ZERO SUMS IN FINITE CYCLIC GROUPS

W. D. Gao^1

Department of Computer Science and Technology, University of Petroleum, Beijing, China, 102200.

Received: 12/12/99, Accepted: 10/31/00, Published: 11/6/00

Abstract

Let C_n be the cyclic group of n elements, and let $S = (a_1, \dots, a_k)$ be a sequence of elements in C_n . We say that S is a zero sequence if $\sum_{i=1}^k a_i = 0$ and that S is a minimal zero-sequence if S is a zero sequence and S contains no proper zero subsequence. In this paper we prove, among other results, that if S is a minimal zero sequence of elements in C_n and $|S| \ge n - [\frac{n+1}{3}] + 1$, then there exists an integer m coprime to n such that $|ma_1| + \dots + |ma_k| = n$, where |x| denotes the least positive inverse image under the natural homomorphism from the additive group of integers Z onto C_n . On the other hand, we give some explicit minimal zero sequences of length $[\frac{n+1}{2}] + 1$ not having this property above.

1. Introduction

Let G be a finite abelian group. Let $S = (a_1, \dots, a_k)$ be a sequence of elements in G. By $\sigma(S)$ we denote the sum $\sum_{i=1}^{k} a_i$. We say that S is a zero sequence if $\sigma(S) = 0$, that S is a zero-free sequence if S contains no nonempty zero subsequence, and that S is a minimal zero sequence if S is a zero sequence and S contains no proper zero subsequence. By $\sum(S)$ we denote the set consisting of all elements which can be expressed as a sum over a nonempty subsequence of S, i.e.

 $\sum(S) = \{\sigma(T) | T \text{ is a nonempty subsequence of } S \}$

Sometimes we also write $S = \prod_{i=1}^{k} a_i$. If T is a subsequence of S, by ST^{-1} we denote the subsequence W such that WT = S. We say subsequences S_1, \dots, S_r of S are disjoint if $S_1 \dots S_r$ is a subsequence of S. For every $g \in G$, we use $v_g(S)$ to denote the number of the times that g occurs in S.

Let C_n be the cyclic group of order n. For every $x \in C_n$, we define |x| to be the least positive inverse image under the natural homomorphism from the additive group of integers Zonto C_n . For example, |0| = n. Let $S = (a_1, \dots, a_k)$ be a sequence of elements in C_n , by $|S|_n$ we denote the sum $\sum_{i=1}^k |a_i|$. Define

$$Index(S) = \min_{(m,n)=1} \{|mS|_n\}$$

¹This work has been supported partly by the National Natural Science Foundation of China and the Foundation of Education Committee of China.

 $Index(C_n)$ was first introduced by Chapman, Freeze, and Smith in [2]. It is well known that if S is a minimal zero sequence of n elements in C_n , then $S = (\underbrace{a, \dots, a}_{n})$ for some a generating C_n .

Hence, Index(S) = n. From a result of ([3], Lemma 2) we can easily derive that every minimal zero sequence S of elements in C_n with $|S| \ge n - [n/4]$ satisfies Index(S) = n. In Section 2 of this paper, we prove that the last conclusion holds for the restriction of $|S| \ge n - [n/4]$ replaced by $|S| \ge n - [n/3] + 1$; In Section 3 we study the sums of divisors of a positive integer n; the final section 4 contains some conculding remarks.

2. On Index(S)

Definition. Let $l(C_n)$ be the minimal integer t such that every minimal sequence S of at least t elements in C_n satisfies Index(S) = n.

Theorem 2.1 (1). $\left[\frac{n+1}{2}\right] + 1 \le l(C_n) \le n - \left[\frac{n+1}{3}\right] + 1$ holds for all $n \ge 8$. (2). $l(C_n) = 1$ for n = 1, 2, 3, 4, 5, 7 and $l(C_6) = 5$.

Lemma 2.2 ([1]) Let $n - 2k \ge 1$, and let $S = (a_1, \dots, a_{n-k})$ be a zero-free sequence of n - k elements in C_n . Then there is an element $g \in C_n$ such that $v_q(S) \ge n - 2k + 1$.

Lemma 2.3 ([4]) Let S be a zero-free sequence of elements in C_n , and let $g \in C_n$ with order(g) = n/m. Suppose that |S| > n/2. Then $v_g(S) < \frac{n-|S|}{m-1}$.

Lemma 2.4 ([4]) Let S be a zero-free sequence of elements in an abelian group, and let S_1, \dots, S_k be disjoint subsequences of S. Then, $|\sum(S)| \ge \sum_{i=1}^k |\sum(S_i)|$.

Let $S = (a_1, \dots, a_k)$ and $T = (b_1, \dots, b_k)$ be two sequences of elements in C_n with the same length. We say S is *similiar* to T if there exists an integer m coprime to n and a permutation δ of $\{1, \dots, k\}$ such that $a_i = mb_{\delta(i)}$ for $i = 1, \dots, k$. Denote it by $S \sim T$.

Lemma 2.5 Let $1 \le k \le \left[\frac{n+1}{3}\right]$, and let S be a zero-free sequence of n-k elements in C_n . Then

$$S \sim (\underbrace{1, \cdots, 1}_{n-2k+1}, x_1, \cdots, x_{k-1})$$

with $\sum_{i=1}^{k-1} |x_i| \le 2k-2$. Therefore, Index(S) < n.

Proof. By Lemma 2.2, there is an element $g \in C_n$ such that $v_g(S) \ge n - 2k + 1 \ge k = n - |S|$. It follows from Lemma 2.3 that order(g) = n. Without loss of generality, we may assume that g = 1. Set $l = v_g(S)$. Suppose $S = 1^l \prod_{i=1}^t a_i$, where l + t = |S|. Since S is zero-free, we clearly have

$$1 \le |a_i| \le n - l - 1$$
 for $i = 1, \cdots, t$. (1)

If $|a_t| \ge l+1$, then $|\sum (1^l a_t)| = 2l+1$. By Lemma 2.4, $n-1 \ge |\sum (S)| \ge |\sum (1^l a_t)| + t - 1 \ge 2l + t = n - k + l \ge n - k + n - 2k + 1 \ge n$, a contradiction. Hence,

$$1 \le |a_i| \le l \text{ for } i = 1, \cdots, t \tag{2}$$

Since S is zero-free, $1 \le |a_1 + a_2| \le n - l - 1$. By (1) and (2), $|a_1| + |a_2| \le n - 1$. Therefore, $|a_1| + |a_2| = |a_1 + a_2| \le n - l - 1$. Similarly, one can get $|a_1| + |a_2| + |a_3| = |a_1 + a_2| + |a_3| = |a_1 + a_2 + a_3| \le n - l - 1$. Finally, we must get $\sum_{i=1}^{t} |a_i| = |\sum_{i=1}^{t} a_i| \le n - l - 1$. Therefore, $Index(S) \le n - 1$.

Proof of Theorem 2.1. (1). We first prove the upper bounds. Let S be a minimal zero sequence of elements in C_n with $|S| \ge n - [\frac{n+1}{3}] + 1$. Take an arbitrary element x from S. Then Sx^{-1} is zero-free. By Lemma 2.5, $Index(S) \le Index(Sx^{-1}) + n - 1 \le n - 1 + n - 1 < 2n$. Hence, Index(S) = n.

To prove the lower bounds we distinguish four cases.

Case 1. *n* is odd. Set $S = (\underbrace{1, \dots, 1}_{\frac{n-5}{2}}, \frac{n+3}{2}, \frac{n-1}{2})$. Note that for $n \ge 9$, clearly Index(S) = 2n. Therefore, $\frac{n+1}{2} + 1 \le l(C_n)$.

Case 2. n is even and $n \ge 12$. Set

$$S = (\underbrace{1, \dots, 1}_{\frac{n-6}{2}}, \frac{n+4}{2}, \frac{n-2}{2}). \text{ Clearly } Index(S) = 2n. \text{ Therefore, } [\frac{n+1}{2}] + 1 \le l(C_n).$$

Case 3. n = 8, set S = (1, 4, 5, 6). It is easy to check that S is a minimal zero sequence and that Index(S) = 16. Therefore $[9/2] + 1 = 4 + 1 \le l(C_8)$.

Case 4. n = 10, set S = (1, 5, 8, 3, 3). It is easy to check that S is a minimal zero sequence and that Index(S) = 20. Therefore $[11/2] + 1 = 5 + 1 \le l(C_{10})$.

(2). It is proved in [2] that $l(C_n) = 1$ for n = 1, 2, 3, 5, 7. For n = 4, it is easy to see that $l(C_4) = 1$. For n = 6, by Lemma 2.5, we clearly have $l(C_6) \le 5$. For S = (1, 3, 4, 4) it is clear that Index(S) = 12. Therefore $l(C_6) = 5$.

Let S be a zero-free (resp. minimal zero) sequence of elements in an abelian group G. We say S is splitable if there exists an element $a \in S$ and two elements $x, y \in G$ such that x + y = aand such that $Sa^{-1}xy$ is zero-free (resp. minimal zero) sequence as well.

Proposition 2.6 Let S be a minimal zero subsequence with $|S| = l(C_n) - 1$. Suppose that Index(S) > n. Then S is not splitable.

Proof. Assume to the contrary that S is splitable. Then there exist $a \in S$ and $x, y \in C_n$ such that $Sa^{-1}xy$ is also a minimal zero squence. Since, $|Sa^{-1}xy| = l(C_n)$, by the definition of $l(C_n)$, $Index(Sa^{-1}xy) = n$. Therefore, $Index(S) \leq Index(Sa^{-1}xy) = n$, a contradiction. This proves the proposition.

Conjecture 2.7 Let S be a minimal zero subsequence with $|S| = l(C_n) - 1$. Suppose that S is not splitable. Then Index(S) = 2n.

This conjecture, if true, would be useful for determining $l(C_n)$.

Theorem 2.8 Let G be a finite abelian group and let $G = C_{n_1} \oplus \cdots \oplus C_{n_k}$ be a decomposition of G into direct summands, where all $n_i > 1$. Let $C_{n_i} = \langle e_i \rangle$ for $i = 1, \dots, k$. Then the sequence $S = (e_1 + \cdots + e_k) \prod_{i=1}^k e_i^{n_i - 1}$ is not splitable.

Proof. Clear.

Conjecture 2.9 Let $G = C_{n_1} \oplus \cdots \oplus C_{n_k}$ be a finite non-cyclic abelian group with $1 < n_1 | \cdots | n_k$, and let S be a minimal zero sequence of elements in G. Suppose that $\langle S \rangle = G$ and suppose that S is not splitable. Then S contains at least k + 1 distinct elements.

Definition. Let sp(G) be the largest integer t such that every minimal zero sequence of elements in G with $|S| \leq t$ is splitable.

Problem. Determine sp(G).

We clearly have, $\log_2(\frac{|G|}{2}) \le sp(G) \le l(G) - 1$.

Conjecture 2.10 $sp(G) \le c \ln |G|$ for some absolute constant c.

Define

$$I(C_n) = \max_{S} \{ Index(S) \},\$$

where S runs over all minimal zero sequences of elements in C_n .

Proposition 2.11 $I(C_n) \ge \frac{n+1}{2}(1 + [\log_3(\frac{n}{3})]) + 1.$

Lemma 2.12 If a is an element in C_n , then |ma| + |m(n-2a)| > n/2 holds for every integer m coprime to n.

Proof. If |ma| > n/2 then we are done. Otherwise, |ma| < n/2, then

$$|ma| + |m(n-2a)| = |ma| + n - 2|na| = n - |ma| > n/2.$$

 $\begin{array}{l} Proof \ of \ Proposition \ 2.11. \ \text{Let} \ t = [\log_3(\frac{n}{3})], \ \text{set} \ T = (1,3,3^2,\cdots,3^t,n-2,n-6,n-18,\cdots,n-2\times 3^t) \\ 3^t) = \prod_{i=0}^t (3^i,n-2\times 3^i). \ \text{Since} \ 3^{i+1} > 2\sum_{j=1}^i 3^i \ \text{for} \ i = 0,\cdots,t-1 \ \text{and} \ 2\sum_{i=1}^t 3^i = 3^{t+1}-1 < n, \\ T \ \text{is zero-free. \ Let} \ m \ \text{be the positive integer coprime to} \ n \ \text{such that} \ Index(T) = |mT|. \ \text{By} \\ \text{Lemma 2.12, } Index(T) = |mT| = \sum_{i=0}^t (|m3^i| + |m(n-2\times 3^i)| \ge \frac{n+1}{2}(t+1). \ \text{Set} \ S = T \cdot (-\sigma(T)). \\ \text{Then} \ S \ \text{is a minimal zero sequence with} \ Index(S) \ge Index(T) + 1 \ge \frac{n+1}{2}(t+1) + 1. \end{array}$

3. Sums of Divisors of *n*

In [5], Lemke and Kleitman proved, among other results, that if $S = (a_1, \dots, a_n)$ is a sequence of positive integer and $a_i | n$ holds for every $i = 1, \dots, n$ then there is a subsequence T of S with $\sigma(T) = n$. Here we shall show a generalization of this result.

Theorem 3.1 Let $S = (a_1, \dots, a_k, b_1, \dots, b_{n-k})$ be a sequence of n positive integers. Suppose that $a_i | n$ for $i = 1, \dots, k$, and suppose that all of b_i are distinct and $b_i \leq n$ for $i = 1, \dots, n-k$. Then, there is a subsequence T of S with $\sigma(T) = n$.

Lemma 3.2 Let A be a subset of [0, n], and $B \setminus \{0\}$ a set of positive divisors of n. Suppose that $0 \in A \cap B$ and suppose that $n \notin A + B$. Then, $|(A + B) \cap [0, n]| \ge |A| + |B| - 1$, where $[0, n] = \{0, 1, 2, \dots, n - 1, n\}$.

Proof. We proceed by induction on |B|. |B| = 1 implies $B = \{0\}$ and the lemma is trivial. Assume that the lemma is true for |B| < k $(k \ge 2)$, we want to prove it is true also for |B| = k. Take an arbitrary $b \in B \setminus \{0\}$. Then b|n. Since $n \notin A + B$, $(\frac{n}{b} - 1)b \notin A$. Let r be the least nonnegative integer such that $rb \notin A$. Then $1 \le r < \frac{n}{b}$. Therefore $(r-1)b \in A$ but $b + (r-1)b \notin A$. Set a = (r-1)b. Set $B_0 = \{b' \in B | a + b' \notin A$ and $a + b' < n\}$. Then $B_0 \neq \emptyset$. Now set $A_1 = A \cup (a+B_0)$ and set $B_1 = B \setminus B_0$. Clearly, $(A_1+B_1) \cap [0,n] \subset (A+B) \cap [0,n]$. Note that $|B_1| < k$. By the inductive assumption we have $|(A+B) \cap [0,n]| \ge |(A_1+B_1) \cap [0,n]| \ge |A_1| + |B_1| - 1 = |A| + |B| - 1$.

Proof of Theorem 3.1. Set $A_0 = \{0, b_1, \dots, b_{n-k}\}$ and set $A_i = \{0, a_i\}$ for $i = 1, \dots, k$. Assume to the contrary that $n \notin \sum(S)$. By Lemma 3.2 we have, $|(A_0 + A_1) \cap [1, n]| = |(A_0 + A_1) \cap [0, n]| - 1 \ge |A_0| + |A_1| - 2$. Similarly, one can get $|(A_0 + A_1 + A_2) \cap [1, n] \ge |(A_0 + A_1) \cap [0, n]| + |A_2| - 1 \ge |A_0| + |A_1| + |A_2| - 3$, and finally, we must get $|(A_0 + A_1 + A_2 + \dots + A_k) \cap [1, n]| \ge |A_0| + |A_1| + \dots + |A_k| - k - 1 = |S| = n$, a contradiction on $n \notin \sum(S)$.

Kleitman and Lemke [5] suggested that

Conjecture 3.3 Every sequence of n elements in C_n contains a nonempty subsequence T such that Index(T) = n.

They pointed out that this conjecture is open even for n prime.

Conjecture 3.4 Let $S = (a_1, \dots, a_k)$ be a sequence of elements in C_n . Suppose that S contains no subsequence T with Index(T) = n. Then, $|\{\sigma(T)|\lambda \neq T \subset S \text{ and } Index(T) < n\}| \geq k$, where λ denotes the empty sequence.

This conjecture, if true, would clearly imply Conjecture 2.4.

4. Concluding Remarks

Let $S = (a_1, \dots, a_k)$ be a sequence of elements in C_n . For a positive integer l, we say S is a partition of l if $\sum_{i=1}^k |a_i| = l$. By the definition of Index(S) we have that every sequence S of elements in C_n is similiar to a partition of Index(S). By the definition of $I(C_n)$ we have that every minimal zero sequence of elements in C_n is similiar to a partition of ln for some $l \leq I(C_n)/n$. Hence, if $Index(S) > I(C_n)$, then S contains a proper zero subsequence. From Theorem 1.1 we see that every minimal zero sequence of at least $n - [\frac{n+1}{3}] + 1$ elements in C_n is similiar to a partition of n. For every positive integer $k \leq n-1$, we define

$$I_k(C_n) = \max_{|T|=k} \{Index(T)\},\$$

where T runs over all zero-free sequences of k elements in C_n .

Proposition 4.1 (1). If p is the smallest positive divisor of n then $I_1(C_n) = n/p$. (2). If $n \ge 3$ is a prime then $I_2(C_n) = \frac{n+1}{2}$.

Proof. (1). Clear.

(2). By Lemma 1.12, $I_2(C_n) \ge \frac{n+1}{2}$. To prove the upper bound, let x, y be two nonzero elements (not necessarily distinct) with $x + y \ne 0$. Set z = -x - y. Then (x, y, z) is a minimal zero sequence. Let t be the positive intger such that $tz = \frac{p+1}{2}$ and $1 \le t \le p-1$. Then $(p-t)z = \frac{p-1}{2}$. Since |tx| + |ty| + |tz| + |(p-t)x| + |(p-t)y| + |(p-t)z| = 3p, |tx| + |ty| + |tz| = p or |(p-t)x| + |(p-t)y| + |(p-t)z| = p. Therefore, $|ty| + |tz| = \frac{p-1}{2}$ or $|(p-t)x| + |(p-t)y| = \frac{p+1}{2}$. \Box

Conjecture 4.2 $I(C_n) \leq c \ln n$ for some absolute constant c.

References

 J. D. Bovey, P. Erdős and I. Niven, Conditions for zero-sum modulo n, Canad. Math. Bull., 18(1975),27-29.

[2] S. Chapman, M. Freeze, and W. W. Smith, *Minimal zero-sequence and the strong Davenport constant*, Discrete Math., 203(1999), 271-277.

[3] W. D. Gao, An addition theorem for finite cyclic groups, Discrete Math., 163(1997), 257-265.

[4] W. D. Gao and A. Geroldinger, On the structure of zero-free sequences, Combinatoria, 18(1998), 519-527.

[5] D. J. Kleitman and P. Lemke, An addition theorem on the integers modulo n, J.Number Theory, 31(1989), 335-345.