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Abstract

We prove that if A ⊂ [1, N ] is a Sidon set with N1/2−L elements, then any interval I ⊂ [1, N ] of
length cN contains c|A|+EI elements of A, with |EI | ≤ 52N1/4(1+ c1/2N1/8)(1+L

1/2
+ N−1/8),

L+ = max{0, L}. In particular, if |A| = N1/2 + O(N1/4), and g(A) is the maximum gap in A,
we deduce that g(A) ¿ N3/4. Also we prove that, under this condition, the exponent 3/4 is
sharp.

1. Introduction

We say that A is a Sidon set if all the sums a+ a′, a ≤ a′, are different. Erdős and Turan [5]
proved that if A ⊂ [1, N ] is a Sidon set then |A| ≤ N1/2 + O(N1/4). On the other hand, Bose
and Chowla [1] proved that if N = p2 + p+ 1, then there exists a Sidon set A ⊂ [1, N ] with p

elements; i.e, the upper bound (1.1) is sharp except for the error term.

Sidon sets of large size have notable properties of regularity. In [7], M. Koluntzakis proved
that the elements of a Sidon set of large size, |A| ∼ N1/2, are well distribuited in the classes of
residues of small modulo. See [5] for an elementary proof of this result.

Erdős and Freud [4] proved that if |A| ∼ N1/2 then the elements of A are well distributed in
the interval [1, N ].

Theorem A (Erdős-Freud). Let c > 0 and A ⊂ [1, N ] a Sidon set with |A| ∼ N1/2 elements.
Then, any interval of length cN contains ∼ cN1/2 elements.

S.W. Graham [6] has proved a more precise result.

Theorem B (S. Graham). Let A ⊂ [1, N ] be a Sidon set with N1/2 + O(N1/4) elements.
Then, any interval of length cN contains cN1/2 +O(N3/8) elements.
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If we denote by g(A) = maxak−1,ak∈A{ak−ak−1} the maximum gap in A, from the Theorem
B it is easy to deduce that if A is a Sidon set A ⊂ [1, N ] with N1/2+O(N1/4), then g(A)¿ N7/8.

In this paper we shall use an identity (Lemma 2.1), which was introduced in [2] and [3], to
obtain a better result.

Theorem 1.1. Let A ⊂ [1, N ] a Sidon set with N1/2 − L elements. Then, any interval of
length cN contains c|A|+ EI elements of A, with

|EI | ≤ 52N1/4(1 + c1/2N1/8)(1 + L
1/2
+ N−1/8), L+ = max{0, L}.

In particular we deduce from this theorem the following corollary for gaps.

Corollary 1.1. If A ⊂ [1, N ] is a Sidon set and |A| = N1/2 +O(N1/4), then g(A)¿ N3/4.

It is easy to see that the exponent 3/4 is the best possible if A ⊂ [1, N ] is a Sidon set with
|A| = N1/2 +O(N1/4). Consider N = p2 +p+1, and a Sidon set A, A ⊂ [1, N ] with p ≥

√
N−1

elements. If we split the interval [1, N ] in intervals of length [N3/4], then, one of them contains
less than 2N1/4 elements. If we remove these elements from A we have a Sidon set A′ with
|A′| = N1/2 +O(N1/4) elements and g(A′)À N3/4.

We don’t know how to derive a better estimate for g(A) when the error term is less than
N1/4. It is related with the difficulty of improving the error term in the upper bound for finite
Sidon sets. It would be interesting to know a good upper bound for g(A) when A is a Sidon
set of maximal size. Maybe, it is possible an upper bound like g(A)¿ N1/2+ε.

It should be noted that the classical construction of Erdős and Turan [5] of Sidon sets,
Ap = {2kp + (k2)p : k = 0, 1, . . . , p − 1}, gives g(A) ¿ N1/2 for these sets. It seems not
to be the case for the Ruzsa’s construction [8] of finite Sidon sets. Numerical and heuristic
arguments suggest that g(A)/N1/2 → ∞ in this case. In particular, it would imply that the
Erdős’s Conjecture, F (N) ≤ N1/2 +O(1), is not true.

2. Proofs

The proof of the following lemma can be found in [2] or [3].

Lemma 2.1. Let A ⊂ [1, N ] be a sequence of integers. Then, for any integer H ≥ 1 we have

2
∑

1≤h≤H
d(h)(H − h) =

H2|A|2
N +H − 1

−H|A|+DH ,
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where

DH =
∑

1≤n≤N+H−1

(
A(n)−A(n−H)− H|A|

N +H − 1

)2

,

A(n) is the counting function of A and d(h) = #{h = a− a′; a, a′ ∈ A}. ¤

A(n) − A(n − H) is the number of elements of A lying in the interval (n − H,n] and the
quantity H|A|

N+H−1 is the expected value of A(n) − A(n − H). Then, DH is a measure of the
distribution of the elements of A in the interval [1, N +H − 1].

The argument of the proof of the Theorem 1.1 is the following: If |A| is close to N1/2, (L
small), then DH is “small” and consequently, the number of elements of A lying in intervals
of length H is “close”, at least in average, to the expected number. From that we can deduce
a “good” distribution in any interval I = (αN, βN ]. Upper and lower bounds for the error
EI = |A ∩ I| − (β − α)|A| are obtained in two different steps (Lemma 2.3 and Lemma 2.4).

Lemma 2.2. If A ⊂ [1, N ] is a Sidon set with |A| = N1/2−L then, for any integer H we have

DH ≤
3H2L+

N1/2
+
H3

N
+ 2HN1/2

where L+ = max{0, L}.

Proof. We apply Lemma 2.1 to the sequence A. Since A is a Sidon set, hence d(h) ≤ 1 for any
integer h ≥ 1 and 2

∑
1≤h≤H−1 d(h)(H − h) ≤ H2. Also we use the trivial estimate for the size

of a Sidon set, |A| ≤ 2N1/2.

DH ≤ H2 − H2|A|2
N +H − 1

+H|A| = H2N +H3 −H2 −H2|A|2
N +H − 1

+H|A|

≤ H2(N−|A|2)
N + H3

N + 2HN1/2.

If L ≤ 0 , then DH ≤ H3

N + 2HN1/2.

If L > 0, then DH ≤ H2

N (N1/2 + |A|)L+ + H3

N + 2HN1/2 ≤ 3H2L+

N1/2 + H3

N + 2HN1/2. ¤

Let I = (αN, βN ], c = β − α and we write |A ∩ I| = c|A|+ EI . We will choose H = [N3/4]
in all the proofs.
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Lemma 2.3. EI ≤ 10N1/4(c1/2N1/8 + 1)(L1/2
+ N−1/8 + 1).

Proof. We write IH = (αN, βN +H], then cN +H − 1 ≤ |IH | ≤ cN +H + 1. We have∑
n∈IH

A(n)−A(n−H) ≥ H|A ∩ I|,

since each a ∈ A ∩ I is counted H times in the sum. Then,

∑
n∈IH

(
A(n)−A(n−H)− H|A|

N +H − 1

)
≥ H|A ∩ I| − |IH |H|A|

N +H − 1

= EIH +H|A|
(
c− |IH |

N +H − 1

)
≥ EIH −H|A|

(1− c)(H + 1)
N +H − 1

≥ EIH −
H2|A|
N

.

Then

EI ≤ H−1
∑
n∈IH

(
A(n)−A(n−H)− H|A|

N +H − 1

)
+
H|A|
N

.

Now we apply Cauchy’s inequality, Lemma 2.1 and the trivial estimates |A| ≤ 2N1/2,
N3/4/2 ≤ H ≤ N3/4 to get

EI ≤ H−1|IH |1/2D1/2
H +

H|A|
N

≤ H−1
(

(cN)1/2 + (H + 1)1/2
)(√3HL1/2

+

N1/4
+
H3/2

N1/2
+
√

2H1/2N1/4

)
+
H|A|
N

≤ 2N−3/4
(
c1/2N1/2 +

√
2N3/8

)(√
3N1/2L

1/2
+ +N5/8 +

√
2N5/8

)
+ 2N1/4

≤ 10N1/4
(
c1/2N1/8 + 1

)(
L

1/2
+ N−1/8 + 1

)
. ¤

Lemma 2.4. −EI ≤ 52N1/4(c1/2N1/8 + 1)(L1/2
+ N−1/8 + 1).

Proof.∑
n∈IH

A(n)−A(n−H) ≤ H (|A ∩ I|+ |A ∩ (αN −H,αN ]|+ |A ∩ (βN, βN +H]|) .

We apply Lemma 2.3 to the intervals (αN −H,αN ] and (βN, βN +H] to obtain an upper
bound for the last two terms.

|A∩(αN−H,αN ]|+|A∩(βN, βN+H]| ≤ 2
H

N
|A|+20N1/4

(
H1/2N1/8

N1/2
+ 1
)(

L
1/2
+ N−1/8 + 1

)
≤ 4N1/4 + 40N1/4(L1/2

+ N−1/8 + 1) ≤ 44N1/4 + 40N1/8L
1/2
+ .
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Then,

∑
n∈IH

(
A(n)−A(n−H)− H|A|

N +H − 1

)
≤ H|A∩I|− |IH |H|A|

N +H − 1
+H

(
44N1/4 + 40N1/8L

1/2
+

)

= EIH +H|A|
(
c− |IH |

N +H − 1

)
+H

(
44N1/4 + 40N1/8L

1/2
+

)

≤ EIH +H(44N1/4 + 40N1/8L
1/2
+ ),

because |IH | ≥ cN +H − 1.

Finally we apply Cauchy inequality and Lemma 2.2 to obtain

−EI ≤ 44N1/4 + 40N1/8L
1/2
+ +H−1

∑
n∈IH

∣∣∣∣A(n)−A(n−H)− H|A|
N +H − 1

∣∣∣∣
≤ 44N1/4 + 40N1/8L

1/2
+ + 2N−3/4|IH |1/2D1/2

H

≤ 44N
1
4 + 40N

1
8L

1
2
+ + 2N

−3
4

(
(cN)1/2 + (H + 1)1/2

)(√3HL1/2
+

N1/4
+
H3/2

N1/2
+
√

2H1/2N1/4

)

≤ 44N1/4 + 40N1/8L
1/2
+ + 2N−3/4

(
c1/2N1/2 +

√
2N3/8

)(√
3N1/2L

1/2
+ +N5/8 +

√
2N5/8

)
≤ 52N1/4(1 + c1/2N1/8)(1 + L

1/2
+ N−1/8). ¤

Lemma 2.3 and Lemma 2.4 imply Theorem 1.1. To prove Corollary 1.1, suppose that A =
N1/2 − L, with L+ ≤ kN1/4, and let I be any interval of length k′N3/4. If we apply Lemma
2.4 we have

|A∩ I| > k′

N1/4
|A| − 52N1/4(1 + k′

1/2)(1 + k1/2) > k′N1/4 − kk′ − 52N1/4(1 + k′
1/2)(1 + k1/2).

If we take k′ large enough, k′ > 10000k, then |A∩ I| > 0 for any interval of length greater than
k′N3/4.
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