x2+x3 = 4x4,
then −x and x are different colors. Since c(2x) = c(3

4x) and (−x, 2x, 2x, 3
4x) is a solution to

x1 + x2 + x3 = 4x4, then −x and 2x are different colors.

By Lemma 34, 5x, 10x, 15x, and 20x are all different colors, so c(3x) ∈ {5x, 10x, 15x,
20x}. By Lemma 34, we have c(3x) = c(8x) = c(18x) = c(27

4 x). Since (5x,−x, 8x, 3x),
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Assumptions Claim Why not 0 Why not 1 Why not 2 Why not 3

c(1) = c(3) = 0, c(2) = 1, c(4) = 2 c(6) ∈ {1, 3} 3 · 2 = 6 4 · 3
2 = 6

c(6) = 1 c(8) = 3 (3, 1, 8, 3) 6 · 4
3 = 8 4 · 2 = 8

c(8) = 3 c(12) ∈ {0, 2} 6 · 2 = 12 8 · 3
2 = 12

c(12) = 0 c(16) = 2 12 · 4
3 = 16 (6, 2, 16, 6) 8 · 2 = 16

c(16) = 2 c(9) = 3 12 · 3
4 = 9 6 · 3

2 = 9 (16, 16, 4, 9)

c(9) = 3 c( 9
2 ) = 2 3 · 3

2 = 9
2 6 · 3

4 = 9
2 9 · 1

2 = 9
2

c( 9
2 ) = 2 c(10) ∈ {1, 3} (1, 1, 10, 3) (4, 4, 10, 9

2 )

c(10) = 1 c(24) = 3 12 · 2 = 24 (10, 6, 24, 10) 16 · 3
2 = 24

c(24) = 3 c(32) = 0 (6, 2, 32, 10) 16 · 2 = 32 24 · 4
3 = 32

c(32) = 0 c(11) = 2 (32, 1, 11, 11) (2, 11, 11, 6) (24, 9, 11, 11)

c(11) = 2 c(5) = 3 (12, 3, 5, 5) 10 · 1
2 = 5 (11, 9

2 , 9
2 , 5)

c(5) = 3 c( 11
2 ) !? (1, 11

2 , 11
2 , 3) (10, 10, 2, 11

2 ) 11 · 1
2 = 11

2 (5, 9, 8, 11
2 )

c(10) = 3 c(24) = 1 12 · 2 = 24 16 · 3
2 = 24 (8, 8, 24, 10)

c(24) = 1 c(7) = 0 (24, 2, 2, 7) ( 9
2 , 9

2 , 7, 4) (10, 10, 8, 7)

c(7) = 0 c(18) = 2 12 · 3
2 = 18 24 · 3

4 = 18 9 · 2 = 18

c(18) = 2 c( 27
2 ) !? (1, 27

2 , 27
2 , 7) (24, 24, 6, 27

2 ) 18 · 3
4 = 27

2 9 · 3
2 = 27

2
c(12) = 2 c(16) = 0 (6, 2, 16, 6) 12 · 4

3 = 16 8 · 2 = 16

c(16) = 0 c(5) ∈ {1, 3} (16, 3, 1, 5) (12, 4, 4, 5)

c(5) = 1 c(7) ∈ {0, 3} (6, 7, 7, 5) (12, 12, 4, 7)

c(7) = 0 c(9) = 3 (16, 3, 9, 7) 6 · 3
2 = 9 12 · 3

4 = 9

c(9) = 3 c(14) = 2 7 · 2 = 14 (5, 5, 14, 6) (9, 9, 14, 8)

c(14) = 2 c(20) !? (7, 1, 20, 7) (2, 2, 20, 6) (14, 14, 20, 12) (8, 8, 20, 9)

c(7) = 3 c(10) = 2 (1, 1, 10, 3) 5 · 2 = 10 (8, 10, 10, 7)

c(10) = 2 c(14) = 0 (5, 5, 14, 6) (12, 14, 14, 10) 7 · 2 = 14

c(14) = 0 c(20) = 3 (16, 20, 20, 14) (2, 2, 20, 6) 10 · 2 = 20

c(20) = 3 c(9) = 0 6 · 3
2 = 9 12 · 3

4 = 9 (20, 7, 9, 9)

c(9) = 0 c(13) = 2 (9, 14, 13, 9) (5, 6, 13, 6) (7, 8, 13, 7)

c(13) = 2 c(17) !? (16, 3, 17, 9) (5, 2, 17, 6) (13, 10, 17, 10) (7, 8, 17, 8)

c(5) = 3 c( 9
2 ) = 2 3 · 3

2 = 9
2 6 · 3

4 = 9
2 (5, 5, 8, 9

2 )

c( 9
2 ) = 2 c(10) = 1 (1, 1, 10, 3) (4, 4, 10, 9

2 ) 5 · 2 = 10

c(10) = 1 c(7) = 0 (10, 7, 7, 6) ( 9
2 , 9

2 , 7, 4) (5, 8, 7, 5)

c(7) = 0 c( 15
2 ) !? (7, 7, 16, 15

2 ) 10 · 3
4 = 15

2 ( 9
2 , 4, 15

2 , 4) 5 · 3
2 = 15

2
c(6) = 3 c(8) = 1 (3, 1, 8, 3) 4 · 2 = 8 6 · 4

3 = 8

c(8) = 1 c( 9
2 ) = 2 3 · 3

2 = 9
2 (8, 8, 2, 9

2 ) 6 · 3
4 = 9

2
c( 9

2 ) = 2 c(9) ∈ {0, 1} 9
2 · 2 = 9 6 · 3

2 = 9

c(9) = 0 c(12) = 2 9 · 4
3 = 12 8 · 3

2 = 12 6 · 2 = 12

c(12) = 2 c( 3
2 ) = 3 3 · 1

2 = 3
2 2 · 3

4 = 3
2 (12, 9

2 , 3
2 , 9

2 )

c( 3
2 ) = 3 c( 9

4 ) = 1 3 · 3
4 = 9

4
9
2 · 1

2 = 9
4

3
2 · 3

2 = 9
4

c( 9
4 ) = 1 c( 27

8 ) = 0 9
4 · 3

2 = 27
8

9
2 · 3

4 = 27
8 ( 3

2 , 6, 6, 27
8 )

c( 27
8 ) = 0 c( 9

8 ) = 2 ( 27
8 , 9, 9

8 , 27
8 ) 9

4 · 1
2 = 9

8
3
2 · 3

4 = 9
8

c( 9
8 ) = 2 c( 3

4 ) = 1 1 · 3
4 = 3

4
9
8 · 2

3 = 3
4

3
2 · 1

2 = 3
4

c( 3
4 ) = 1 c( 15

2 ) = 3 (3, 3, 15
2 , 27

8 ) ( 3
4 , 3

4 , 15
2 , 9

4 ) ( 9
2 , 4, 15

2 , 4)

c( 15
2 ) = 3 c( 21

4 ) !? ( 27
8 , 27

8 , 21
4 , 3) ( 3

4 , 2, 21
4 , 2) (12, 9

2 , 9
2 , 21

4 ) ( 15
2 , 15

2 , 6, 21
4 )

c(9) = 1 c(10) ∈ {1, 3} (1, 1, 10, 3) (4, 4, 10, 9
2 )

c(10) = 1 c(7) ∈ {0, 3} (10, 10, 8, 7) ( 9
2 , 9

2 , 7, 4)

c(7) = 0 c( 8
3 ) = 3 (7, 1, 8

3 , 8
3 ) 2 · 4

3 = 8
3 4 · 2

3 = 8
3

c( 8
3 ) = 3 c( 4

3 ) = 2 1 · 4
3 = 4

3 2 · 2
3 = 4

3
8
3 · 1

2 = 4
3

c( 4
3 ) = 2 c( 16

3 ) = 0 8 · 2
3 = 16

3 4 · 4
3 = 16

3
8
3 · 2 = 16

3
c( 16

3 ) = 0 c( 32
3 ) !? 16

3 · 2 = 32
3 8 · 4

3 = 32
3 ( 4

3 , 4, 32
3 , 4) ( 8

3 , 32
3 , 32

3 , 6)

c(7) = 3 c(5) ∈ {0, 2} 10 · 1
2 = 5 (7, 7, 6, 5)

c(5) = 0 c(12) = 2 (5, 3, 12, 5) 9 · 4
3 = 12 6 · 2 = 12

c(12) = 2 c(16) !? (3, 1, 16, 5) 8 · 2 = 16 12 · 4
3 = 16 (6, 6, 16, 7)

c(5) = 2 c(12) = 0 9 · 4
3 = 12 (4, 4, 12, 5) 6 · 2 = 12

c(12) = 0 c( 7
2 ) !? (12, 1, 1, 7

2 ) (10, 2, 2, 7
2 ) (5, 5, 4, 7

2 ) 7 · 1
2 = 7

2
c(10) = 3 c( 16

3 ) = 0 8 · 2
3 = 16

3 4 · 4
3 = 16

3 (10, 6, 16
3 , 16

3 )

c( 16
3 ) = 0 c( 8

3 ) = 3 16
3 · 1

2 = 8
3 2 · 4

3 = 8
3 4 · 2

3 = 8
3

c( 8
3 ) = 3 c( 4

3 ) = 2 1 · 4
3 = 4

3 2 · 2
3 = 4

3
8
3 · 1

2 = 4
3

c( 4
3 ) = 2 c( 32

3 ) !? 16
3 · 2 = 32

3 8 · 4
3 = 32

3 ( 4
3 , 4, 32

3 , 4) ( 8
3 , 32

3 , 32
3 , 6)

Table 1: The computer-generated proof of Lemma 32.
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(10x,−x, 3x, 3x), (15x,−x, 18x, 8x), and (20x,−x, 8x, 27
4 x) are solutions to x1+x2+x3 = 4x4,

then −x and 3x are different colors. Hence, c(−x) = c(4x). !

Proof of Lemma 36. By Lemma 34, for integers m and n and nonzero rational number x,
we have c(2m3nx) = c(x) if and only if w5(2m3n) ≡ 1 (mod 5). By Lemma 35, we have
c(−x) = c(4x) for all nonzero rational numbers x. By induction, it suffices to prove for every
positive integer p that is not a multiple of 5, we have, c(px) = c(dx) for d ∈ {1, 2, 3, 4} if and
only if p ≡ d (mod 5). By Lemma 34, we have already established this for p = 2m3n and n
and m are integers.

The proof is by induction on the size of p. Suppose p > 5 is an integer that is not a
multiple of 2, 3, or 5. We write p = 10a + b, where a and b are nonnegative integers and
b ∈ {1, 3, 7, 9}. The induction hypothesis is that, for d ∈ {1, 2, 3, 4}, we have c(p′q) = c(dq)
for every nonzero rational number q and positive integer p′ such that p′ ≡ d (mod 5), p′ < p,
and p′ is not a multiple of 2, 3, or 5.

By Lemma 34, the four colors c(5x), c(10x), c(15x), c(20x) are distinct for every nonzero
rational number x. Hence, c(x), c(2x), c(3x), c(4x) ∈ {c(5x), c(10x), c(15x), c(20x)} for every
nonzero rational number x.

Case 1: p = 10a + 1 with a ≥ 1.

We have c(3x) = c(8x) = c(18x). If a = 1, then p = 11 and c(px) *= c(3x) since
(3x, 18x, 11x, 8x) is a solution to x1 + x2 + x3 = 4x4. If a > 1, then 0 < 5a + 6 < p, and
by the induction hypothesis, we have c(3x) = c((5a+6

2 )x). Since (px, 3x, 8x, (5a+6
2 )x) is a

solution to x1 + x2 + x3 = 4x4, then px and 3x are different colors.

We have c(14x) = c(4x). Since 0 < 5a + 4 < p, then by the induction hypothesis, we
have c(4x) = c((5a + 4)x). Since (px, px, 14x, (5a + 4)x) is a solution to x1 + x2 + x3 = 4x4,
then px and 4x are different colors.

By the induction hypothesis, Lemma 34, and Lemma 35, we have c(−3x) = c(2x) =
c(7x) = c(12x). Since 0 < 5a + 9 < p for a > 1 and 5a+9

2 = 7 < 11 for a = 1,
then by the induction hypothesis, we have c((5a+9

2 )x) = c(2x). Since (5x, 12x, px, (5a+9
2 )x),

(10x, 7x, px, (5a+9
2 )x), (15x, 2x, px, (5a+9

2 )x), (20x,−3x, px, (5a+9
2 )x) are solutions to x1+x2+

x3 = 4x4 and c(2x) ∈ {c(5x), c(10x), c(15x), c(20x)}, then px and 2x are different colors.
Hence, c(px) = c(x).

Case 2: p = 10a + 3 with a ≥ 1.

Since 0 < 5a + 2 < p, then by the induction hypothesis, we have (5a + 2)x and 2x are
the same color. Since (px, px, 2x, (5a + 2)x) is a solution to x1 + x2 + x3 = 4x4, then px and
2x are different colors.

Since p = 10a+3 ≥ 13, then by the induction hypothesis, we have c(4x) = c(9x) = c(14x).
For a = 1, we have p = 13, and (13x, 14x, 9x, 9x) is a solution to x1 + x2 + x3 = 4x4, so
13x and 4x are different colors. For a > 1, we have 0 < 5a + 8 < p , so by the induction
hypothesis, we have (5a+8

2 )x and 4x are the same color. Since (px, 9x, 4x, (5a+8
2 )x) is a
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solution to x1 + x2 + x3 = 4x4, then px and 4x are different colors.

Since p = 10a + 3 ≥ 13 and 0 < 5a + 7 < p, then by the induction hypothesis,
we have c(x) = c(6x) = c(7

2x) = c(72
7 x) = c((5a+7

2 )x), c(5
7x) = c(15x), and c(15

2 x) =
c(20x). Since the tuples (5x, px, 6x, (5a+7

2 )x), (10x, px, x, (5a+7
2 )x), (5

7x, px, 72
7 x, (5a+7

2 )x), and
(15

2 x, px, 7
2x, (5a+7

2 )x) are solutions to x1 + x2 + x3 = 4x4, and c(x) ∈ {c(5x), c(10x), c(15x),
c(20x)}, then px and x are different colors. Hence, c(px) = c(3x).

Case 3: p = 10a + 7 with a ≥ 0.

We have c(−4x) = c(x). Since 0 < 5a + 2 < 10a + 7, then by the induction hypothesis,
we have c((5a+2

2 )x) = c(x). Since (px,−4x, x, (5a+2
2 )x) is a solution to x1 + x2 + x3 = 4x4,

then px and x are different colors.

We have c(−2x) = c(3x). Since 0 < 5a + 3 < 10a + 7, then by the induction hypothesis,
we have c(5a+3)x) = c(3x). Since (px, px,−2x, (5a+3)x) is a solution to x1+x2+x3 = 4x4,
then px and 3x are different colors.

Note that c(−16x) = c(−6x) = c(−9
4x) = c(−8

3x) = c(4x), c(5
3x) = c(10x), and

c(5
4x) = c(20x). Since 0 < 5a + 3 < 10a + 7, then by the induction hypothesis, we

have (5a+3
2 )x and 4x are the same color. Since (5x, px,−6x, (5a+3

2 )x), (5
3x, px,−8

3x, (5a+3
2 )x),

(15x, px,−16x, (5a+3
2 )x), and (5

4x, px,−9
4x, (5a+3

2 )x) are solutions to x1 + x2 + x3 = 4x4

and c(4x) ∈ {c(5x), c(10x), c(15x), c(20x)}, then px and 4x are different colors. Hence,
c(px) = c(2x).

Case 4: p = 10a + 9 with a ≥ 1.

We have c(x) = c(6x). Since 0 < 5a + 6 < p, then by the induction hypothesis, we
have (5a + 6)x and x are the same color. Since (px, px, 6x, (5a + 6)x) is a solution to
x1 + x2 + x3 = 4x4, then px and x are different colors.

We have c(−3x) = c(2x). Since 0 < 5a + 4 < p, then by the induction hypothesis,
we have (5a+4

2 )x and 2x are the same color. Since (px, 2x,−3x, (5a+4
2 )x) is a solution to

x1 + x2 + x3 = 4x4, then px and 2x are different colors.

Since p = 10a + 9 ≥ 19, then by the induction hypothesis, we have c(3x) = c(−2x) =
c(−7x) = c(−12x) = c(−17x). Since 0 < 5a + 6 < p, then (5a+6

2 )x and 3x are the
same color. Since (5x, px,−2x, (5a+6

2 )x), (10x, px,−7x, (5a+6
2 )x), (15x, px,−12x, (5a+6

2 )x),
and (20x, px,−17x, (5a+6

2 )x) are solutions to x1 +x2 +x3 = 4x4, then px and 3x are different
colors. Hence, px and 4x are the same color. !

4. Minimal colorings of the Nonzero Reals

Let A = {a1, . . . , an} be a nonempty finite multiset of nonzero real numbers. For example,
{2, 3} and {2, 2, 3} are considered to be different multisets. We define a coloring c to be
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strongly free of monochromatic solutions to a1x1 + · · · + anxn = 0 if for every nonempty
subset A′ ⊆ A, the coloring c has no monochromatic solutions to the equation E(A′) defined
by

E(A′) :
∑

ai∈A′

aixi = 0.

Proposition 37. Suppose c : Q \ {0} → {1, . . . , r} is an r-coloring of the nonzero rational
numbers with r > 1, and c is strongly free of monochromatic solutions to a1x1+· · ·+anxn = 0.
Then in ZFC, there exists 22ℵ0 r-colorings of the nonzero real numbers that are strongly free
of monochromatic solutions to a1x1 + · · · + anxn = 0.

Proof. In ZFC, every vector space has a basis. Viewing R as a Q-vector space, there is a
well-ordered basis B = {bj}j<2ω for R as a Q-vector space. So every real number x has a
unique representation as x =

∑
j<2ω qjbj, where each qj is rational and qj *= 0 for only finitely

many j. For a nonzero real number x, let j(x) be the least ordinal j such that qj is nonzero.
For a finite set S of nonzero real numbers, let j(S) = minx∈S j(x). Let Π = (πj)j<2ω be any
sequence of permutations πj of the set {1, . . . , r} with π0 being the identity permutation.
Define the coloring CΠ by CΠ(x) = πj(x)(c(qj(x))).

Suppose x1, . . . , xn are nonzero real numbers and A′ ⊆ A is a nonempty subset such
that

∑
ai∈A′ aixi = 0. Let qi,j be the coefficient of bj in the representation of xi. Since∑

ai∈A′ aixi = 0, then
∑

ai∈A′ aiqi,j(A′) = 0. Letting A′′ ⊂ A′ be those ai ∈ A′ such that
qi.j(A′) *= 0, we see that A′′ is a nonempty subset of A and

∑
ai∈A′′ aiqi,j(A′) = 0. Since

CΠ(xi) = πj(A′)(c(qi,j(A′))) for ai ∈ A′′ and c is strongly free of monochromatic solutions to
a1x1 + · · · + anxn = 0, then the set {xi}ai∈A′′ is not monochromatic and CΠ is strongly free
of monochromatic solutions to a1x1 + · · · + anxn = 0. Since there are 22ℵ0 nonisomorphic
r-colorings of the form CΠ and there are a total of 22ℵ0 nonisomorphic r-colorings of the real
numbers, then there are exactly 22ℵ0 colorings of the nonzero real numbers that are strongly
free of monochromatic solutions to a1x1 + · · · + anxn = 0. !

For p a prime number and n ≥ 3, each of the colorings cp,n is strongly free of mono-
chromatic solutions to E(p, n), so there are 22ℵ0 different n-colorings of the nonzero real
numbers without a monochromatic solution to E(p, n). In general, define the n-coloring
cp,v,n : Q \ {0}→ {0, . . . , n− 1} by cp,v,n(x) ≡

⌊vp(x)
v

⌋
(mod n). Notice that if q is a nonzero

rational number and vp(q) *= 0, then cp,v,n with v = vp(q) is strongly free of monochromatic
solutions to E(q, n).

We now turn our attention to the ZF+LM system of axioms. We prove Lemma 13 using
the following multiplicative version of a theorem of Steinhaus [Ste20]. For a set A of real
numbers, define A/A = {a/a′ : a, a′ ∈ A, a′ *= 0}.

Theorem 38 (Steinhaus’s Theorem). If A is a set of real numbers with positive Lebesgue
measure, then A/A contains an entire interval (1− ε, 1 + ε) for some ε > 0.

Proof of Lemma 13:. Suppose for contradiction that all color classes of c are Lebesgue
measurable. Since c partitions R into countably many color classes, and Lebesgue measure
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is countably additive, then at least one color class C has positive Lebesgue measure. Since
x, dambnx are different colors for all integers m and n, then C/C and {dambn : m,n ∈ Z}
are disjoint sets. Since loga b is irrational, then the set {dambn : m,n ∈ Z} contains numbers
arbitrarily close to 1. But by Steinhaus’s theorem, C/C contains an entire interval around
1, so C/C and {dambn : m, b ∈ Z} are not disjoint, a contradiction. !
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