ON A GENERALIZATION OF A THEOREM BY VOSPER

Oriol Serra

UPC, Jordi Girona, 1, 08034 Barcelona, Spain oserra@mat.upc.es

Gilles Zémor ENST, 46 rue Barrault, 75 634 Paris 13, France zemor@infres.enst.fr

Received: 4/7/00, Accepted: 8/4/00, Published: 8/4/00

Abstract

Let S, T be subsets of $\mathbb{Z}/p\mathbb{Z}$ with $\min\{|S|, |T|\} > 1$. The Cauchy–Davenport theorem states that $|S + T| \ge \min\{p, |S| + |T| - 1\}$. A theorem by Vosper characterizes the critical pair in the above inequality. We prove the following generalization of Vosper's theorem. If $|S + T| \le$ $\min\{p-2, |S| + |T| + m\}$, $2 \le |S|, |T|$, and $|S| \le p - \binom{m+4}{2}$, then S is a union of at most m + 2arithmetic progressions with the same difference. The term $\binom{m+4}{2}$ is best possible, i.e. cannot be replaced by a smaller number.

1. Introduction

One of the subjects of additive number theory is the study of *inverse problems*, i.e. the study of the structure of subsets S and T of a group such that the cardinality |S + T| is "small". The oldest result in this vein is the Cauchy-Davenport theorem which states that $|S + T| \ge \min\{p, |S| + |T| - 1\}$ for any subsets S, T of a group of prime order p. Vosper's theorem [6] characterizes the sets for which equality holds. It states :

Theorem 1 (Vosper) Let S and T be subsets of a group of prime order p such that $|S| \ge 2$, $|T| \ge 2$, and |S+T| < p-1. Then either $|S+T| \ge |S| + |T|$, or S and T are in arithmetic progression with the same difference.

Freiman [1] gave the following improvement of Vosper's Theorem in the case when S = T.

Theorem 2 (Freiman) Let S be a subset of a group of prime order p such that |S| < p/35. Suppose that $|S + S| \le 2|S| + m$ with $m \le \frac{2}{5}|S| - 3$. Then S is contained in an arithmetic progression of length at most |S| + m + 1. As far as we know, the first improvement of Vosper's result for different sets S and T is the recent result of Hamidoune and Rødseth [5] who proved :

Theorem 3 (Hamidoune-Rødseth) Let S and T be subsets of a group of prime order p, such that $|S| \ge 3$, $|T| \ge 3$, $7 \le |S + T| \le p - 4$. Then either $|S + T| \ge |S| + |T| + 1$, or S and T are contained in arithmetic progressions with the same difference and |S| + 1 and |T| + 1 elements respectively.

In another direction, the Cauchy-Davenport theorem was generalized to arbitrary Abelian groups by Mann [2, p. 2] :

Theorem 4 (Mann) Let S be a subset of an arbitrary Abelian group G. Then one of the following holds:

- (i) for every subset T such that $S + T \neq G$ we have $|S + T| \geq |S| + |T| 1$.
- (ii) there exists a proper subgroup H of G such that |S + H| < |S| + |H| 1.

The following theorem of Hamidoune [4] is both a generalization of Mann's theorem and of Vosper's theorem.

Theorem 5 (Hamidoune) Let G be a (not necessarily Abelian) group generated by a finite subset S containing 0. Suppose that every nonzero element of G has order $\geq |S|$. Then one of the following holds:

- (i) for every subset T such that $2 \le |T| < \infty$, we have $|S+T| \ge \min(|G|-1, |S|+|T|)$.
- (ii) S is an arithmetic progression.

Notice the similarity between Mann's and Hamidoune's theorems 4 and 5. Together they state, broadly speaking, that subsets S of a group for which S + T is "small" for some T tend either to cluster around subgroups or to be an arithmetic progression.

A very interesting feature of Hamidoune's proof of his result is that it unites Theorems 1 and 4 under a short, elegant, and insightful explanation. This involves defining k-isoperimetric numbers and k-atoms associated to S. It turns out that the 1-atoms lead naturally to the subgroup H in Theorem 4 and that the 2-atoms lead to the difference of the arithmetic progression in Theorem 5.

In this paper, we study the 2-atoms of an arbitrary subset S of a group of prime order and give a sufficient condition on |S| for them to be of cardinality two. We shall see that this condition is necessary in very many situations. This leads to a further generalization of Vosper's theorem in the prime order case. Our main result is : **Theorem 6** Let m be a non-negative integer and let S be a subset of a group of prime order p such that $2 \le |S| . Then either$

$$|S + T| > |S| + |T| + m,$$

for any subset T such that $2 \leq |T|$ and $|S + T| \leq p - 2$, or S is the union of at most m + 2 arithmetic progressions with the same difference.

Our proof leads to the condition |S| in a natural way, and we shall see thatthis bound is best possible. More precisely, there exist subsets <math>S of $\mathbb{Z}/p\mathbb{Z}$ with cardinality $p - {m+4 \choose 2}$ that are not the union of at most m + 2 arithmetic progressions and for which $|S+T| \leq |S| + |T| + m \leq p - 2$ for some subset $|T| \geq 2$. Note that this situation is unlike that of \mathbb{Z} , but these sets S have to be "large", i.e. $|S| \geq p - {m+4 \choose 2}$.

2. Atoms

Let S be a fixed subset of $\mathbb{Z}/p\mathbb{Z}$ with $0 \in S$. For a subset $X \subset G$ we write

$$N_S(X) = (X+S) \setminus X.$$

We omit the subscript S when the reference to it is clear from the context. If $0 \in X$, we write $X^* = X \setminus \{0\}$.

Following the terminology of Hamidoune [4], we say that S is k-separable if there is $X \subset \mathbb{Z}/p\mathbb{Z}$ such that $|X| \geq k$ and $|X+S| \leq p-k$. If S is k-separable, the k-isoperimetric connectivity of S is

$$\kappa_k(S) = \min\{|N(X)|, \ X \subset \mathbb{Z}/p\mathbb{Z}, k \le |X| \text{ and } |X+S| \le p-k\},\$$

and the k-isoperimetric number of S is

$$d_k(S) = \min\{|N(X)|, \ X \subset \mathbb{Z}/p\mathbb{Z}, |X| = k\}.$$

We say that a subset $F \subset G$ is a k-fragment of S if $|N(F)| = \kappa_k(S)$, $|F| \ge k$ and $|F+S| \le p-k$. A k-fragment of minimum cardinality is said to be a k-atom of S. We denote by $\alpha_k(S)$ the cardinality of a k-atom of S. Note that $\alpha_k(S) > k$ if and only if $\kappa_k(S) < d_k(S)$. Note also that, when |S| = 2 and S is k-separable, then $\alpha_k(S) = k$ and $\kappa_k(S) = 1$. To avoid trivial cases we always assume that |S| > 2.

The following basic property of k-atoms is proved in [4].

Theorem 7 Let A be a k-atom and let F be a k-fragment of a subset $S \subset \mathbb{Z}/p\mathbb{Z}$ with $0 \in S$. Then, either $A \subset F$ or $|A \cap F| \leq k - 1$.

This theorem has a number of consequences. We use it here to derive some intermediate results that we shall need. For the rest of this section it is always assumed that S is a 2-separable subset of $\mathbb{Z}/p\mathbb{Z}$, $0 \in S$, and $|S| \geq 3$.

Proposition 8 Let A be a 2-atom of S. Then, $|A|(|A|-1) \leq 2\kappa_2(S)$.

Proof. We may assume |A| > 2. Let $S = \{0 = s_0, s_1, \dots, s_r\}, r \ge 2$. We have

$$\kappa_2(S) = |A + S| - |A| = \left| \bigcup_{i=1}^r [(A + s_i) \setminus \bigcup_{0 \le j < i} (A + s_j)] \right|.$$
(1)

If A is a 2-atom then so is A + z for any z. Therefore equation (1) and Theorem 7 imply

$$\kappa_2(S) \ge (|A| - 1) + (|A| - 2) + \max\{|A| - 3, 0\} + \ldots + \max\{|A| - r, 0\}.$$

If |A| > |S| then $|A + S| - |A| \ge (|A| - 1) + (|A| - 2) \ge 2|A| - 3 \ge 2|S| - 1 \ge d_2(S)$, which implies $\alpha_2(S) = 2$. Hence $|A| \le |S|$. Therefore,

$$\kappa_2(S) \ge (|A| - 1) + \ldots + 2 + 1 = |A|(|A| - 1)/2,$$

as claimed.

Recall that $X \subset G$ is a Sidon set if $|2X| = {|X|+1 \choose 2}$, that is, there are no two unordered pairs of (possibly equal) elements in X with the same sum. The following is an easy consequence of Theorem 7.

Proposition 9 Let A be a 2-atom of S. If |A| > 2 then A is a Sidon set.

Proof. Suppose that x + y = x' + y' for x, y, x', y' in A. Then $\{x, y'\} \in (A + x - x') \cap A$. Since A + z is a 2-atom for each $z \in \mathbb{Z}/p\mathbb{Z}$, Theorem 7 implies either x = y' or x = x'. Hence, all twofold sums of elements of A are different and A is a Sidon set.

Proposition 10 Suppose S is a Sidon set in $\mathbb{Z}/p\mathbb{Z}$. Then, $\alpha_2(S) = 2$.

Proof.

For each $x \in \mathbb{Z}/p\mathbb{Z}$, $x \neq 0$, we have $|S \cap (S+x)| \leq 1$. For $k \leq |S|$ let $X = \{x_1, \ldots, x_k\} \subset \mathbb{Z}/p\mathbb{Z}$. Then,

$$|N(X)| = |S+X| - |X| = \left| \bigcup_{i=1}^{k} [(S+x_i) \setminus \bigcup_{j < i} (S+x_j)] \right| - |X|$$

$$\geq [|S| + (|S| - 1) + (|S| - 2) + \dots + (|S| - |X| + 1)] - |X| = \frac{1}{2} |X|(2|S| - |X| - 1).$$

In particular,

$$d_k(S) \ge \frac{1}{2}k(2|S| - k - 1).$$
(2)

Let A be a 2-atom of S and suppose that |A| > 2, so that $|N(A)| < d_2(S)$. We have, for any $s \in S^*$, $|S + \{0, s\}| = 2|S| - 1$ so that $|N(\{0, s\})| = 2|S| - 3$: we conclude therefore that |N(A)| < 2|S| - 3. But according to the lower bound (2), which is a quadratic function of k with negative leading term and zeros at k = 0 and k = 2|S| - 1, this implies |A| > 2|S| - 3. By Proposition 8 we then have (2|S| - 3)(2|S| - 4) < 2(2|S| - 4), which implies |S| < 3 against our assumption. Hence, $\alpha_2(S) = 2$.

Finally we have :

Proposition 11 Let A be a 2-atom of S. Then, $\alpha_2(A) = 2$. Moreover, $|A| \le m+3$, where $m = \kappa_2(S) - |S|$.

Proof. If $\alpha_2(S) = |A| = 2$ there is nothing to prove. Suppose that |A| > 2. We may assume that $0 \in A$. By Proposition 9, A is a Sidon set. By Proposition 10 we have $\alpha_2(A) = 2$.

On the other hand, we have |S + A| - |A| = |S| + m, which implies

$$|A| + m = |S + A| - |S| \ge \kappa_2(A) = d_2(A) = 2|A| - 3.$$

Hence $|A| \leq m+3$.

3. Surjective pairs of subsets

To prove that a set S is the union of sufficiently few arithmetic progressions, say of difference a, our basic strategy is to show that $\{0, a\}$ is a 2-atom of S. This is why, in this section, we study 2-atoms A of sets S such that |A| > 2. We shall prove that these 2-atoms have very special structure, namely that they define, together with S, surjective pairs. Before defining this concept we need some notation.

Let Y be a fixed subset of $\mathbb{Z}/p\mathbb{Z}$. For each subset $X \subset \mathbb{Z}/p\mathbb{Z}$ and each integer $i \geq 2$ we denote

$$N_i(X) = N_Y(X + (i-1)Y),$$

where $iY = \underbrace{Y + \ldots + Y}_{i}$. We write $N_0(X) = X$ and $N_1(X) = N_Y(X)$. Note that

$$N_{i+1}(X) = (N_i(X) + Y) \setminus \bigcup_{0 \le j \le i} N_i(X).$$

For a subset U of Y and $i \ge 1$, we denote by $N_i^U(X)$ the set of elements $z \in N_i(X)$ such that $z - U \subset N_{i-1}(X)$ and U is a maximal subset of Y with this property. We also write

$$N_i^{\leq U}(X) = \bigcup_{V \subset U} N_i^V(X).$$

Lemma 12 For each $U \subset Y$ and $i \geq 1$, if $N_{i+1}^U(X) \neq \emptyset$ then $N_{i+1}^U(X) - U \subset N_i^{\leq U}(X).$

Proof. Let $z \in N_{i+1}^U(x)$, $u \in U$ and $z' = z - u \in N_i(X)$. Then $z' \in N_i^V(X)$ for some subset V of Y. But, for any $v \in V$, we have $z - v = z' - v + u \in N_j(X)$ for some j < i + 1. Since $z \in N_{i+1}(X)$ we must have j = i: this implies $V \subset U$. In particular, if $N_{i+1}^U(X) \neq \emptyset$, then $N_{i+1}^U(X) - U \subset \bigcup_{V \subset U} N_i^V(X) = N_i^{\leq U}(X)$.

Definition A pair (X, Y) of subsets of $\mathbb{Z}/p\mathbb{Z}$ is said to be *h*-surjective if $X, Y \neq \mathbb{Z}/p\mathbb{Z}$ and $|(z - Y) \cap X| \ge h$ for each $z \in N_Y(X)$. (3)

The following two lemmas are the key steps in our proof of Theorem 6.

Lemma 13 Let S be a 2-separable subset of $\mathbb{Z}/p\mathbb{Z}$ and let A be a 2-atom of S such that $|A^*| \geq 2$. Then

- (i) (S, A) is a 2-surjective pair, and
- (ii) (S + A, A) is a $|A^*|$ -surjective pair.

Proof. We may assume that $0 \in A$. Let $z \in N_A(S)$ and suppose that there is only a single element $z' \in A$ such that $z - z' \in S$. Let $A' = A \setminus \{z'\}$. Then $|A + S| = |(A' + S) \cup \{z\}| = |A' + S| + 1$. Therefore, $|N_S(A)| = |N_S(A')|$ and $|A'| \ge 2$, contradicting the minimality of A. Hence, (S, A) is 2-surjective.

Let U be a subset of A^* with at most |A| - 2 elements.

By Lemma 12 and the Cauchy-Davenport theorem, if $N_i^U(S) \neq \emptyset$ for some $i \ge 2$, then we have

$$|N_{i-1}^{\leq U}(S)| \ge |N_i^U(S) - U| \ge |N_i^U(S)| + |U| - 1.$$
(4)

If $|U| \leq |N_1^{\leq U}(S)|$, then

$$|S + (A \setminus U)| - |A \setminus U| \ge |S + A| - |N_1^{\le U}(S)| + |U| - |A| \le |S + A| - |A|,$$

thus contradicting the hypothesis that A is a 2-atom. Hence,

 $|N_1^{\leq U}(S)| \leq |U| - 1, \ U \subset A^*, |U| \leq |A| - 2.$

Therefore, if $N_2^U(S) \neq \emptyset$, then (4) implies

$$|N_2^U(S)| \le |N_1^{\le U}(S)| - (|U| - 1) \le 0,$$

a contradiction. Hence $N_2^U(S) = \emptyset$ for each proper subset of A^* and therefore (S + A, A) is an $|A^*|$ -surjective pair.

Lemma 14 Let (X, Y) be an h-surjective pair in $\mathbb{Z}/p\mathbb{Z}$ and $i \geq 1$. If $X + iY \neq \mathbb{Z}/p\mathbb{Z}$ then (X + iY, Y) is also an h-surjective pair. In particular, if $|N_i^{\leq U}(X)| < h$ for some $U \subset Y$ and $i \geq 1$ then $N_{i+1}^U(X) = \emptyset$.

Proof. Assume that (X+(i-1)Y,Y) is *h*-surjective for some $i \ge 1$. We have $N_1(X+(i-1)Y) = N_i(X)$. For each subset U of Y with strictly less than h elements, we have $N_i^{\le U}(X) = \emptyset$. If $N_{i+1}^U(X) \ne \emptyset$, $i \ge 1$ then Lemma 12 implies $N_{i+1}^U(X) - U \subset N_i^{\le U}(X) = \emptyset$, a contradiction. Therefore, (X+iY,Y) is also *h*-surjective. The first part of the result follows by induction.

Suppose now that $|N_i^{\leq U}(X)| < h$ for some $U \subset Y$. Then, if $N_{i+1}^U(X) \neq \emptyset$, Lemma 12 implies $h > |N_i^{\leq U}(X)| \ge |N_{i+1}^U(X) - U| \ge |U|$, this contradicts the *h*-surjectivity of (X + iY, Y).

Theorem 15 Let $S \subset \mathbb{Z}/p\mathbb{Z}$ be a 2-separable subset. If $\alpha_2(S) > 2$ then

$$|S| \ge p - \binom{m+4}{2},$$

where $m = \kappa_2(S) - |S|$.

Proof. We may assume |S| > 2. Let A be a 2-atom of S containing 0 and suppose that |A| > 2.

We use the above notation with Y = S, namely, $N_i(S) = N_A(S + (i-1)A)$. By definition of $\kappa_2(S)$ and m we have |S + A| = |A| + |S| + m, so that $|N_1(S)| = |A| + m$.

1. Suppose first |A| = 3, so that $N_1(S) = |A| + 3$.

By Lemma 13 and Lemma 14, if $S + iA \neq \mathbb{Z}/p\mathbb{Z}$, $i \geq 1$, then (S + iA, A) is a 2-surjective pair. Therefore $N_i(S) = N_i^{A^*}(S)$ for $i \geq 2$. If $N_i(S) \neq \emptyset$, then Lemma 12 implies $N_i(S) - A^* \subset N_{i-1}(S)$. By the Cauchy-Davenport theorem this implies, for all $i \geq 2$ such that $N_i(S) \neq \emptyset$,

$$|N_i(S)| \le |N_{i-1}(S)| - 1.$$

Therefore, $|N_i(S)| \leq (m+3) - (i-1) = m+4-i$ and $N_i(S) = \emptyset$ for $i \geq m+4$. Hence, $\mathbb{Z}/p\mathbb{Z} = \bigcup_{i=0}^{m+3} N_i(X)$ which implies

$$|S| \ge p - \sum_{i=1}^{m+3} |N_i(S)| \ge p - \frac{(m+3)(m+4)}{2}$$

as claimed.

2. Suppose now that h+1 = |A| > 3. Let us write $\mathbb{Z}/p\mathbb{Z} = \bigcup_{i=0}^{k} N_i(X)$, so that we have

$$|S| = p - \sum_{i=1}^{k} |N_i(S)|$$

By Lemma 13 and Lemma 14, if $S + iA \neq \mathbb{Z}/p\mathbb{Z}$, $i \geq 1$, then (S + iA, A) is an *h*surjective pair. Therefore $N_i(S) = N_i^{A^*}(S)$ for $i \geq 2$. If $N_i(S) \neq \emptyset$, then Lemma 12 implies $N_i(S) - A^* \subset N_{i-1}(S)$. Since A^* is a Sidon set with more than 2 elements, it is not an arithmetic progression. By Vosper's theorem this implies, for all $i \geq 2$ such that $|N_i(S)| > 1$,

$$|N_i(S)| \le |N_{i-1}(S)| - h.$$

Therefore, $|N_2(S)| \le m + |A| - h = m + 1$, and if $k \ge 3$,

- (i) $|N_i(S)| \leq (m+1) (i-2)h$ for all i such that $3 \leq i \leq k-1$, and
- (ii) either $|N_k(S)| = 1$ and $|N_{k-1}(S)| = h$ or $|N_k(S)| \le (m+1) (k-2)h$.

In every case we get $k \leq 2 + (m+1)/h$.

By Proposition 11, $|N_1(S)| = m + |A| \le 2m + 3$; therefore, if k = 2 we get

 $|N_1(S)| + |N_2(S)| \le 3m + 4$

and it is routinely checked that this is always smaller than $\binom{m+4}{2}$. If $k \geq 3$ we get

$$\sum_{i=1}^{k} |N_i(S)| \le (2m+3) + (m+1)(k-1) - h\frac{(k-2)(k-1)}{2} + 1$$

which gives, since we have supposed $h \ge 2$,

$$\sum_{i=1}^{k} |N_i(S)| \le (2m+4) + (k-1)[(m+1) - (k-2)] \le (2m+4) + (k-1)m,$$

and, since $k-1 \leq 1+(m+1)/h$, we get

$$\sum_{i=1}^{k} |N_i(S)| \le (3m+4) + m(m+1)/2$$

which is less than $\binom{m+4}{2}$.

This concludes the proof. ■

4. A Proof of Theorem 6: Discussion

Suppose S is a subset of $\mathbb{Z}/p\mathbb{Z}$ satisfying the conditions of Theorem 6 and suppose there exists $T \subset \mathbb{Z}/p\mathbb{Z}$ such that $2 \leq |T|$, $|S+T| \leq p-2$, and $|S+T| \leq |S|+|T|+m$. Then, without loss of generality we may suppose $0 \in S$, and S is a 2-separable set for which $\kappa_2(S) \leq |S|+m$. Let A be a 2-atom of S containing 0. By Theorem 15 we have |A| = 2 and therefore

$$|S + A| \le |S| + |A| + m = |S| + m + 2.$$

Let $A = \{0, a\}$. Let $S = S_1 \cup \ldots \cup S_h$ be a partition of S into arithmetic progressions of difference a such that $(S_i + a) \cap S_j = \emptyset$ for each pair of different subscripts i, j. Then,

$$|S + A| = \sum_{i=1}^{h} |S_i + \{0, a\}| = |S| + h,$$

which implies $h \le m + 2$ and Theorem 6 is proved.

We now show that the term $\binom{m+4}{2}$ in Theorem 6 cannot be reduced. First consider the following example. Let p be a prime number of the form p = 3b + 1 for some positive integer b and let $S = [0, b-1] \cup [b+1, 2b-2] \cup [2b+1, 3b-3]$ and $A = \{0, 1, b\}$. Then |S+A| = |S| + |A|, i.e. $|N_S(A)| = |S|$. Note that $|S| = p - 6 = \binom{4+0}{2}$. Note also that $|N_S(\{0, x\})| \ge |S| + 1$ for any $x \ne 0$, since otherwise Vosper's theorem would imply that S is an arithmetic progression of difference x, which can be easily checked not to be the case. This shows that 2-atoms of size more than 2 do exist. Furthermore, by Proposition 11, the size of a 2-atom is at most 3 in this example, so that A is actually a 2-atom of S.

This example can be generalized to sets S with $\kappa_2(S) = |S| + m$ for m > 0 and for which $\alpha_2(S) = 3$. They are built with a similar pattern. Let b be a positive integer such that p = (m+3)b + 1 is a prime number. Let

$$S = [0, b-1] \cup [b+1, 2b-2] \cup [2b+1, 3b-3] \cup \ldots \cup [(m+2)b+1, (m+3)b-(m+3)].$$

Again set $A = \{0, 1, b\}$. We have |S + A| = |S| + |A| + m. Note that $|S| = p - \binom{m+4}{2}$, i.e. exactly the bound of Theorem 6. It is not quite clear to us how to formally prove that $d_2(S) > |S| + m$, or, equivalently, that S is not the union of k arithmetic progressions for $k \le m + 2$, but this can be checked by exhaustive search for many values of m as long as p is not too large. In these cases we actually have $\kappa_2(S) = |S| + m$. This is because the second part of the proof of Theorem 15 shows us that atoms of size > 3 are incompatible with |S| achieving the bound $p - \binom{m+4}{2}$: therefore A actually is a 2-atom.

The above examples are sets S

- (i) that satisfy |S + T| = |S| + |T| + m for some set T containing more than one element,
- (ii) that are the union of m+3 arithmetic progressions with the same difference but not less.

Additional examples of sets S of cardinality larger than $p - \binom{m+4}{2}$ can be found

- (i) that are the union of m + k arithmetic progressions but not less, for k > 3,
- (ii) for which we also have |S + T| = |S| + |T| + m for some set T containing more than one element.

As a simple example, take $A = \{0, 1, 3, 13, 41\} \subset \mathbb{Z}/91\mathbb{Z}$. Then translates S of $\mathbb{Z}/91\mathbb{Z} \setminus (A + A)$ have $\kappa_2(S) = |S| + 5$, $\alpha_2(S) = 5$, and S is not the union of less than 9 arithmetic progressions.

References

- G.A. Freiman, Inverse problems of additive number theory. On the addition of sets of residues with respect to a prime modulus, 2 Soviet. Math. Doklady, (1961) 1520–1522.
- [2] H. B. Mann, Addition theorems : The addition theorems of group theory and number theory, Interscience, New York, 1965.
- [3] M. B. Nathanson, Additive number theory : Inverse problems and the Geometry of sumsets, Springer-Verlag GTM 165 (1996).
- [4] Y.O. Hamidoune, An Isoperimetric method in Additive Theory, J. of Algebra 179 (1996), 622-630.
- [5] Y.O. Hamidoune and Ø. J. Rødseth, An inverse theorem mod p, Acta Arithmetica, XCII.3, (2000), 251–262.
- [6] G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956), 200-205.