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Abstract

The minimum distance of QMC sample points to the boundary of the unit cube is an
important quantity in the error analysis of QMC integration for functions with singu-
larities. Sobol’ and recently Owen show that the Sobol’ and Halton sequences avoid a
hyperbolically shaped region around the corners of the unit cube. We extend these re-
sults in two ways. First, we prove that generalized Niederreiter sequences possess similar
properties as Sobol’ and Halton sequences around the origin. Second, we show corner
avoidance rates for the Halton and Faure sequence for corners different from the origin.
While the all-corner avoidance of the Halton sequence is almost the same as its origin
avoidance, the Faure sequence has a substantially smaller all-corner avoidance.

1. Introduction

Quasi-Monte Carlo (QMC) methods have been successfully deployed in various applica-
tions for the numerical evaluation of high dimensional integration problems. In contrast

to Monte Carlo (MC) methods, the integration error can be bounded deterministically
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2supported by the Austrian Science Foundation project S-8307-MAT
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due to the famous Koksma-Hlawka Theorem [6] by the product of the discrepancy of the
utilized sequences and the integrand’s variation in the sense of Hardy and Krause.

Classical QMC theory – for a thorough introduction consult the monograph [11] –
deals with functions of bounded variation and evinces that in terms of function evalua-

tions the best known (and conjectured to be the best possible) QMC techniques using
sequences yield an error bound of the order O(N−1(logN)s) for s-dimensional integra-

tion problems. The convergence rate in the bound is solely induced by the uniformity

of the sequence, measured by its discrepancy. The first construction of low-discrepancy
sequences (LDS), i.e. sequences with this optimal order, is given by Halton [3]. Different

LDS constructions are proposed by Sobol’ [15], Faure [2] and Niederreiter [8, 10]. Tezuka
and Tokuyama [19] show that these three approaches can be unified by a generalization

of Niederreiter’s principles.

A common phenomenon in applications are integrands that are unbounded at their

domain boundaries. Such integrands are obviously not of bounded variation, so the
superiority of QMC over MC, or even the convergence of QMC methods, is not guaranteed

by Hlawka’s theorem. It turns out that the additional error for the singularity depends
on how far the sample points are away from the singularities. The first consideration

of QMC methods for unbounded integrands can be found in an article by Sobol’ [16],
where he studies integrals with a power singularity at the origin, based on the fact that

Sobol’ sequences avoid a hyperbolic region around the origin. Klinger [7] investigates
QMC integration for special classes of singular functions, numerical examples for Sobol’

sequences are given by De Doncker and Guan [1]. QMC rules for weighted singular

integration problems with emphasis on financial applications are considered by Hartinger,
Kainhofer, and Tichy [5]. In a recent article [13], Owen extends Sobol’s work, establishing

a similar property for Halton sequences and convergence rates for functions with at most
a power singularity at the integration boundaries. A generalization of these results to

non-uniform integration is given by Hartinger and Kainhofer [4].

In this article, we distinguish two situations. After a review of the notation and some

background in Section 2, we look at the case where the integrand has singularities only
on boundaries of Ūs that contain the origin. Hence we consider the origin avoidance of

generalized Niederreiter sequences in Section 3. We show that the characteristics of Sobol’
sequences also hold for generalized Niederreiter sequences. In particular, generalized

Niederreiter sequences avoid the origin with an order of N−1. In a second step the
functions are allowed to be singular on all boundaries of Ūs, so the distance to any

corner is investigated in Section 4. We look at the corner avoidance of Halton sequences

in a rigorous way and prove that Halton sequences avoid all corners with an order of
N−1−ε. In addition we show first results on the corner avoidance properties of Faure

sequences, proving that the Faure sequence approaches the other corners substantially
faster than the origin.
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2. Notation and background

We will denote by Ūs = [0, 1]s the s-dimensional unit cube, and consider functions

f : Ūs → R such that I =
∫

Ūs f(x)dx exists. Let furthermore (xn)n>0 be a sequence

with xn = (x
(1)
n , . . . , x

(s)
n ) ∈ [0, 1)s. Then we define the QMC estimator of I as ÎN =

1
N

∑N
n=1 f (xn) .

For a subset B ⊆ Ūs, denote by λ(B) its Lebesgue measure and by χB its character-

istic function, i.e. χB(x) equals 1 for x ∈ B, and 0 otherwise.

The star discrepancy of the set (xn)1≤n≤N , measuring its uniformness, is given by

D∗
N (x1, . . . ,xN) = sup

J∈J ∗

∣∣∣∣∣ 1

N

N∑
n=1

χJ (xn) − λ(J)

∣∣∣∣∣ ,
where J ∗ is the set of all subintervals of Ūs of the form

∏s
i=1 [0, ui) .

Hlawka’s theorem [6] bounds the QMC integration error for a function with finite

total variation in the sense of Hardy and Krause (see e.g. [12]), VHK(f) <∞, as follows:∣∣∣I − ÎN

∣∣∣ ≤ VHK(f)D∗
N (x1, . . . ,xN) .

Unbounded functions that approach ±∞ as the argument draws near the boundary

clearly have unbounded variation. Owen [13] provides rates for the QMC convergence
speed in this case, based on growth conditions on the integrand and its partial derivatives

near the boundary, as well as on the speed the sequence approaches the boundary. The
partial derivatives with respect to all variables xi with i ∈ u ⊆ {1, . . . , s} will be denoted

by ∂uf . For the origin case Owen’s error bound is:

Theorem 1 ([13, Theorem 5.5]). Let the function f satisfy the condition |∂uf(x)| ≤
B
∏s

i=1(x
(i))−Ai−χu(i) for some Ai > 0, B <∞ and all u ⊆ {1, . . . , s}. Also suppose that

for N ≥ 1 and all 1 ≤ n ≤ N the sequence (xn)1≤n satisfies
∏s

i=1 x
(i)
n ≥ cN−r.

Then for any η > 0 we have∣∣∣I − ÎN

∣∣∣ ≤ C1D
∗
N(x1, . . . ,xN)N η + r maxi Ai + C2N

r (maxi Ai−1)

with finite constants C1 and C2, that may depend on η. The estimate holds with η = 0,

if there exists a unique maximum among A1, . . . , As.

Thus, in order to get efficient QMC rules for these integrands one has to find point

sets satisfying the condition

s∏
i=1

x(i)
n ≥ cN−r, (1 ≤ n ≤ N) (1)
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with small r. The bound r ≥ 1 is obvious for (t, s)-nets and for Halton sequences.
Sobol’ [17] shows that r = 1 holds for Sobol’ sequences, Owen [13] establishes r ≤ 1 for

Halton sequences. In Section 3 we show r = 1 for generalized Niederreiter sequences in
the origin case.

The bound of Theorem 1 even holds for the general corner case, with similar conditions

on the function and the sequence. The desired property for QMC sequences is a corner

avoidance of the form

min
1≤n≤N

s∏
i=1

min{1 − x(i)
n , x

(i)
n } ≥ cN−r. (2)

Owen [13] proves r ≤ 2 for Halton sequences in this case. Section 4 will contain a
proof for r ≤ 1 + ε for any ε > 0. Furthermore we show r ≥ 2 for some subsequences of

Faure sequences in the mixed-corner case, i.e. corners other than 0 and 1, and r ≥ 3
2

for
some subsequences for the upper corner 1.

3. Generalized Niederreiter sequences and the origin

Most common low-discrepancy sequence construction schemes can be understood as
Niederreiter’s (t, s)-sequences, which were proposed in [9] and utilize the same ideas

as Sobol’ used for his net theory. For an integer base b, integers di and ai for i = 1, . . . , s
with 0 ≤ ai < bdi , intervals of the form

∏s
i=1

[
aib

−di , (ai + 1)b−di
)

are called elementary

intervals.

Furthermore, for 0 ≤ t ≤ m, a (t,m, s)-net in base b is a point set of cardinality bm in
[0, 1)s such that every elementary interval of volume bt−m contains exactly bt points. A

sequence of points (xn)n≥0 is called (t, s)-sequence in base b if, for all k ≥ 0 and m > t,
the point set consisting of the xn with kbm ≤ n < (k + 1)bm is a (t,m, s)-net in base b.

We will restrict us to prime power bases b and denote by Fb the corresponding finite

field. For r, j = 1, 2, . . . and 1 ≤ i ≤ s, we choose automorphisms ψr and ηij with
ψr(0) = 0 and ηij(0) = 0. Then we define for 1 ≤ i ≤ s and n ≥ 0 the i-th coordinate of

the point xn as

x(i)
n =

∞∑
j=1

v
(i)
nj b

−j ,

with the b-adic expansion n =
∑∞

r=1 ar(n)br−1 and, for j ≥ 1,

v
(i)
nj = ηij

( ∞∑
r=1

c
(i)
jrψr(ar(n))

)
.
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The matrix C(i) =
(
c
(i)
jr

)
1≤j,r

is called the generator matrix of the i-th coordinate. Let

c(i)
m (l) =

(
c
(i)
m,1, . . . , c

(i)
m,l

)
∈ Fb

l,

and C(d1, . . . , ds; l) =
{
c

(i)
m (l)|1 ≤ m ≤ di, 1 ≤ i ≤ s

}
. Furthermore, define ρ(C; l) as the

maximal integer d such that C(d1, . . . , ds; l) is linearly independent over Fb for all non-

negative integers d1, . . . , ds satisfying
∑

1≤i≤s di = d. If, for an integer t ≥ 0 and all
integers l > t, the relation t ≥ l − ρ(C; l) holds, the constructed sequence is a (t, s)-

sequence in base b.

Tezuka [18] proposes to construct generator matrices in the following way: Let the

polynomials p1(z), . . . , ps(z) ∈ Fb[z] be pairwise coprime and ei = deg(pi) ≥ 1 their
degrees. Furthermore consider polynomials yim(z) for m ≥ 1, 1 ≤ i ≤ s, such that for

any j > 0 the family

{yim(z) mod pi(z) | (j − 1)ei ≤ m− 1 < jei}

is linearly independent over Fb. If elements a(i)(j,m, r) are defined by the expansion

yim(z)

pi(z)j
=

∞∑
r=w

a(i)(j,m, r)z−r (3)

with an integer w ≤ 0, then the generator matrices are given by

c(i)mr = a(i)(mi + 1, m, r), (4)

for 1 ≤ i ≤ s, m ≥ 1 and r ≥ 1, where mi = [(m− 1)/ei] and [·] denotes the integer
part. Observe that w in (3) may depend on i, j, and m. This construction yields a (t, s)-

sequence with t =
∑s

i=1(ei − 1), called generalized Niederreiter sequence. In particular,
for each integer l >

∑s
i=1(ei − 1) and all integers d1, . . . , ds ≥ 0 with

1 ≤
s∑

i=1

di ≤ l −
s∑

i=1

(ei − 1),

the vectors C(d1, . . . , ds; l) are linearly independent over Fb. Sobol’, Faure and Niederre-

iter sequences are special cases of this construction (see [18]).

Observe, that for (0, s)-sequences, the definition already provides elementary intervals

containing only one point, which simplifies the considerations significantly.

Theorem 2. Let (xn)n≥1 be a generalized Niederreiter (0, s)-sequence in base b (some-

times called generalized Faure sequence) and 0 < n < bl. Then
∏s

i=1 x
(i)
n ≥ b−l−s.
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Proof. Let di be the number of leading zeros in the b-adic expansion of x
(i)
n . For all

d1, . . . , ds with
∑s

i=1 di = l, the homogeneous equation C (d1, . . . , ds; l) z = 0 has only

the trivial solution z = 0. This corresponds to the point x0 = 0, which is left out of our
considerations. Thus, for the product of the coordinates we have

s∏
i=1

x(i)
n ≥

s∏
i=1

b−di−1 ≥ b−l−s.

For generalized Niederreiter (t, s)-sequences, the ideas of the proof are similar to

Sobol’s ideas [17]. There exist special elementary intervals with volume b−l, such that

just one point among the first bl elements of the sequence lies in any such interval. Using
formal Laurent series, we will show that the whole region

{
x ∈ Ūs :

∏s
i=1 x

(i) < b−l−t−s
}

can be covered by such special intervals that contain the point x0 = 0. Consequently, no
other points may lie in this region.

A formal Laurent series S(z) over Fb is given by S(z) =
∑∞

j=w ajz
−j , where w is an

integer and all aj ∈ Fb. The discrete exponential valuation ν is defined by ν(S(z)) = −w
if S(z) �= 0 and w is the least integer with aw �= 0, and by ν(0) = −∞.
For S(z) we define the polynomial part by [S(z)] =

∑0
j=min{w,0} ajz

−j . Furthermore we

use the notation [S(z)]pi(z) = [S(z)] mod (pi(z)). Define

y
(q)
im(z) =



[
yim/pi(z)

mi+1
]

for q = 0,[
yim/pi(z)

mi+1−q
]
pi(z)

for 0 < q ≤ mi + 1,

0 for q > mi + 1.

Then we have the representation

yim(z) =

mi+1∑
q=0

y
(q)
im(z)pi(z)

mi+1−q = pi(x)
mi+1

mi+1∑
q=0

y
(q)
im(z)

pi(z)q
.

Lemma 1. Let the elements c
(i)
mr ∈ Fb be defined by Tezuka’s construction (4). Choose

any integers d1, . . . , ds ≥ 0 and l >
∑s

i=1(ei−1) with 1 ≤∑s
i=1 di ≤ l and ei|di. Then the

vectors c
(i)
m =

(
c
(i)
m1, . . . , c

(i)
ml

)
∈ Fb

l with 1 ≤ m ≤ di, 1 ≤ i ≤ s, are linearly independent

over Fb.

Proof. Suppose that the family of vectors c
(i)
m , 1 ≤ m ≤ di, 1 ≤ i ≤ s, satisfies the linear

dependence relation
s∑

i=1

di∑
m=1

f (i)
m c(i)

m = 0 ∈ Fb
l.

Componentwise, this relation reads
∑s

i=1

∑di

m=1 f
(i)
m a(i)(mi + 1, m, r) = 0 for 1 ≤ r ≤ l.

Now consider for 1 ≤ i ≤ s the integers qi = di/ei − 1 and define for 1 ≤ q ≤ qi + 1 the
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polynomials

fiq(z) =

di∑
m=1

f (i)
m y

(q)
im(z).

¿From this, define the rational function

L =
s∑

i=1

qi+1∑
q=1

fiq(z)

pi(z)q
=

s∑
i=1

mi+1∑
q=1

fiq(z)

pi(z)q
=

s∑
i=1

mi+1∑
q=1

di∑
m=1

f (i)
m

y
(q)
im(z)

pi(z)q

=

s∑
i=1

di∑
m=1

f (i)
m

yim(z) − y
(0)
impi(z)

mi+1

pi(z)mi+1
=

s∑
i=1

di∑
m=1

f (i)
m

∞∑
r=1

a(i)(mi + 1, m, r)z−r

=

∞∑
r=1

(
s∑

i=1

di∑
m=1

f (i)
m c(i)mr

)
z−r.

The fact that L has no polynomial part follows readily from the construction, since y
(0)
im(z)

is exactly the polynomial part of yim(z)/pi(z)
mi+1. Thus, r only assumes positive values

in the second line.

Hence, the discrete exponential valuation ν(L) is less than −l. Now let g =
∏s

i=1 pi(z)
qi+1,

then Lg is a polynomial. On the other hand,

ν(Lg) < −l + deg(g) = −l +
s∑

i=1

(qi + 1)ei = −l +
s∑

i=1

di ≤ 0.

Therefore Lg = 0, thus L = 0. Like in [18, Lemma 6.1] and [11, Theorem 4.49], one can
also understand L as a partial fraction decomposition of a rational function, and so the

uniqueness of the partial fraction decomposition gives us

fiq = 0 for 1 ≤ q ≤ qi + 1, 1 ≤ i ≤ s.

First consider the case q = qi + 1. We have q > mi + 1, whenever m ≤ (q − 1)ei. Thus

y
(q)
im = 0 for 1 ≤ m ≤ (q − 1)ei, or equivalently

fiq(z) =

qei∑
m=(q−1)ei+1

f (i)
m y

(q)
im(z) = 0.

For m = (q − 1)ei + 1, . . . , qei, we have q = mi + 1 and therefore by construction the

y
(q)
im(z), (q − 1)ei < m ≤ qei, are linearly independent. In particular, f

(i)
m = 0 for

(q − 1)ei + 1 ≤ m ≤ qei.

By repeating the last argument for q = qi, . . . , 1, it follows that all f
(i)
m = 0.

Theorem 3. Each point xn, 1 ≤ n < bl, of a generalized Niederreiter (t, s)-sequence in
base b fulfills

s∏
i=1

x(i)
n ≥ b−l−t−s.
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Proof. We fix 1 ≤ n < bl and consider the b-adic expansions n =
∑l

r=1 ar(n)br−1 and

x(i)
n =

l∑
r=1

v(i)
nrb

−r

for 1 ≤ i ≤ s. Define di by v
(i)
n1 = · · · = v

(i)
ndi

= 0 and v
(i)
ndi+1 �= 0. Consequently,

x
(i)
n ≥ b−di−1 and

s∏
i=1

x(i)
n ≥ b−s−Ps

i=1 di .

If
∑s

i=1 di ≤ l+ t, the theorem holds. Otherwise we assume that there is a solution âr(n),

1 ≤ r ≤ l, to the system of linear equations

l∑
r=1

c
(i)
jrψr (ar(n)) = 0, (5)

1 ≤ j ≤ di, 1 ≤ i ≤ s. Every di can be written as di = d̂iei + ρi with ρi ≤ ei − 1. It
follows, that

∑s
i=1 ρi ≤

∑s
i=1 ei − s = t and

s∑
i=1

d̂iei ≥
s∑

i=1

di − t ≥ l.

Consider only the first d̂iei, 1 ≤ i ≤ s, equations in (5) and append
∑s

i=1 d̂iei−l variables.

Then 
â1(n), . . . , âl(n), 0, . . . , 0︸ ︷︷ ︸

Ps
i=1 d̂iei−l




is a nontrivial solution to the homogeneous system

Ps
i=1 d̂iei∑
r=1

c(i)mrψr (ar(n)) = 0,

1 ≤ m ≤ d̂iei, 1 ≤ i ≤ s, which is a contradiction to Lemma 1.

Corollary 1. For bl−1 ≤ n < bl with arbitrary l > 1 we have
∏s

i=1 x
(i)
n ≥ b−l−t−s ≥

b−t−s+1n−1. Thus, for generalized Niederreiter sequences (and the special cases of Sobol’,
Faure and Niederreiter’s (t, s) sequences) condition (1) is fulfilled with r = 1 and we have

a hyperbolic origin avoidance of order r = 1.

4. Avoiding all corners

For the numerical evaluation of functions with singularities on all boundaries of the unit
cube, one is interested in the minimal volume of the intervals defined by a given corner
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h = (h1, . . . , hs) ∈ {0, 1}s of the unit cube and the used QMC points xn, also called the
minimal hyperbolic distance of the points xn to the corner h:

MN (h) = min
1≤n≤N

s∏
i=1

∣∣hi − x(i)
n

∣∣ .
The left term of the corner avoidance condition (2) may then be written as MN(min) =
minhMN(h). One also has to notice that MN(0) was the quantity considered in the

previous section. In the following we will use the notations J = {i ∈ {1, . . . , s} : hi = 0}
and K = {i ∈ {1, . . . , s} : hi = 1}. Corners different from 0 and 1 will be called mixed

corners.

4.1 Halton sequences

For integers p and n with p-adic expansion n =
∑l

r=1 ar(n)pr−1 define the radical inverse
function by Φp(n) =

∑l
r=1 ar(n)p−r. The n-th element of the s-dimensional Halton

sequence [3] in relatively coprime bases p1, . . . , ps (typically the first s primes) is then
given by xn = (Φp1(n), . . . ,Φps(n)).

Owen [13] shows MN(0) ≥ c1N
−1, MN (1) ≥ c2(N +1)−1, and MN(min) ≥ c3(N(N +

1))−1, for suitable constants c1, c2, c3 > 0.

A simple argument shows the converse, namely that MN(0) ≤ c2N
−1 for Halton

sequences. To see this, first consider integers of the form ñ =
∏s

i=1 p
αi
i . Then

Mñ(0) ≤
∏

1≤i≤s

x
(i)
ñ ≤

∏
1≤i≤s

p−αi
i =

1

ñ
.

Using p̄ = mini∈{1,...,s} pi, the inequality p̄[logp̄ n] ≥ n/p̄ holds for all n > 0 and therefore

also

Mn(0) ≤Mp̄[logp̄ n](0) ≤ 1

p̄[logp̄ n]
≤ p̄

n
.

A similar argument can be formulated to show MN (1) ≤ c2(N + 1)−1.

The following theorem proves that – for infinitely many N – the mixed-corner avoid-
ance is of the form MN(min) ≤ c2(N logN)−1.

Theorem 4. For n ≥ 1 let xn be the n-th point of the Halton sequence in distinct

prime bases p1, . . . , ps. Then there exist subsequences yn = xN(n) for which the minimum
distance MN(n)(h) to any mixed corner h is bounded by

MN(n)(h) = O
(

1

N(n) logN(n)

)
.

In particular, the Halton sequence tends to the mixed corners faster than it tends towards
the origin.
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Proof. For all numbers a, b with gcd(a, b) = 1, according to Euler’s Theorem, we have

aϕ(b) ≡ 1 mod (b). Let a =
∏

k∈K p
αk
k and b =

∏
j∈J p

βj

j , with αj, βk ∈ N. Then clearly

gcd(a, b) = 1. Furthermore ϕ(b) = b
∏

j∈J(1 − 1/pj).
Fix an a > 1 as above and let the βi and thus b vary. Consider the subsequences with

indices N(a, b) = aϕ(b) − 1, then b|N(a, b) and aϕ(b)|N(a, b) + 1. Thus∏
j∈J

x
(j)
N(a,b)

∏
k∈K

(
1 − x

(k)
N(a,b)

)
≤ 1

aϕ(b)b
≤

(log a)
∏

j∈J(1 − 1/pj)

(N(a, b) + 1) log (N(a, b) + 1)
= O

(
1

N(a, b) logN(a, b)

)
.

Remark 2. For the Halton sequence in relatively prime bases pi =
∏

g q
γig

ig , 1 ≤ i ≤ s,

the same argument holds, with ϕ(b) = b
∏

j∈J

∏
g

(
1 − 1

qjg

)
and thus a similar change in

the constant of the last inequality.

Next we are looking for a better lower bound for MN(min). We will restrict our

investigations to prime bases p1, . . . , ps ∈ P. Observe that if we could find n with n =∏
j∈J p

αj

j and n + 1 =
∏

k∈K p
βk

k , then the following bounds would hold

s∏
i=1

p−1
i

∏
j∈J

p
−αj

j

∏
k∈K

p−βk

k ≤Mn(h) =
∏
j∈J

x(j)
n

∏
k∈K

(
1 − x(k)

n

) ≤∏
j∈J

p
−αj

j

∏
k∈K

p−βk

k .

Generally, finding such an n will not be possible. However, to find points with a small

hyperbolic distance, the conditions are n ≡ 0 mod pαi
i for all j ∈ J , and n ≡ −1

mod pβk

k for all k ∈ K. Alternatively, this family of s congruences may be written as

n = C
∏
j∈J

p
αj

j and n+ 1 = C̃
∏
k∈K

pβk

k (6)

with some unknown constants C and C̃. Subtracting these equations we get the Dio-

phantine equation

1 = C̃
∏
k∈K

pβk

k − C
∏
j∈J

p
αj

j (7)

with unknown integers C, C̃, βk, and αj . We now need to find numbers n of the form (6)

with minimal constants C and C̃ in terms of n, and thus minimal d =
∏

j∈J p
−αj

j

∏
k∈K p

−βk

k .

In order to find a lower bound for d we use the following variant of the Subspace

Theorem (cf. [14]).

Theorem 5 (Subspace Theorem). Let K be an algebraic number field and let S ⊂
M(K) = {canonical absolute values of K} be a finite set of absolute values which con-

tains all of the Archimedian ones. For each ν ∈ S let Lν,1, · · · , Lν,n be n linearly inde-
pendent linear forms in n variables with coefficients in K. Then for given δ > 0, the
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solutions of the inequality ∏
ν∈S

n∏
i=1

|Lν,i(x)|nν
ν < |x|−δ

with x ∈ an
K and x �= 0, where

|x| = max
1≤i≤n

1≤j≤deg K

|x(j)
i |,

| · |ν denotes valuation corresponding to ν, nν is the local degree and aK is the maximal
order of K, lie in finitely many proper subspaces of Kn.

We can now prove that asymptotically MN(min) > cN−1−ε for all ε > 0.

Theorem 6. If C, C̃, αj, and βk satisfy equation (7), then for every ε > 0 we have
d−1 =

∏
j∈J p

αj

j

∏
k∈K p

βk

k < cN1+ε, where c depends only on s and ε. In particular

MN (min) > O(N−1−ε).

Proof. Let us write x1 = C̃
∏

k∈K pβk

k = N + 1 and x2 = C
∏

j∈J p
αj

j = N . Assume first
C̃C
x2

≥ N−ε. Then

C̃N ε ≥ x2

C
=
∏
j∈J

p
αj

j ,

x1N
ε ≥

∏
j∈J

p
αj

j

∏
k∈K

pβk

k ,

(N + 1)1+ε ≥
∏
j∈J

p
αj

j

∏
k∈K

pβk

k ,

hence we are done in this case. It remains to show that the converse, C̃C
x2

< N−ε,

holds only for finitely many N and its effects can thus be included in the constant. We

want to use the Subspace Theorem stated above. Our field are the rationals Q, and
the set S consists of the valuations corresponding to the primes p1, . . . , ps and the usual

Archimedian valuation. We define our linear forms Lν,1(x, y) = x for all ν ∈ S and
Lν,2(x, y) = y for all non-Archimedian valuations of S and L∞,2(x, y) = x− y. We have:

|(x1, x2)|−ε ≥ N−ε >
C̃C

x2

=
x1∏

j∈J p
αj

j

· 1∏
k∈K p

βk

k

=
2∏

i=1

∏
ν∈S

|Lν,i(x1, x2)|nν
ν .

By the Subspace Theorem all solutions to this inequality lie in finitely many proper

subspaces of Q2. Let T be such a subspace. Then we have

x1a + x2b = 0 (Subspace T )

x1 − x2 = 1
(8)

The linear System (8) has at most one solution, hence the inequality has only finitely
many solutions and we have proved our theorem.
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Remark 3. Theorem 6 also proves that MN(min) > cN−1−ε if we consider bases pi =∏
g q

γig

ig , 1 ≤ i ≤ s, that are “only” relatively prime. In this case, the products in (7)

contain all prime factors of the bases, and the αj and βk are restricted to multiples of the
corresponding γig.

4.2 Faure Sequences

Let p be the least prime larger or equal to the dimension s, and let x be a p-adic rational

in [0, 1) with expansion x =
∑∞

i=0 x(i)p
−i−1, for which we will use the short notation

x = (x(0), x(1), x(2), . . .). For m ≥ 1 define

Bm(k) =



(
0
0

)
k0

(
1
0

)
k1 · · · (

m
0

)
km(

0
1

)
k−1

(
1
1

)
k0 · · · (

m
1

)
km−1

...
. . .

...(
0
m

)
k−m

(
1
m

)
k1−m · · · (

m
m

)
k0


 if k �= 0

and let Bm(0) be the (m+ 1) × (m+ 1) unit matrix.
Further, define P (x) = Bm(1)(x(0), . . . , x(m))

T mod p for a sufficiently large m. The n-

th point of the Faure sequence [2] is given by (Φp(n), P (Φp(n)), . . . , P s−1(Φ(n)), where
Φp(n) is again the radical inverse function defined in Section 4.1.

Observe that for l, k ∈ R we have Bm(k)Bm(l) = Bm(l+ k), in particular Bm(k)−1 =
Bm(−k), and that the function P is nilpotent, i.e. P p = id or equivalently Bm(p) = I

(mod p). Furthermore, the n-th point of the Faure sequence can also be written as
(B(0)Φp(n), B(1)Φp(n), . . . , B(s− 1)Φp(n)).

Remark 4. The shift of coordinates in the Faure sequence corresponds to a permutation
of the Faure sequence. Let s be prime, x be an s-tuple, and S(x) = S(x(1), . . . , x(s)) =

(x(s), x(1), . . . , x(s−1)). Consider an n ∈ N with pl ≤ n < pl+1 and xn the n-th element
of the Faure sequence. Then S(xn) = xm for some m with pl ≤ m < pl+1, which is an

immediate consequence of the aforementioned properties.

As the Faure sequence is a generalized Niederreiter (0, s)-sequence, Theorem 2 already

proves an origin avoidance MN (0) > cN−1. Now we consider mixed corners.

Lemma 5. Let s be prime. There exists a subsequence yn = xN(n) of the Faure sequence

such that
∏s

i=1

∣∣∣hi − y
(i)
n

∣∣∣ ≤ p3

N(n)2
.

Proof. Consider the subsequence with indices N(n) = (p − 1)ppn−1. By shifting the

coordinates we may assume s = p and h1 = 0, hp = 1.
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It is sufficient to show that y
(p)
n = (p− 1, p− 1, . . . , p− 1)T . We know

y(p)
n = B(p− 1)y(1)

n = B(−1)(0, . . . , 0, p− 1)T ,

hence we have to prove

(
pn − 1

j

)
=

j∏
i=1

pn − i

i
= (−1)j over Fp. (9)

Every i = 1, . . . , j can be written as i = lpk with 0 ≤ k < n and p � l. Then pn−i
i

=
pn−k

l
− 1 = −1 in Fp. Adding an additional factor p in the bound for the case when we

need to shift the coordinates completes the proof.

Remark 6. The previous lemma holds even for non-prime s, if the vector h contains the
pattern (. . . , 1, 0, . . . ).

Finally, we consider the upper corner 1. Let us start with two-dimensional Faure
sequences.

Lemma 7. Let s = 2. There exists a subsequence yn = xN(n) of the Faure sequence such

that
∏2

i=1

(
1 − y

(i)
n

)
≤ p2

N(n)2
.

Proof. Consider the subsequence with indices N(n) = 22n−1 − 1. We have to prove that

y
(2)
n = B(1)y

(1)
n = (1, . . . , 1), or equivalently

2n−2∑
i=0

(
i

j

)
=

(
2n − 1

j

)
= 1

over F2. This, however, can be easily seen by the same arguments used for equation (9)

with p = 2 and by the fact that −1 = 1 over F2.

In higher dimensions, only a slower upper bound of order N−3/2 for the corner ap-

proach rate of the upper corner 1 can be shown.

Lemma 8. Let s > 2. There exists a subsequence yn = xN(n) of the Faure sequence such

that
s∏

i=1

(
1 − y(i)

n

) ≤ p3

(N(n))3/2
.

Proof. Let us consider the subsequence with indices N(n) = p2pn−1 − 1. Since y
(1)
n =

(p − 1, . . . , p − 1), it is sufficient to prove y
(s)
n = (η(0), . . . , η(2pn−2)) with η(j) = p − 1 for

0 ≤ j ≤ pn. We may assume that the dimension s = p is a prime. Otherwise we consider
the p-dimensional Faure sequence (where p is the smallest prime larger than s) and shift
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the coordinates accordingly.
We compute

B(p− 1)y(1)
n = B(−1)y(1)

n = y(p)
n .

Since y
(1)
n = (p− 1, . . . , p− 1), we have to prove

F (n, j) =

2pn−2∑
k=0

(−1)k−j

(
k

j

)
= 1

for 0 ≤ j ≤ pn−1 over Fp. For j = 0, we have F (n, 0) =
∑2pn−2

k=0 (−1)k = 1−1+1−· · ·+1 =

1, and for j = 1, we have

F (n, 1) =

2pn−2∑
k=0

(−1)k−1k = −0 + 1 − 2 + 3 − 4 + − · · · − (2pn − 2) = −(pn − 1) = 1.

For the general case 1 < j ≤ pn − 1, we will first rewrite the sum. Therefore we recall

the relation
(

k
j

)
=
∑k−1

l=0

(
l

j−1

)
to obtain

F (n, j) =

2pn−2∑
k=0

(−1)k−j

(
k

j

)
=

2pn−2∑
k=0

k−1∑
l=0

(−1)k−j

(
l

j − 1

)

=

2pn−3∑
l=0

(
l

j − 1

) 2pn−2∑
k=l+1

(−1)k−j = (−1)j

pn−2∑
l=0

(
2l + 1

j − 1

)
.

Furthermore we consider for 1 ≤ j ≤ pn − 2

2F (n, j + 1) − F (n, j) =(−1)j+1

(
2

pn−2∑
l=0

(
2l + 1

j

)
+

pn−2∑
l=0

(
2l + 1

j − 1

))

=(−1)j+1

(
pn−2∑
l=0

(
2l + 1

j

)
+

pn−2∑
l=0

((
2l + 1

j − 1

)
+

(
2l + 1

j

)))

=(−1)j+1

(
pn−2∑
l=0

(
2l + 1

j

)
+

pn−2∑
l=0

(
2l + 2

j

))

=(−1)j+1

2pn−2∑
l=1

(
l

j

)
= (−1)j+1

(
2pn − 1

j + 1

)
.

By a similar argument as for equation (9) we have
(
2pn−1
j+1

)
= (−1)j+1, hence

2F (n, j + 1) − F (n, j) = 1 (1 ≤ j ≤ pn − 2).

By induction on j it follows that F (n, j) = 1 for all 0 ≤ j ≤ pn − 1. This implies

s∏
i=1

(
1 − y(i)

n

) ≤ 1

p2pn−2

1

ppn−1
=

p3/2

((N(n) + 1)/p)3/2
<

p3

(N(n))3/2
,

where the additional factor p for N(n) stems from a possible coordinate shift in the case

when s is not prime.
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[2] H. Faure. Discrépance de suites associées à un système de numération (en dimension un).
Bull. Soc. Math. France, 109:143–182, 1981.

[3] J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating
multidimensional integrals. Numer. Math., 2:84–90, 1960.

[4] J. Hartinger and R. Kainhofer. Non-uniform low-discrepancy sequence generation and
integration of singular integrands. Submitted, 2004.

[5] J. Hartinger, R. Kainhofer, and R. Tichy. Quasi-Monte Carlo algorithms for unbounded,
weighted integration problems. Journal of Complexity, 20(5):654–558, 2004.

[6] E. Hlawka. Uniform distribution modulo 1 and numerical analysis. Compositio Math.,
16:92–105, 1964.

[7] B. Klinger. Numerical integration of singular integrands using low-discrepancy sequences.
Computing, 59(3):223–236, 1997.

[8] H. Niederreiter. Point sets and sequences with small discrepancy. Monatsh. Math., 104:273–
337, 1987.

[9] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers. Bulletin of the
AMS, 84(6):957–1029, 1987.

[10] H. Niederreiter. Low-discrepancy and low-dispersion sequences. Journal of Number Theory,
30(1):51–70, 1988.

[11] H. Niederreiter. Random number generation and Quasi-Monte Carlo methods, volume 63
of SIAM Conf. Ser. Appl. Math. SIAM, Philadelphia, 1992.

[12] A. B. Owen. Multidimensional variation for Quasi-Monte Carlo. In J. Fan and G. Li,
editors, International Conference on Statistics in Honour of Professor Kai-Tai Fang’s 65th
Birthday, 2005.

[13] A. B. Owen. Halton sequences avoid the origin. SIAM Review, 48, 2006, (to appear).

[14] W. M. Schmidt. Diophantine approximations and Diophantine equations, volume 1467 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1991.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A10 16

[15] I. M. Sobol’. On the distribution of points in a cube and the approximate evaluation of
integrals. USSR Comput. Math. Math. Phys., 7:86–112, 1967.

[16] I. M. Sobol’. Computation of improper integrals by means of equidistributed sequences.
Dokl. Akad. Nauk SSSR, 210:278–281, 1973.

[17] I. M. Sobol’. ����������	
� ���	�
��	� ���������		�� ������������	����� ��

��
��
��		��� ���
���
� ���������		�� 
	�������� (On the use of uniformly dis-
tributed sequences for approximate computations of improper integrals). In S. Sobolev,
editor, ������ ���	
����� ����� � ���������� �������	������ 	�	���	 � �����


���� �	�	�	� �	
��	
������� ����� (Theory of cubature formulas and applications
to certain problems in mathematical physics), pages 62–66. Novosibirsk Nauka, 1973.

[18] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Academic Publishers,
Norwell, Mass, 1995.

[19] S. Tezuka and T. Tokuyama. A note on polynomial arithmetic analogue of halton se-
quences. ACM Trans. Model. Comput. Simul., 4(3):279–284, 1994.


