ZERO SUMS IN FINITE CYCLIC GROUPS

W. D. Gao ${ }^{1}$
Department of Computer Science and Technology, University of Petroleum, Beijing, China, 102200.

Received: 12/12/99, Accepted: 10/31/00, Published: 11/6/00

Abstract

Let C_{n} be the cyclic group of n elements, and let $S=\left(a_{1}, \cdots, a_{k}\right)$ be a sequence of elements in C_{n}. We say that S is a zero sequence if $\sum_{i=1}^{k} a_{i}=0$ and that S is a minimal zero-sequence if S is a zero sequence and S contains no proper zero subsequence. In this paper we prove, among other results, that if S is a minimal zero sequence of elements in C_{n} and $|S| \geq n-\left[\frac{n+1}{3}\right]+1$, then there exists an integer m coprime to n such that $\left|m a_{1}\right|+\cdots+\left|m a_{k}\right|=n$, where $|x|$ denotes the least positive inverse image under the natural homomorphism from the additive group of integers Z onto C_{n}. On the other hand, we give some explicit minimal zero sequences of length $\left[\frac{n+1}{2}\right]+1$ not having this property above.

1. Introduction

Let G be a finite abelian group. Let $S=\left(a_{1}, \cdots, a_{k}\right)$ be a sequence of elements in G. By $\sigma(S)$ we denote the sum $\sum_{i=1}^{k} a_{i}$. We say that S is a zero sequence if $\sigma(S)=0$, that S is a zero-free sequence if S contains no nonempty zero subsequence, and that S is a minimal zero sequence if S is a zero sequence and S contains no proper zero subsequence. By $\sum(S)$ we denote the set consisting of all elements which can be expressed as a sum over a nonempty subsequence of S, i.e.

$$
\sum(S)=\{\sigma(T) \mid T \text { is a nonempty subsequence of } S\}
$$

Sometimes we also write $S=\prod_{i=1}^{k} a_{i}$. If T is a subsequence of S, by $S T^{-1}$ we denote the subsequence W such that $W T=S$. We say subsequences S_{1}, \cdots, S_{r} of S are disjoint if $S_{1} \cdots S_{r}$ is a subsequence of S. For every $g \in G$, we use $v_{g}(S)$ to denote the number of the times that g occurs in S.

Let C_{n} be the cyclic group of order n. For every $x \in C_{n}$, we define $|x|$ to be the least positive inverse image under the natural homomorphism from the additive group of integers Z onto C_{n}. For example, $|0|=n$. Let $S=\left(a_{1}, \cdots, a_{k}\right)$ be a sequence of elements in C_{n}, by $|S|_{n}$ we denote the sum $\sum_{i=1}^{k}\left|a_{i}\right|$. Define

$$
\operatorname{Index}(S)=\min _{(m, n)=1}\left\{|m S|_{n}\right\}
$$

[^0]$\operatorname{Index}\left(C_{n}\right)$ was first introduced by Chapman, Freeze, and Smith in [2]. It is well known that if S is a minimal zero sequence of n elements in C_{n}, then $S=(\underbrace{a, \cdots, a}_{n})$ for some a generating C_{n}. Hence, $\operatorname{Index}(S)=n$. From a result of ([3], Lemma 2$)$ we can easily derive that every minimal zero sequence S of elements in C_{n} with $|S| \geq n-[n / 4]$ satisfies Index $(S)=n$. In Section 2 of this paper, we prove that the last conclusion holds for the restriction of $|S| \geq n-[n / 4]$ replaced by $|S| \geq n-[n / 3]+1$; In Sectoin 3 we study the sums of divisors of a positive integer n; the final section 4 contains some conculding remarks.

2. On $\operatorname{Index}(S)$

Definition. Let $l\left(C_{n}\right)$ be the minimal integer t such that every minimal sequence S of at least t elements in C_{n} satisfies $\operatorname{Index}(S)=n$.

Theorem 2.1 (1). $\left[\frac{n+1}{2}\right]+1 \leq l\left(C_{n}\right) \leq n-\left[\frac{n+1}{3}\right]+1$ holds for all $n \geq 8$.
(2). $l\left(C_{n}\right)=1$ for $n=1,2,3,4,5,7$ and $l\left(C_{6}\right)=5$.

Lemma 2.2 ([1]) Let $n-2 k \geq 1$, and let $S=\left(a_{1}, \cdots, a_{n-k}\right)$ be a zero-free sequence of $n-k$ elements in C_{n}. Then there is an element $g \in C_{n}$ such that $v_{g}(S) \geq n-2 k+1$.

Lemma 2.3 ([4]) Let S be a zero-free sequence of elements in C_{n}, and let $g \in C_{n}$ with $\operatorname{order}(g)=n / m$. Suppose that $|S|>n / 2$. Then $v_{g}(S)<\frac{n-|S|}{m-1}$.

Lemma 2.4 ([4]) Let S be a zero-free sequence of elements in an abelian group, and let S_{1}, \cdots, S_{k} be disjoint subsequences of S. Then, $\left|\sum(S)\right| \geq \sum_{i=1}^{k}\left|\sum\left(S_{i}\right)\right|$.

Let $S=\left(a_{1}, \cdots, a_{k}\right)$ and $T=\left(b_{1}, \cdots, b_{k}\right)$ be two sequences of elements in C_{n} with the same length. We say S is similiar to T if there exists an integer m coprime to n and a permutation δ of $\{1, \cdots, k\}$ such that $a_{i}=m b_{\delta(i)}$ for $i=1, \cdots, k$. Denote it by $S \sim T$.

Lemma 2.5 Let $1 \leq k \leq\left[\frac{n+1}{3}\right]$, and let S be a zero-free sequence of $n-k$ elements in C_{n}. Then

$$
S \sim(\underbrace{1, \cdots, 1}_{n-2 k+1}, x_{1}, \cdots, x_{k-1})
$$

with $\sum_{i=1}^{k-1}\left|x_{i}\right| \leq 2 k-2$. Therefore, Index $(S)<n$.

Proof. By Lemma 2.2, there is an element $g \in C_{n}$ such that $v_{g}(S) \geq n-2 k+1 \geq k=n-|S|$. It follows from Lemma 2.3 that $\operatorname{order}(g)=n$. Without loss of generality, we may assume that
$g=1$. Set $l=v_{g}(S)$. Suppose $S=1^{l} \prod_{i=1}^{t} a_{i}$, where $l+t=|S|$. Since S is zero-free, we clearly have

$$
\begin{equation*}
1 \leq\left|a_{i}\right| \leq n-l-1 \text { for } i=1, \cdots, t . \tag{1}
\end{equation*}
$$

If $\left|a_{t}\right| \geq l+1$, then $\left|\sum\left(1^{l} a_{t}\right)\right|=2 l+1$. By Lemma 2.4, $n-1 \geq\left|\sum(S)\right| \geq\left|\sum\left(1^{l} a_{t}\right)\right|+t-1 \geq$ $2 l+t=n-k+l \geq n-k+n-2 k+1 \geq n$, a contradiction. Hence,

$$
\begin{equation*}
1 \leq\left|a_{i}\right| \leq l \text { for } i=1, \cdots, t \tag{2}
\end{equation*}
$$

Since S is zero-free, $1 \leq\left|a_{1}+a_{2}\right| \leq n-l-1$. By (1) and (2), $\left|a_{1}\right|+\left|a_{2}\right| \leq n-1$. Therefore, $\left|a_{1}\right|+\left|a_{2}\right|=\left|a_{1}+a_{2}\right| \leq n-l-1$. Similarly, one can get $\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|=\left|a_{1}+a_{2}\right|+\left|a_{3}\right|=$ $\left|a_{1}+a_{2}+a_{3}\right| \leq n-l-1$. Finally, we must get $\sum_{i=1}^{t}\left|a_{i}\right|=\left|\sum_{i=1}^{t} a_{i}\right| \leq n-l-1$. Therefore, $\operatorname{Index}(S) \leq n-1$.

Proof of Theorem 2.1. (1). We first prove the upper bounds. Let S be a minimal zero sequence of elements in C_{n} with $|S| \geq n-\left[\frac{n+1}{3}\right]+1$. Take an arbitrary element x from S. Then $S x^{-1}$ is zero-free. By Lemma 2.5, $\operatorname{Index}(S) \leq \operatorname{Index}\left(S x^{-1}\right)+n-1 \leq n-1+n-1<2 n$. Hence, $\operatorname{Index}(S)=n$.

To prove the lower bounds we distinguish four cases.
Case 1. n is odd. Set $S=(\underbrace{1, \cdots, 1}_{\frac{n-5}{2}}, \frac{n+3}{2}, \frac{n+3}{2}, \frac{n-1}{2})$. Note that for $n \geq 9$, clearly Index $(S)=$
$2 n$. Therefore, $\frac{n+1}{2}+1 \leq l\left(C_{n}\right)$.
Case 2. n is even and $n \geq 12$. Set

$$
S=(\underbrace{1, \cdots, 1}_{\frac{n-6}{2}}, \frac{n+4}{2}, \frac{n+4}{2}, \frac{n-2}{2}) \text {. Clearly Index }(S)=2 n \text {. Therefore, }\left[\frac{n+1}{2}\right]+1 \leq l\left(C_{n}\right) \text {. }
$$

Case 3. $n=8$, set $S=(1,4,5,6)$. It is easy to check that S is a minimal zero sequence and that $\operatorname{Index}(S)=16$. Therefore $[9 / 2]+1=4+1 \leq l\left(C_{8}\right)$.

Case 4. $n=10$, set $S=(1,5,8,3,3)$. It is easy to check that S is a minimal zero sequence and that $\operatorname{Index}(S)=20$. Therefore $[11 / 2]+1=5+1 \leq l\left(C_{10}\right)$.
(2). It is proved in [2] that $l\left(C_{n}\right)=1$ for $n=1,2,3,5,7$. For $n=4$, it is easy to see that $l\left(C_{4}\right)=1$. For $n=6$, by Lemma 2.5, we clearly have $l\left(C_{6}\right) \leq 5$. For $S=(1,3,4,4)$ it is clear that $\operatorname{Index}(S)=12$. Therefore $l\left(C_{6}\right)=5$.

Let S be a zero-free (resp. minimal zero) sequence of elements in an abelian group G. We say S is splitable if there exists an element $a \in S$ and two elements $x, y \in G$ such that $x+y=a$ and such that $S a^{-1} x y$ is zero-free (resp. minimal zero) sequence as well.

Proposition 2.6 Let S be a minimal zero subsequence with $|S|=l\left(C_{n}\right)-1$. Suppose that Index $(S)>n$. Then S is not splitable.

Proof. Assume to the contrary that S is splitable. Then there exist $a \in S$ and $x, y \in C_{n}$ such that $S a^{-1} x y$ is also a minimal zero squenece. Since, $\left|S a^{-1} x y\right|=l\left(C_{n}\right)$, by the definition of $l\left(C_{n}\right)$, Index $\left(S a^{-1} x y\right)=n$. Therefore, Index $(S) \leq \operatorname{Index}\left(S a^{-1} x y\right)=n$, a contradiction. This proves the proposition.

Conjecture 2.7 Let S be a minimal zero subsequence with $|S|=l\left(C_{n}\right)-1$. Suppose that S is not splitable. Then $\operatorname{Index}(S)=2 n$.

This conjecture, if true, would be useful for determining $l\left(C_{n}\right)$.

Theorem 2.8 Let G be a finite abelian group and let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{k}}$ be a decomposition of G into direct summands, where all $\left.n_{i}\right\rangle 1$. Let $C_{n_{i}}=\left\langle e_{i}\right\rangle$ for $i=1, \cdots, k$. Then the sequence $S=\left(e_{1}+\cdots+e_{k}\right) \prod_{i=1}^{k} e_{i}^{n_{i}-1}$ is not splitable.

Proof. Clear.

Conjecture 2.9 Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{k}}$ be a finite non-cyclic abelian group with $1<n_{1}|\cdots| n_{k}$, and let S be a minimal zero sequence of elements in G. Suppose that $\langle S\rangle=G$ and suppose that S is not splitable. Then S contains at least $k+1$ distinct elements.

Definition. Let $s p(G)$ be the largest integer t such that every minimal zero sequence of elements in G with $|S| \leq t$ is splitable.

Problem. Determine $s p(G)$.
We clearly have, $\log _{2}\left(\frac{|G|}{2}\right) \leq s p(G) \leq l(G)-1$.

Conjecture $2.10 s p(G) \leq c \ln |G|$ for some absolute constant c.

Define

$$
I\left(C_{n}\right)=\max _{S}\{\operatorname{Index}(S)\}
$$

where S runs over all minimal zero sequences of elements in C_{n}.

Proposition $2.11 I\left(C_{n}\right) \geq \frac{n+1}{2}\left(1+\left[\log _{3}\left(\frac{n}{3}\right)\right]\right)+1$.

Lemma 2.12 If a is an element in C_{n}, then $|m a|+|m(n-2 a)|>n / 2$ holds for every integer m coprime to n.

Proof. If $|m a|>n / 2$ then we are done. Otherwise, $|m a|<n / 2$, then

$$
|m a|+|m(n-2 a)|=|m a|+n-2|n a|=n-|m a|>n / 2
$$

Proof of Proposition 2.11. Let $t=\left[\log _{3}\left(\frac{n}{3}\right)\right]$, set $T=\left(1,3,3^{2}, \cdots, 3^{t}, n-2, n-6, n-18, \cdots, n-2 \times\right.$ $\left.3^{t}\right)=\prod_{i=0}^{t}\left(3^{i}, n-2 \times 3^{i}\right)$. Since $3^{i+1}>2 \sum_{j=1}^{i} 3^{i}$ for $i=0, \cdots, t-1$ and $2 \sum_{i=1}^{t} 3^{i}=3^{t+1}-1<n$, T is zero-free. Let m be the positive integer coprime to n such that $\operatorname{Index}(T)=|m T|$. By Lemma 2.12, $\operatorname{Index}(T)=|m T|=\sum_{i=0}^{t}\left(\left|m 3^{i}\right|+\left|m\left(n-2 \times 3^{i}\right)\right| \geq \frac{n+1}{2}(t+1)\right.$. Set $S=T \cdot(-\sigma(T))$. Then S is a minimal zero sequence with $\operatorname{Index}(S) \geq \operatorname{Index}(T)+1 \geq \frac{n+1}{2}(t+1)+1$.

3. Sums of Divisors of n

In [5], Lemke and Kleitman proved, among other results, that if $S=\left(a_{1}, \cdots, a_{n}\right)$ is a sequence of positive integer and $a_{i} \mid n$ holds for every $i=1, \cdots, n$ then there is a subsequence T of S with $\sigma(T)=n$. Here we shall show a generaliztion of this result.

Theorem 3.1 Let $S=\left(a_{1}, \cdots, a_{k}, b_{1}, \cdots, b_{n-k}\right)$ be a sequence of n positive integers. Suppose that $a_{i} \mid n$ for $i=1, \cdots, k$, and suppose that all of b_{i} are distinct and $b_{i} \leq n$ for $i=1, \cdots, n-k$. Then, there is a subsequence T of S with $\sigma(T)=n$.

Lemma 3.2 Let A be a subset of $[0, n]$, and $B \backslash\{0\}$ a set of positive divisors of n. Suppose that $0 \in A \cap B$ and suppose that $n \notin A+B$. Then, $|(A+B) \cap[0, n]| \geq|A|+|B|-1$, where $[0, n]=\{0,1,2, \cdots, n-1, n\}$.

Proof. We proceed by induction on $|B| .|B|=1$ implies $B=\{0\}$ and the lemma is trivial. Assume that the lemma is true for $|B|<k(k \geq 2)$, we want to prove it is true also for $|B|=k$. Take an arbitrary $b \in B \backslash\{0\}$. Then $b \mid n$. Since $n \notin A+B,\left(\frac{n}{b}-1\right) b \notin A$. Let r be the least nonnegative integer such that $r b \notin A$. Then $1 \leq r<\frac{n}{b}$. Therefore $(r-1) b \in A$ but $b+(r-1) b \notin A$. Set $a=(r-1) b$. Set $B_{0}=\left\{b^{\prime} \in B \mid a+b^{\prime} \notin A\right.$ and $\left.a+b^{\prime}<n\right\}$. Then $B_{0} \neq \emptyset$. Now set $A_{1}=A \cup\left(a+B_{0}\right)$ and set $B_{1}=B \backslash B_{0}$. Clearly, $\left(A_{1}+B_{1}\right) \cap[0, n] \subset(A+B) \cap[0, n]$. Note that $\left|B_{1}\right|<k$. By the inductive assumption we have $|(A+B) \cap[0, n]| \geq\left|\left(A_{1}+B_{1}\right) \cap[0, n]\right| \geq$ $\left|A_{1}\right|+\left|B_{1}\right|-1=|A|+|B|-1$.

Proof of Theorem 3.1. Set $A_{0}=\left\{0, b_{1}, \cdots, b_{n-k}\right\}$ and set $A_{i}=\left\{0, a_{i}\right\}$ for $i=1, \cdots, k$. Assume to the contrary that $n \notin \sum(S)$. By Lemma 3.2 we have, $\left|\left(A_{0}+A_{1}\right) \cap[1, n]\right|=\mid\left(A_{0}+A_{1}\right) \cap$ $[0, n]\left|-1 \geq\left|A_{0}\right|+\left|A_{1}\right|-2\right.$. Similiarly, one can get $|\left(A_{0}+A_{1}+A_{2}\right) \cap[1, n] \geq\left|\left(A_{0}+A_{1}\right) \cap[0, n]\right|+$ $\left|A_{2}\right|-1 \geq\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|-3$, and finally, we must get $\left|\left(A_{0}+A_{1}+A_{2}+\cdots+A_{k}\right) \cap[1, n]\right| \geq$ $\left|A_{0}\right|+\left|A_{1}\right|+\cdots+\left|A_{k}\right|-k-1=|S|=n$, a contradiction on $n \notin \sum(S)$.

Kleitman and Lemke [5] suggested that

Conjecture 3.3 Every sequence of n elements in C_{n} contains a nonempty subsequence T such that $\operatorname{Index}(T)=n$.

They pointed out that this conjecture is open even for n prime.

Conjecture 3.4 Let $S=\left(a_{1}, \cdots, a_{k}\right)$ be a sequence of elements in C_{n}. Suppose that S contains no subsequence T with Index $(T)=n$. Then, $\mid\{\sigma(T) \mid \lambda \neq T \subset S$ and Index $(T)<n\} \mid \geq k$, where λ denotes the empty sequence.

This conjecture, if true, would clearly imply Conjecture 2.4.

4. Concluding Remarks

Let $S=\left(a_{1}, \cdots, a_{k}\right)$ be a sequence of elements in C_{n}. For a positive integer l, we say S is a partition of l if $\sum_{i=1}^{k}\left|a_{i}\right|=l$. By the definition of $\operatorname{Index}(S)$ we have that every sequence S of elements in C_{n} is similiar to a partition of $\operatorname{Index}(S)$. By the definition of $I\left(C_{n}\right)$ we have that every minimal zero sequence of elements in C_{n} is similiar to a partition of $l n$ for some $l \leq I\left(C_{n}\right) / n$. Hence, if $\operatorname{Index}(S)>I\left(C_{n}\right)$, then S contains a proper zero subsequence. From Theorem 1.1 we see that every minimal zero sequence of at least $n-\left[\frac{n+1}{3}\right]+1$ elements in C_{n} is similiar to a partition of n. For every positive integer $k \leq n-1$, we define

$$
I_{k}\left(C_{n}\right)=\max _{|T|=k}\{\operatorname{Index}(T)\}
$$

where T runs over all zero-free sequences of k elements in C_{n}.

Proposition 4.1 (1). If p is the smallest positive divisor of n then $I_{1}\left(C_{n}\right)=n / p$.
(2). If $n \geq 3$ is a prime then $I_{2}\left(C_{n}\right)=\frac{n+1}{2}$.

Proof. (1). Clear.
(2). By Lemma $1.12, I_{2}\left(C_{n}\right) \geq \frac{n+1}{2}$. To prove the upper bound, let x, y be two nonzero elements (not necessarily distinct) with $x+y \neq 0$. Set $z=-x-y$. Then (x, y, z) is a minimal zero sequence. Let t be the positive intger such that $t z=\frac{p+1}{2}$ and $1 \leq t \leq p-1$. Then $(p-t) z=\frac{p-1}{2}$. Since $|t x|+|t y|+|t z|+|(p-t) x|+|(p-t) y|+|(p-t) z|=3 p,|t x|+|t y|+|t z|=p$ or $|(p-t) x|+|(p-t) y|+|(p-t) z|=p$. Therefore, $|t y|+|t z|=\frac{p-1}{2}$ or $|(p-t) x|+|(p-t) y|=\frac{p+1}{2}$.

Conjecture $4.2 I\left(C_{n}\right) \leq c \ln n$ for some absolute constant c.

References

[1] J. D. Bovey, P. Erdős and I. Niven, Conditions for zero-sum modulo n, Canad. Math. Bull., 18(1975),27-29.
[2] S. Chapman, M. Freeze, and W. W. Smith, Minimal zero-sequence and the strong Davenport constant, Discrete Math., 203(1999), 271-277.
[3] W. D. Gao, An addition theorem for finite cyclic groups, Discrete Math., 163(1997), 257-265.
[4] W. D. Gao and A. Geroldinger, On the structure of zero-free sequences, Combinatoria, 18(1998), 519-527.
[5] D. J. Kleitman and P. Lemke, An addition theorem on the integers modulo n, J.Number Theory, 31(1989), 335-345.

[^0]: ${ }^{1}$ This work has been supported partly by the National Natural Science Foundation of China and the Foundation of Education Committee of China.

