
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A13

THE TRIBONACCI SUBSTITUTION

S.W. Rosema
Mathematical Institute, Leiden University, Postbus 9512, 2300 RA Leiden, The Netherlands

swrosema@math.leidenuniv.nl

R. Tijdeman
Mathematical Institute, Leiden University, Postbus 9512, 2300 RA Leiden, The Netherlands

tijdeman@math.leidenuniv.nl

Received: 1/12/05, Revised: 4/2/05, Accepted: 8/12/05, Published: 9/8/05

Abstract

We study the discretised segments generated by the iterated Tribonacci substitution and
the projections of the integer points on them to some plane. After suitable transforma-
tions we get a sequence of finite two-dimensional words which tends to a doubly rotational
word on Z2. (Without scaling we would get the Rauzy fractal.) As an introduction we
start with the corresponding case of the Fibonacci substitution.

1. The Fibonacci Word

If there would exist Miss Word elections, the Fibonacci word would be an excellent can-

didate to win. In this section we give an overview of the properties of the Fibonacci
word. For background information for this and other sections we refer to [L] and [B].

The Fibonacci substitution is the substitution φ over the 2-letter alphabet A := {0, 1}
defined by φ(0) = 01, φ(1) = 0. If we start with 0 and repeatedly apply φ we get

successively
u0 = 0
u1 = 01
u2 = 010
u3 = 01001
u4 = 01001010
u5 = 0100101001001
u6 = 010010100100101001010
. . .
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Note that un = un−1un−2 for every integer n > 1. This sequence of words converges to the
so-called Fibonacci word f = (fm)∞m=1. If we define F0 = 0, F1 = 1 and Fn = Fn−1 +Fn−2

for any integer n > 1, then the number of symbols of un, denoted by |un|, equals Fn+2

and the number of 0’s and 1’s in un, denoted by |un|0 and |un|1, equals Fn+1 and Fn,

respectively. The Fibonacci word has the following properties:

• The frequency of 0 equals limn→∞
Fn+1

Fn+2
= −1

2
+ 1

2

√
5 =: γ, the frequency of 1 equals

limn→∞ Fn

Fn+2
= 3

2
− 1

2

√
5 = γ2, hence γ +γ2 = 1, [L] sect.2.1.1. Since the frequencies

are irrational, the Fibonacci sequence is non-periodic.

• The Fibonacci word is balanced, which means that for all subwords u, v of f of
equal lengths we have ||u|1 − |v|1| ≤ 1, [L] sect.2.1.1. Note that ||u|0 − |v|0| ≤ 1 is

an equivalent requirement.

• The Fibonacci word is sturmian, that is, P (n) = n + 1 for every n, where P (n)

equals the number of different subwords of f of length n, [L] sect.2.1.1. Because a
word is (ultimately) periodic if there exists an n for which P (n) ≤ n, [CH] sect.2,

a sturmian word is in this sense the most regular non-periodic word.

• The Fibonacci word is a rotation word, [L] sect.2.1.2. In fact

∀m ≥ 1 : fm =

{
0 if {(m + 1)γ} ∈ (0, γ]
1 if {(m + 1)γ} ∈ {0} ∪ (γ, 1)

where {·} denotes the fractional part.

• The Fibonacci word is a Beatty sequence, [L] sect.2.1.2. In fact

∀m ≥ 1 : fm = �(m + 1)γ2� − �mγ2�.

• The Fibonacci word is a cutting sequence, [S]. In fact, in the x-y-plane the broken

Fibonacci halfline that you get by starting in (0, 0) and going 1 in the direction of
the x-axis when fm = 0 and 1 in the direction of the y-axis when fm = 1 is an ideal

discrete approximation to the halfline given by y = γx, x ≥ 0. See Figure 1.

Up to now we have considered one-sided words and halflines. The definition of the broken

Fibonacci word as a Beatty sequence (or as a rotation sequence) allows a straightforward
extension to a biinfinite word (fm)m∈Z. Actually there is another natural extension, viz.

∀m ∈ Z : f ∗
m = �(m + 1)γ2� − �mγ2� =

{
0 if {(m + 1)γ} ∈ [0, γ)
1 if {(m + 1)γ} ∈ [γ, 1).

The sequences (fm)m∈Z and (f ∗
m)m∈Z coincide except that f ∗

−1 = f0 = 0, f−1 = f ∗
0 = 1.

Furthermore fm = f−m−1 for all m > 0 (cf. Theorem 2.4). Starting at the origin and

going in both directions according to (fm)m∈Z we obtain an ideal discretisation, called
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Figure 1: The Fibonacci sequence is a cutting sequence.

the broken Fibonacci line, of the line y = γx. It is given by (the 10 of f−1f0 is put in
between vertical bars to indicate the positions −1 and 0)

. . . 1001001010010|10|0100101001001 . . . .

2. Discretisation of the line

In this section we study projections of the broken Fibonacci halfline to the y-axis more

closely. The integer points pm for m ∈ Z≥0 on this halfline are fixed by p0 = (0, 0),
pm = pm−1 + �efm where �e0, �e1 denote the unit vectors in the directory of the x-axis and

y-axis, respectively. Let ũm denote the word f1f2 . . . fm. Hence un = ũFn+2, |ũm|1 =∑m
j=1 fm, |ũm|0 = m − |ũm|1 and pm = (|ũm|0, |ũm|1). Now we project each integer point

parallel to the line y = γx, x ≥ 0 to the y-axis. By P (pm) we denote the second
coordinate of the projection of pm. See Figure 2. Note that a 0 means going one step

to the right on the broken Fibonacci halfline, and for the projection this corresponds to
going down γ along the y-axis. Similarly a 1 corresponds to going up 1 along the y-axis.

We have

P (pm) = |ũm|1 − γ|ũm|0 = �(m + 1)γ2� − �γ2� − γ(m − �(m + 1)γ2� + �γ2�)
= (1 + γ)(−{(m + 1)γ2} + {γ2}) = γ − (1 + γ){(m + 1)γ2} ∈ (−1, γ].
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Figure 2: Projecting the broken Fibonacci halfline gives an exchange of intervals.

Hence the projected points are all in the interval (−1, γ] on the y-axis. Since P (pm+1)−
P (pm) is either 1 or −γ, it follows that P (pm+1) − P (pm) = 1 if P (pm) ∈ (−1,−γ2] and
P (pm+1) − P (pm) = −γ if P (pm) ∈ (−γ2, γ]. Thus we have an exchange of intervals.

2.1 Incidence vectors and matrices

Let u be a finite word over a k-letter alphabet A := {0, 1, . . . , k − 1}. Then we call
�u := (|u|0, |u|1, . . . , |u|k−1) its incidence vector. If α is a substitution over A, then the

incidence matrix Mα belonging to α has |α(i − 1)|j−1 as entry (i, j). Incidence vectors

and matrices contain the global information (the numbers of each letter), but not the
local information (precise order).

When applying substitution φ defined above to a finite word, the new incidence vec-

tor is obtained by multiplying the old one on the right by Mφ =

(
1 1
1 0

)
. Starting with

the incidence vector (1, 0) of u0 and repeatedly multiplying with Mφ yields successively
(1, 1), (2, 1), (3, 2), (5, 3), (8, 5), (13, 8), . . .. This agrees with the sequence (pn, qn) where

pn/qn are the convergents of the continued fraction expansion of γ−1 = 1
2

+ 1
2

√
5.
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2.2 Local behaviour

We consider the broken line segment in the x-y-plane corresponding with the word un

where we start from the origin and a 0 means going 1 in the direction of the x-axis

and a 1 corresponds to going 1 in the direction of the y-axis. We project parallel to
the line (depending on n) through the origin and the end point p|un| of the broken line

segment, and we project to the y-axis. By Pn(pm) we denote the second coordinate of
the projection of the point pm. See Figure 3.

In Figure 3 we see that u2 = 010 leads to w′
2 = 102 and that u3 = 01001 leads to

w′
3 = 41302, where w′

n is given by the increasing order of the projected points Pn(pm) on

the y-axis. Note that |w′
n| = |un| = Fn+2 for every non-negative integer n. We now write

the projections w′
n not from down to up, but from left to right.

n |un| un w′
n

0 1 0 → 00

1 2 01 → 11 00

2 3 010 → 11 00 20

3 5 01001 → 41 11 30 00 20

4 8 01001010 → 41 11 61 30 00 50 20 70

5 13 0100101001001 → 121 41 91 11 61 110 30 80 00 50 100 20 70

. . . . . .

The subscripts refer to the corresponding values in un. The incidence matrix

(
1 1
1 0

)

of the Fibonacci substitution equals −1. Since it is negative, for even n we reflect the

w′
n in the origin and interchange the 0’s and 1’s in the subscripts. We call the resulting

words wn.

n |un| un wn

0 1 0 → 00

1 2 01 → 11 00

2 3 010 → 21 01 10

3 5 01001 → 41 11 30 00 20

4 8 01001010 → 71 21 51 01 31 60 10 40

5 13 0100101001001 → 121 41 91 11 61 110 30 80 00 50 100 20 70

. . . . . .

Observe that the numbers form a complete system of representatives mod |un| = mod

Fn+2 and that the number i is placed in a position congruent to iFn(mod Fn+2) for
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Figure 3: Projection of u2 = 010 and u3 = 01001.
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i = 0, 1, . . . , |un| − 1. Moreover, the subscript is 0 if the next jump in the projection is to
the left and it is 1 if the next jump is to the right. Subsequently we replace each number

in wn which is less than Fn+1 with 0 and each number at least Fn+1 with 1. We call the
resulting word vn. If we underline a word, it means that the letters are not only placed

in order but also in the right position with respect to the origin.

v0 = 0
v1 = 1 0
v2 = 1 0 0
v3 = 1 0 1 0 0
v4 = 1 0 1 0 0 1 0 0
v5 = 1 0 1 0 0 1 0 1 0 0 1 0 0

. . . . . .

We shall show that the sequence of words (vn)∞n=0 converges to the two-sided Fibonacci
word when n tends to infinity.

Lemma 2.1. The positions of wn run from −Fn+1 up to Fn − 1 if n is odd, and from

−Fn up to Fn+1 − 1 if n is even.

Proof. For each projected point we have Pn(pm) = |ũm|1 − Fn

Fn+1
|ũm|0 with 0 ≤ |ũm|1 ≤

Fn, 0 ≤ |ũm|0 ≤ Fn+1. Since gcd(Fn, Fn+1) = 1, it follows that if m < m′ we get
Pn(pm) = Pn(pm′) ⇒ m = 0, m′ = |un| = Fn+2. In other words all Fn+2 projected points

Pn(p0), . . . , Pn(p|un|−1) are distinct and of the form x
Fn+1

, x ∈ Z. Note that to get from

one projected point to the next, we either add Fn+1

Fn+1
or subtract Fn

Fn+1
which is the same

modulo Fn+2

Fn+1
. Hence x passes through all cosets modulo Fn+2.

Now we construct wn by placing index m in position Pn(pm), and for even n reflecting
wn in the origin.

We prove the lemma by induction. It is true for n = 2, 3. Assume the lemma is true for
n−1 and assume n is odd. To go from un−1 to un in un−1 every 0 is replaced with 01 and

every 1 is replaced with 0. It follows that to go from wn−1 to wn every jump to the right
of length Fn−2 is replaced by a jump to the left of length Fn−1 followed by a jump to the

right of length Fn and every jump to the left of length Fn−1 in wn−1 leads to a jump to
the left of the same length in wn. Thus wn consists of Fn+1 numbers without gaps placed

directly under wn−1 and Fn numbers on the left-hand side of them, possibly containing

gaps. But because these Fn numbers on the left are in different cosets modulo Fn+2 and
are only one jump to the left of length Fn away from the Fn+1 numbers directly under

wn−1, they must occupy exactly the first Fn positions left of wn−1, and it follows that wn

has no gaps either. Because wn−1 runs from position −Fn−1 up to Fn − 1, it follows that

wn runs from position −Fn+1 up to Fn − 1. The situation for even n is similar. �

Remark. Lemma 2.1 implies that wn has no gaps, so is defined on a block of integers.
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Lemma 2.2. vn =

{
vn−1vn−2 if n is even,

vn−2vn−1 if n is odd.

Proof. Note that pFn+1 = (|un−1|0, |un−1|1) = (Fn, Fn−1), so Pn(pFn+1) = Fn−1−Fn
Fn

Fn+1
=

(−1)2

Fn+1
. Because for n is even wn is reflected in the origin, wn has Fn+1 in position −1

for every n. Assume n is odd. Because Fn+1 in wn is placed directly below Fn in wn−1,
below every number smaller than Fn in wn−1 a number is placed in wn that is smaller

than Fn+1, and below every number larger than Fn in wn−1 a number is placed that is
larger than Fn+1. It follows that the part of vn placed directly below vn−1 is equal to

vn−1. Because of the way wn is constructed from wn−1 in the proof of Lemma 2.1, the left
Fn numbers of vn are an exact copy of the left Fn numbers of vn−1, which by induction

are an exact copy of the Fn numbers of vn−2. This proves the lemma for n is odd. The
case n is even is similar. �

We still need another lemma. By overlining we indicate that the word should be reversed.
The lemma states that 01un for even n and 10un for odd n are palindromes.

Lemma 2.3.
0 1 un = 0 1 un if n is even,
1 0 un = 1 0 un if n is odd.

Proof. The equalities hold for n = 0 and n = 1. Let n be even. Then, by induction on n,

01un = 01un−1un−2 = 01un−2un−3un−2 = un−210un−3un−2 = un−2un−301un−2

= un−2un−3un−210 = 01un−2un−3un−2 = 01un−1un−2 = 01un.

For odd n the proof is similar. �

Now we can prove the theorem.

Theorem 2.4.

lim
n→∞

vn = f | 1 0 | f

Proof. It suffices to show by induction on n that

0vn1 =

{
un−2|10|un−1 if n is even,
un−1|10|un−2 if n is odd.

We have 0v21 = 0|10|01 = u0|10|u1 and 0v31 = 010|10|01 = u2|10|u1 indeed.

Suppose the statement is true for all integers less than n. Then, for even n, indicating by
subscript p that the last digit is missing and by subscript s that the first digit is missing,

from Lemma 2.2 and the induction hypothesis we get

0vn1 = 0vn−1vn−21 = un−2|10|(un−3)p(un−4)s10un−3.

Hence, by Lemma 2.3 and the facts that un−4 starts with a 0 and un−3 ends with a 1,

0vn1 = un−2|10|(un−3)p(01un−4)sun−3 = un−2|10|(un−3)p1un−4un−3 =
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un−2|10|un−3un−4un−3 = un−2|10|un−2un−3 = un−2|10|un−1.

The proof in case n is odd is similar. �

3. The Tribonacci Word

We can ask ourselves what happens in higher dimensions. Does a substitution over a
3-letter alphabet generate a discretisation of a line or of a plane? Rauzy [R] considered

as a generalisation of the Fibonacci substitution the substitution σ :




0 → 01
1 → 02
2 → 0

over

the alphabet {0, 1, 2}. Starting with 0 and repeatedly applying σ we get successively

u0 = 0 �u0 = (1, 0, 0)
u1 = 01 �u1 = (1, 1, 0)
u2 = 0102 �u2 = (2, 1, 1)
u3 = 0102010 �u3 = (4, 2, 1)
u4 = 0102010010201 �u4 = (7, 4, 2)
u5 = 010201001020101020100102 �u5 = (13, 7, 4)
u6 = 010201001020101020100102010201 . . . �u6 = (24, 13, 7)
. . .

On the right-hand side the incidence vectors are given. Note that un = un−1un−2un−3 for

every integer n > 2. The limit word is called the Tribonacci word t = (tm)∞m=1. Note that
if we define T0 = 0, T1 = T2 = 1, Tn = Tn−1 + Tn−2 + Tn−3 for n > 2, then the number of

symbols of un equals Tn+2, |un|0 = Tn+1, |un|1 = Tn, |un|2 = Tn−1.

We check which properties of the Fibonacci word mentioned in Section 1 have analogues

for the Tribonacci word.

• The frequency of 0 equals limn→∞
Tn+1

Tn+2
= τ , the frequency of 1 equals limn→∞ Tn

Tn+2
=

τ 2, the frequency of 2 equals limn→∞
Tn−1

Tn+2
= τ 3, where τ + τ 2 + τ 3 = 1. Since the

frequencies are irrational, the Tribonacci sequence is non-periodic.

• The Tribonacci word is not balanced with respect to each letter. The word u5

contains subwords of length 3 without 1 and a subword of length 3 with two 1’s.
The word u6 contains subwords of length 5 without 2’s and equally long subwords

with two 2’s. By applying σ to the subword 201020 of u6 we get 0010201001, and
it follows that u7 contains subwords of length 9 with four 0’s and with six 0’s.

However, it is true that for all subwords u, v of equal lengths of the Tribonacci
word ||u|i − |v|i| ≤ 2 for i = 0, 1, 2, [Be] sect.3.

• The Tribonacci word is episturmian on three letters which implies that P (n) =
2n+1 for every n [AR]. Because a word on three letters is periodic if the frequencies
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Figure 4: The Tribonacci sequence is a cutting sequence.

of its letters are independent over Q and there exists an n for which P (n) ≤ 2n

[T1], an episturmian word is in this sense a most regular non-periodic word on three
letters with independent frequencies.

• The Tribonacci word is doubly rotational, as we shall specify in Remark 1 of Sub-
section 4.6.

• There is not a natural extension of the concept of Beatty sequence for 3-letter
words.

• The Tribonacci word can be described as a cutting sequence, see [CHM]. In fact,
in the x-y-z-space the broken Tribonacci halfline that we get by starting in (0, 0, 0)

and going 1 in the direction of the x-axis if tm = 0, 1 in the direction of the y-axis
if tm = 1 and 1 in the direction of the z-axis if tm = 2 provides an excellent discrete

approximation of the halfline R≥0(τ, τ
2, τ 3), see Figure 4.

4. Discretisation of the plane

In this section we study projections of the broken Tribonacci halfline to the y-z-plane.

The integer points pm for m ∈ Z≥0 on this line are given by p0 = (0, 0, 0), pm =

pm−1 +�etm (m > 0) where �e0, �e1, �e2 denote the unit vectors in the direction of the x-axis,
y-axis, z-axis, respectively. Now we project each integer point parallel to the halfline

R≥0(τ, τ
2, τ 3) to the y-z-plane. Note that for the projection to the y-z-plane, a 0 means

moving over (−τ,−τ 2), a 1 corresponds to going 1 to the right and a 2 to going 1 upwards.
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4.1 Local behaviour

For n = 1, 2, . . . we consider the broken line segment corresponding with the word un

in the x-y-z-space which is obtained by taking the segment of the broken Tribonacci

halfline from p0 to pk where k = |un|. We project the integer points on this line segment
parallel to the line through the origin and the end point of the broken line segment to

the y-z-plane. Hence a 1 means for the projection going 1 in the direction of the y-axis
and a 2 means for the projection going 1 in the direction of the z-axis. Since there are

Tn+1 0’s, Tn 1’s and Tn−1 2’s and the end point is projected to the origin, we see that
for the projection a 0 means a translation over (− Tn

Tn+1
,−Tn−1

Tn+1
). Observe that projecting

to any other generic plane would change the projection by some linear transformation
only. We number the projections Pn(pm) of the points pm according to the index m. See

Figure 5.

We see that, after suitable linear transformations, u2 = 0102, u3 = 0102010 and

u4 = 0102010010201 lead to the configurations

w2 w3 w4

81 121

102 11 51

20 32 40 60 32 70 110

00 11 51 00 20 90 00 40

11 32 20 60

respectively. The subscripts refer to the corresponding values in un. Observe that the
subscript indicates which jump has to be made to reach the next number.

Subsequently we replace in wn every number less than Tn+1 with 0, every number at

least Tn+1 but less than Tn+1 + Tn with 1 and every number at least Tn+1 + Tn but less
than Tn+2 with 2 to obtain vn. We underline the 0 which is at the origin. This yields

v2 v3 v4

1 2
1 0 0

1 2 1 2 0 1 2
0 0 1 0 0 1 0 0

0 0 0 0

respectively. Observe that vn is an extension of vn−1 for n = 3, 4 and that the new part
of v3 is obtained by translating v2 over (−1,−1) and the new part of v4 by translating

v3 over (0, 2). We shall study the behaviour of the sequence (vn)∞n=1 and show that there
are many similarities with the one-dimensional case of the broken Fibonacci line.
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4.2. Incidence vectors and matrices

Incidence vectors and matrices have been introduced in Sect. 2.1. The incidence vector
of u2 is �u2 = (2, 1, 1). The incidence matrix of the substitution σ is given by Mσ =
 1 1 0

1 0 1
1 0 0


. Hence σ(u) has incidence vector �uMσ. In particular, the incidence vector

of the word un is given by (1, 0, 0)Mn
σ for n = 0, 1, . . . . By induction we find that

Mn
σ =


 Tn+1 Tn Tn−1

Tn + Tn−1 Tn−1 + Tn−2 Tn−2 + Tn−3

Tn Tn−1 Tn−2


 .

It follows that for n ≥ 2 the word un = σn−2(u2) originates from the word u2 = 0102

where in un the first Tn letters come from the first 0 in u2, the next Tn−1 + Tn−2 letters

come from 1, the next Tn letters have their origin in the second 0 and the last Tn−1 letters
are generated by the 2. The total number is Tn+2 indeed.

Suppose that the first m letters of un−1 have incidence vector (a, b, c), so pm = (a, b, c).

The letter in position m is mapped by the substitution σ to one or two letters in un the
last of which has incidence matrix (a + b + c, a, b) = (a, b, c)Mσ.

Lemma 4.1 For n = 2, 3, . . . we can choose the linear transformation applied to w′
n

to get wn such that in wn the number at the origin is 0, the number in position (1, 0) is
Tn, the number in position (0, 1) is Tn+1 and every number m with 0 ≤ m < Tn+2 is in

the lattice Z2.

Proof. Without loss of generality we can place 0 in wn at the origin for n = 2, 3, . . ..
We use induction on n. The lemma is true for n = 2. Suppose it is true for n − 1 ≥ 2.

Then the number in position (1, 0) in wn−1 is the first number which originates from

the 1 in u2 = 0102, and the number in position (0, 1) in wn−1 is the first number in
un−1 which comes from the second 0 in u2 = 0102. Moreover, every number in wn−1

is in a position in the lattice Z2. If the position of a letter in wn−1 is (i, j), then
(i, j) = i ∗ Pn−1((Tn−1, Tn−2, Tn−3)) + j ∗ Pn−1((Tn, Tn−1, Tn−2)). When we apply σ to

the word un−1 to obtain un, we apply Mσ to the endpoint of broken line segment corre-
sponding to un−1 to obtain the endpoint of the broken line segment corresponding to un

and therefore PnMσ to get their projections. If (a, b, c) is the integer point on the broken
line segment corresponding to un−1 which is projected to (i, j), then

(a, b, c) ∈ i ∗ (Tn−1, Tn−2, Tn−3) + j ∗ (Tn, Tn−1, Tn−2) + R(Tn+1, Tn, Tn−1).

Applying Mσ on the right we obtain

(a, b, c)Mσ ∈ i ∗ (Tn, Tn−1, Tn−2) + j ∗ (Tn+1, Tn, Tn−1) + R(Tn+2, Tn+1, Tn).
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If we now apply Pn we get that the image of (i, j) equals

i ∗ Pn((Tn, Tn−1, Tn−2)) + j ∗ Pn((Tn+1, Tn, Tn−1)).

Thus the number in position (i, j) in wn−1 is kept in wn in the same position (i, j). In case

the corresponding letter in un−1 is a 2, then the image is the letter 0 and the next letter
in un corresponds also with a number at a lattice point in wn. It follows that a step 0

along the broken line segment corresponding to un is projected by Pn to the difference of

two lattice points. Since all new points are obtained by translating a known lattice point
by the projection of a step 0, all the new lattice points are also in the lattice and can

be found by translating the corresponding old lattice points by the vector Pn((1, 0, 0)).
This completes the proof of the lemma. �

4.3 Continued lattices

Note that in w4 the jump to reach the next number is (0, 2), (−1,−3), (2,−1), if the
subscript is 0,1,2, respectively. For w3 the translation vectors are (−1,−1), (2, 1), (0, 2),

respectively. We shall study the relation between the translation vectors of consecutive
wn’s.

Lemma 4.2 Let n > 2. Let �a
(n)
0 ,�a

(n)
1 ,�a

(n)
2 be the translation vectors corresponding to

wn for n = 2, 3, . . .. Then, for n = 3, 4, . . . ,

�a
(n)
0 = �a

(n−1)
2 , �a

(n)
1 = �a

(n−1)
0 − �a

(n−1)
2 , �a

(n)
2 = �a

(n−1)
1 − �a

(n−1)
2 .

Moreover, the domain of wn is a fundamental domain of the lattice

Λn := Z(�a
(n)
1 − �a

(n)
0 ) + Z(�a

(n)
2 − �a

(n)
0 ).

If d0�a
(n)
0 + d1�a

(n)
1 + d2�a

(n)
2 = �0 for integers d0, d1, d2 then di = kTn−i+1 for some k ∈ Z

and i = 0, 1, 2.

The number m in position (i, j) in wn is congruent to iTn + jTn+1 (mod Tn+2) and (i, j)

is congruent to m�a
(n)
0 (mod Λn).

Proof. The statements are correct for n = 3 with �a
(2)
0 = (1, 0),�a

(2)
1 = (−1, 1),�a

(2)
2 =

(−1,−1) and �a
(3)
0 = (−1,−1),�a

(3)
1 = (2, 1),�a

(3)
0 = (0, 2). The lattice Λ3 = Z(3, 2)+Z(1, 3)

has determinant t5 = 7 and the domain of w3 is a fundamental domain of Λ3. The num-
ber 6, for example, is in position (1, 1) in w3 and indeed T3 + T4 ≡ 6 (mod 7) and

(1, 1) ≡ (−6,−6) (mod Λ3), since (7, 7) = 2(3, 2) + (1, 3).

Suppose the statements are true for values smaller than n. According to the substi-

tution σ each jump 0 in wn−1 is replaced with a jump 0 followed by a jump 1 in wn, each
jump 1 in wn−1 is replaced with a jump 0 followed by a jump 2 in wn, and each jump 2
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is replaced with a jump 0. Hence �a
(n−1)
0 = �a

(n)
0 + �a

(n)
1 ,�a

(n−1)
1 = �a

(n)
0 + �a

(n)
2 ,�a

(n−1)
2 = �a

(n)
0 .

This implies the first statement of the lemma.

Suppose d0�a
(n)
0 + d1�a

(n)
1 + d2�a

(n)
2 = �0 for integers d0, d1, d2. Then

d0�a
(n−1)
2 + d1(�a

(n−1)
0 − �a

(n−1)
2 ) + d2(�a

(n−1)
0 − �a

(n−1)
2 ) = �0.

By the induction hypothesis there is an integer k such that d1 = kTn, d2 = kTn−1,

d0 − d1 − d2 = kTn−2, which implies d0 = k(Tn + Tn−1 + Tn−2) = kTn+1. This proves the
third statement.

In wn the number m + 1 is reached by a jump �a
(n)
0 ,�a

(n)
1 or �a

(n)
2 from the number m.

Since each vector is congruent to �a
(n)
0 (mod Λn) and the number 0 is at the origin, it is

immediate that m is in a position congruent to m�a
(n)
0 (mod Λn). This is the last assertion.

Suppose Pn(pm1) and Pn(pm2) with 0 ≤ m1 < m2 < Tn+2 are in positions congruent

modulo Λn. Then (m2 −m1)�a
(n)
0 ∈ Z(�a

(n)
1 −�a

(n)
0 ) + Z(�a

(n)
2 −�a

(n)
0 ). Let i and j be integers

such that

(m2 − m1)�a
(n)
0 = i(�a

(n)
1 − �a

(n)
0 ) + j(�a

(n)
2 − �a

(n)
0 ).

Then there exists an integer k such that m2−m1 + i+ j = kTn+1,−i = kTn,−j = kTn−1.

Hence m2 − m1 = kTn+2, which yields a contradiction. Thus the domain of wn is a
fundamental domain of Λn. This is the second assertion.

Suppose there is an m in position (i, j) of wn. Then (i, j) ≡ m�a
(n)
0 (mod Λn). We

know from Lemma 4.1 and the last assertion of Lemma 4.2 that (1, 0) ≡ Tn�a
(n)
0 (mod Λn)

and (0, 1) ≡ Tn+1�a
(n)
0 (mod Λn). Thus m�a

(n)
0 ≡ (iTn + jTn+1)�a

(n)
0 (mod Λn). As in the

preceding paragraph it follows that Tn+2 | m− iTn − jTn+1. This completes the proof. �

Corollary 4.3 If µ is in vn in position (i, j), then

µ =




0 if iTn + jTn+1 (mod Tn+2) ∈ [0, Tn+1)
1 if iTn + jTn+1 (mod Tn+2) ∈ [Tn+1, Tn+1 + Tn)
2 if iTn + jTn+1 (mod Tn+2) ∈ [Tn+1 + Tn, Tn+2).

Moreover, the value in position (i, j) will remain µ in vh for all h > n.

Proof. According to Lemma 4.2 the number m in position (i, j) in wn is congruent

to iTn + jTn+1 (mod Tn+2). By definition of vn, m is replaced with a 0 if 0 ≤ m < Tn+1,
by a 1 if Tn+1 ≤ m < Tn+1 + Tn, by a 2 if Tn+1 + Tn ≤ m < Tn+2. Since 0 ≤ m < Tn+2

this proves the first assertion.

The value µ in vn is 0, 1, 2, depending on whether the original point on the broken

line segment corresponding to un is among the first Tn+1 integer points, among the next
Tn integer points, among the remaining Tn−1 integer points of the broken line segment,
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respectively. If we apply σ to the word un, hence Mσ to the broken line segment, then
the images of the integer points are among the first Tn+2 integer points, among the next

Tn+1 integer points, among the remaining Tn integer points of the broken line segment
corresponding to un+1, respectively. Therefore the resulting value m in wn+1 satisfies

0 ≤ m < Tn+1, Tn+1 ≤ m < Tn+1 + Tn, Tn+1 + Tn ≤ m < Tn+2 in the respective cases.
Hence, the corresponding values in vn+1 are 0, 1, 2, respectively. Thus the value of µ

remains unchanged. �

4.4 The Tribonacci number system

The preceding theory implies that limn→∞ vn exists. In this subsection we study the
Tribonacci number system to be able to show that every integer point is contained in the

domain of vn for sufficiently large n. Therefore the limit function will be ”space-filling”.
Lemma 4.4 and its consequences can be derived from more general results on so-called

beta-expansions by Frougny and Solomyak [FS] and by Akiyama [A]. Since we want to
keep the paper self-contained we present a direct proof.

The Tribonacci number system is obtained by writing the non-negative integers suc-

cessively in the 2-letter alphabet {0, 1} thereby not allowing three consecutive digits 1.
So 0 → 0, 1 → 1, 2 → 10, 3 → 11, 4 → 100, 5 → 101, 6 → 110, 7 → 1000, 8 → 1001, 9 →
1010, 10 → 1011, 11 → 1100, 12 → 1101, 13 → 10000, . . .. It follows by induction on n

that for n > 0 the number Tn is expressed by a 1 followed by n − 2 0’s.

Let τ be the positive root of the polynomial x3 + x2 + x− 1. Hence τ ≈ 0.5437. We shall
apply the following result. The condition knkn+1kn+2 = 0 says that kNkN−1 . . . k1 is a

Tribonacci representation of some non-negative integer.

Lemma 4.4 a) Every number of the form
∑N

n=1 knτn with kn ∈ {0, 1}, kN �= 0 and
knkn+1kn+2 = 0 for n = 1, 2, . . . , N − 2, can be uniquely expressed as a + bτ + cτ 2 with

a, b, c ∈ Z and 0 < a + bτ + cτ 2 < 1.
b) Every number a + bτ + cτ 2 with a, b, c ∈ Z and 0 < a + bτ + cτ 2 < 1 can be uniquely

expressed as a finite sum
∑N

n=1 knτn with kn ∈ {0, 1}, kN �= 0 and knkn+1kn+2 = 0 for
n = 1, 2, . . . , N − 2.

Proof. a) Let
∑N

n=0 knτn be a number of the specified form. Then 0 ≤ ∑N
n=0 knτn < 1.

We can replace kNτN with −kNτN−1 − kNτN−2 − kNτN−3 to transform it into an ex-

pression
∑M

n=0 k′
nτ

n with k′
n ∈ Z for n = 0, 1, . . . , M and M < N . By iterating this

reduction we eventually arrive at the wanted representation a + bτ + cτ 2. All such values

are distinct, since τ is an algebraic number of degree 3.

b) For a number
∑N

n=0 knτ
n with integer coefficients kn we define its weight as

∑N
n=1 |kn|.

Let kiτ
i + ki+1τ

i+1 + ki+2τ
i+2 be some number with ki, ki+1, ki+2 ∈ Z and 0 < kiτ

i +
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ki+1τ
i+1+ki+2τ

i+2 < τ i−1. We claim that if kiτ
i+ki+1τ

i+1+ki+2τ
i+2 < τ i, then we can find

integers k′
i+1, k

′
i+2, k

′
i+3 such that kiτ

i+ki+1τ
i+1+ki+2τ

i+2 = k′
i+1τ

i+1+k′
i+2τ

i+2+k′
i+3τ

i+3

and |ki| + |ki+1| + |ki+2| ≥ |k′
i+1| + |k′

i+2| + |k′
i+3| and if kiτ

i + ki+1τ
i+1 + ki+2τ

i+2 ≥ τ i,
then we can find integers k′

i+1, k
′
i+2, k

′
i+3 such that kiτ

i + ki+1τ
i+1 + ki+2τ

i+2 = τ i +

k′
i+1τ

i+1 + k′
i+2τ

i+2 + k′
i+3τ

i+3 and |ki| + |ki+1| + |ki+2| > |k′
i+1| + |k′

i+2| + |k′
i+3|.

To prove our claim, first assume ki ≤ 0. Then ki+1 > 0 or ki+2 > 0. If ki+1 ≤ −ki

and ki+2 ≤ −ki, then kiτi + ki+1τ
i+1 + ki+2τ

i+2 ≤ ki(τ
i − τ i+1 − τ i+2) = kiτ

i+3 ≤ 0
which is excluded. If ki+1 > −ki or ki+2 > −ki, then it is easy to verify the claim.

Now assume ki = 1. If ki+1τ
i+1 + ki+2τ

i+2 ≥ 0 then we are in the second case and the

claim is obviously true. Otherwise ki+1 < 0 or ki+2 < 0. Since τ i + ki+1τ
i+1 + ki+2τ

i+2 =
(ki+1+1)τ i+1+(ki+2+1)τ i+2+τ i+3, the last expression has weight |ki+1+1|+|ki+2+1|+1 ≤
1 + |ki+1| + |ki+2| which is the old weight.

Finally assume ki ≥ 2. If ki + ki+1 ≤ 0 or ki + ki+2 ≤ 0, then the claim is clearly
true. So we assume ki + ki+1 ≥ 1 and ki + ki+2 ≥ 1. Hence kiτ

i + ki+1τ
i+1 + ki+2τ

i+2 ≥
τ i + (ki + ki+1 − 1)τ i+1 + (ki + ki+2 − 1)τ i+2 + (ki − 1)τ i+3 ≥ τ i. We know that

(ki + ki+1 − 1)τ i+1 + (ki + ki+2 − 1)τ i+2 + (ki − 1)τ i+3 < τ i+1 + τ i+2

and has non-negative coefficients. Hence (ki+ki+1−1, ki+ki+2−1) ∈ {(0, 0), (1, 0), (0, 1), (0, 2)}.
This leaves only few possibilities for (ki+1, ki+2) and it is easy to check that the claim
holds in each remaining case.

We use the claim to prove the lemma. Suppose a, b, c satisfy the conditions of b). Then
we start with weight |a|+ |b|+ |c|. We apply the above procedure iteratively starting with

replacing a with aτ +aτ 2 +aτ 3. In every step the weight does not increase, but each time
that kiτ

i +ki+1τ
i+1 +ki+2τ

i+2 ≥ τ i the weight decreases. If τ j ≤ a+bτ +cτ 2 < τ j−1, then

at step j the weight decreases by at least 1. If a+bτ +cτ 2 = τ j , then we are finished. Oth-
erwise there exists a j′ such that τ j′ ≤ a+bτ +cτ 2−τ j < τ j′−1. After at most |a|+|b|+|c|
such values j the tail has weight 0 and we have a representation

∑N
j=1 kjτ

j for a+bτ +cτ 2

with kj ∈ {0, 1} for all j and at most |a| + |b| + |c| non-zero coefficients. Since we have

used the greedy algorithm and τ j +τ j+1+τ j+2 = τ j−1, we have kjkj+1kj+2 = 0 for all j. �

The following statement follows immediately from the proof of Lemma 4.4 b).

Corollary 4.5 Every number a + bτ + cτ 2 with a, b, c ∈ Z and 0 ≤ a + bτ + cτ 2 < 1
can be written in Tribonacci representation

∑N
j=1 kjτ

j with kj ∈ {0, 1} for j = 1, . . . , N

and kjkj+1kj+2 = 0 for j = 1, . . . , N−2 with at most |a|+|b|+|c| non-zero coefficients kj.

Corollary 4.5 implies that every element of Z[τ ]∩ [0, 1) has a finite Tribonacci expansion.

Therefore τ has the ”finiteness property (F)”. Frougny and Solomyak [FS] and Hollander
[H] have given conditions for roots of polynomials Xd−a0X

d−1 . . .−ad−1 to have property
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(F). Akiyama [A] has characterised all cubic algebraic integers with property (F).

4.5 Discretisation of the plane

In this section we show that the limit function limn→∞vn is bilinear on Z2. The next
lemma characterises the domain of vn. By Lemma 4.4 b) we can write τn (n > 0) in

precisely one way as a + bτ + cτ 2 with a, b, c ∈ Z. We denote the ordered pair (c, b) as
(in, jn). We first observe that in = in+1 + in+2 + in+3 and jn = jn+1 + jn+2 + jn+3 for

n ≥ 1. Indeed this follows immediately from τn = τn+1 + τn+2 + τn+3 and the fact that
τ is an algebraic number of degree 3. Using these identities we infer from the assertion

of Lemma 4.2 by induction on n that

a
(n)
0 = (in, jn), a

(n)
1 = (in−1 − in, jn−1 − jn), a

(n)
2 = (in+1, jn+1).

Lemma 4.6. The domain of vn consists of all (i, j) ∈ Z2 such that the fractional part

{iτ 2 +jτ} can be written as
∑n

i=1 kiτ
i with ki ∈ {0, 1} for i = 1, . . . , n and kiki+1ki+2 = 0

for i = 1, . . . n − 2.

Proof. By induction on n. The statement is true for n = 1. Suppose it is true for
all values below n. Then the domain of vn−1 consists of all pairs (i, j) ∈ Z2 such that

{iτ 2 +jτ} is of the form
∑n−1

i=1 kiτ
i with ki ∈ {0, 1} for i = 1, . . . , n−1 and kiki+1ki+2 = 0

for i = 1, . . . , n − 3. According to the proof of Lemma 4.1 the domain of vn (which is

the domain of wn) is the union of the domain of vn−1 and the domain of vn−1 trans-

lated over a
(n−1)
2 = a

(n)
0 . By the above formula for a

(n)
0 we know that a

(n)
0 = (in, jn). Since

{inτ 2 +jnτ} = τn, points (i, j) in vn\vn−1 are such that {iτ 2 +jτ} = τn +
∑n−1

i=1 kiτ
i with

ki ∈ {0, 1} for i = 1, . . . , n − 1 and kiki+1ki+2 = 0 for i = 1, . . . , n − 3. Put kn = 1. Sup-
pose knkn−1kn−2 �= 0. Then kn = kn−1 = kn−2 = 1 and

∑n
i=n−2 kiτ

i ≥ τn−3. This implies

that the greedy algorithm has not been applied properly. Thus kn = 0 if kn−1 = kn−2 = 1
and knkn−1kn−2 = 0. �

In fact the construction with continued lattices provides an efficient way to compute

the Tribonacci expansions of numbers iτ 2 + jτ (mod 1) with |i|, |j| below some bound.
In Figure 6 the Tribonacci expansions are given for |i| ≤ 3, |j| ≤ 4. We use that

a
(1)
0 = (0, 1), a

(2)
0 = (1, 0), a

(3)
0 = (−1,−1), a

(4)
0 = (0, 2), a

(5)
0 = (2,−1),

a
(6)
0 = (−3,−2), a

(7)
0 = (1, 5), a

(8)
0 = (4,−4), a

(9)
0 = (−8,−3).

Now we arrive at the main result of this paper.
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i\j -3 -2 -1 0 1 2 3
4 1101100 1100001 1100011 1000100 1000110 1010101 1010000
3 1100101 1100000 1100010 1001 1011 1010100 1010110
2 1100100 1100110 1101 1000 1010 11001 11011
1 101001 101011 1100 1 11 11000 11010
0 101000 101010 101 0 10 10001 10011
-1 100001 100011 100 110 10101 10000 10010
-2 100000 100010 110001 110011 10100 10110 10001101
-3 100110 110101 110000 110010 10101001 10101011 10001100
-4 101000100 110100 110110 10101101 10101000 10101010 10000101

Figure 6: The Tribonacci expansions of iτ2 + jτ (mod 1) for |i| ≤ 3, |j| ≤ 4.

Theorem 4.7 We have limn→∞ vn = V := (Vi,j)(i,j)∈Z2

where

Vi,j =




0 if {iτ 2 + jτ} ∈ [0, τ)
1 if {iτ 2 + jτ} ∈ [τ, τ + τ 2)
2 if {iτ 2 + jτ} ∈ [τ + τ 2, 1).

Proof. It follows from Lemma 4.6 that every integer point (i, j) is in the domain of V .

Let (i, j) be in the domain of vn. Then its value at (i, j) is determined in Corollary

4.3. Moreover it remains unchanged if n → ∞. The condition in Corollary 4.3 can be
rewritten as

i
Tn

Tn+2

+ j
Tn+1

Tn+2

(mod 1) ∈ [0,
Tn+1

Tn+2

), [
Tn+1

Tn+2

,
Tn+1 + Tn

Tn+2

), [
Tn+1 + Tn

Tn+2

, 1),

respectively. By letting n tend to ∞, these intervals tend to [0, τ), [τ, τ + τ 2), [τ + τ 2, 1),

respectively. Since τ is an algebraic number of degree 3, the number iτ 2 + jτ is a bound-

ary point if and only if (i, j) equals (0, 0), (0, 1) or (1, 1). Other points (i, j) are in a fixed
half-open interval from some point on. However, it is easy to check that the numbers in

vn in the positions (0, 0), (0, 1), (1, 1) have the right values 0, 1, 2, respectively. �

We have proved that the limit word V is a doubly rotational sequence, and even a
BV-sequence. (Cf. Section 4.6)

4.6 Remarks

Remark 1. A doubly rotational sequence is a sequence f : Z2 → {0, 1, 2} for which

numbers α, β, γ with 0 < α < α + β < 1 exist such that, maybe after permuting the

function values 0, 1 and 2 and changing f to −f ,

fm,n =




0 if {mα + nβ + γ} ∈ [0, α)
1 if {mα + nβ + γ} ∈ [α, α + β)
2 if {mα + nβ + γ} ∈ [α + β, 1)
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We call a doubly rotational sequence a BV-sequence, if 1, α, β are linearly independent
over the rationals. These sequences were investigated by Berthé and Vuillon [BV1,BV2]

in their study of discretisations of a 2-dimensional plane in a three-dimensional space.
BV-sequences can be considered as two-dimensional analogues of sturmian sequences.

Berthé and Tijdeman [BT1] showed that BV-sequences are not balanced in the sense
that there are rectangles of the same size where the numbers of one letter differ more

than 1. Berthé and Vuillon [BV2] showed that BV-sequences have the property that

P (m, n) = mn + m + n for all integers m, n. They also considered projections of such
BV-words to words on two letters and obtained such (uniform recurrent) words with

complexity P (m, n) = mn + m. There exists a conjecture by Nivat [N] stating that if
there exist m, n such that P (m, n) ≤ mn then there is periodicity. Partial results to this

conjecture can be found in [SaT], [EKM], [QZ].

Remark 2. The theory of continued lattices has been developed in much more gen-
eral form than in Subsection 4.3 by Berthé and Tijdeman [BT2],[T2]. Simpson and

Tijdeman [SiT] applied it to obtain a multi-dimensional Fine and Wilf theorem.
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[B] V. Berthé, Autour du système de numération d’Ostrowki, Bull. Belg. Math. Soc. 8
(2001), 209-239.
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Bordeaux 12 (2000), 179-208.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A13 21
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