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Abstract

Let S, T be subsets of Z/pZ with min{|S|, |T |} > 1. The Cauchy–Davenport theorem states
that |S + T | ≥ min{p, |S| + |T | − 1}. A theorem by Vosper characterizes the critical pair in
the above inequality. We prove the following generalization of Vosper’s theorem. If |S + T | ≤
min{p− 2, |S|+ |T |+m}, 2 ≤ |S|, |T |, and |S| ≤ p−

(
m+4

2

)
, then S is a union of at most m+ 2

arithmetic progressions with the same difference. The term
(
m+4

2

)
is best possible, i.e. cannot

be replaced by a smaller number.

1. Introduction

One of the subjects of additive number theory is the study of inverse problems, i.e. the study
of the structure of subsets S and T of a group such that the cardinality |S + T | is “small”.
The oldest result in this vein is the Cauchy-Davenport theorem which states that |S + T | ≥
min{p, |S| + |T | − 1} for any subsets S, T of a group of prime order p. Vosper’s theorem [6]
characterizes the sets for which equality holds. It states :

Theorem 1 (Vosper) Let S and T be subsets of a group of prime order p such that |S| ≥ 2,
|T | ≥ 2, and |S + T | < p − 1. Then either |S + T | ≥ |S| + |T |, or S and T are in arithmetic
progression with the same difference.

Freiman [1] gave the following improvement of Vosper’s Theorem in the case when S = T .

Theorem 2 (Freiman) Let S be a subset of a group of prime order p such that |S| < p/35.
Suppose that |S + S| ≤ 2|S| + m with m ≤ 2

5 |S| − 3. Then S is contained in an arithmetic
progression of length at most |S|+m+ 1.
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As far as we know, the first improvement of Vosper’s result for different sets S and T is the
recent result of Hamidoune and Rødseth [5] who proved :

Theorem 3 (Hamidoune-Rødseth) Let S and T be subsets of a group of prime order p,
such that |S| ≥ 3, |T | ≥ 3, 7 ≤ |S + T | ≤ p − 4. Then either |S + T | ≥ |S| + |T | + 1, or S
and T are contained in arithmetic progressions with the same difference and |S|+ 1 and |T |+ 1
elements respectively.

In another direction, the Cauchy-Davenport theorem was generalized to arbitrary Abelian
groups by Mann [2, p. 2] :

Theorem 4 (Mann) Let S be a subset of an arbitrary Abelian group G. Then one of the
following holds:

(i) for every subset T such that S + T 6= G we have |S + T | ≥ |S|+ |T | − 1.

(ii) there exists a proper subgroup H of G such that |S +H| < |S|+ |H| − 1.

The following theorem of Hamidoune [4] is both a generalization of Mann’s theorem and of
Vosper’s theorem.

Theorem 5 (Hamidoune) Let G be a (not necessarily Abelian) group generated by a finite
subset S containing 0. Suppose that every nonzero element of G has order ≥ |S|. Then one of
the following holds:

(i) for every subset T such that 2 ≤ |T | <∞, we have |S + T | ≥ min(|G| − 1, |S|+ |T |).

(ii) S is an arithmetic progression.

Notice the similarity between Mann’s and Hamidoune’s theorems 4 and 5. Together they
state, broadly speaking, that subsets S of a group for which S + T is “small” for some T tend
either to cluster around subgroups or to be an arithmetic progression.

A very interesting feature of Hamidoune’s proof of his result is that it unites Theorems 1
and 4 under a short, elegant, and insightful explanation. This involves defining k–isoperimetric
numbers and k-atoms associated to S. It turns out that the 1–atoms lead naturally to the sub-
group H in Theorem 4 and that the 2–atoms lead to the difference of the arithmetic progression
in Theorem 5.

In this paper, we study the 2–atoms of an arbitrary subset S of a group of prime order
and give a sufficient condition on |S| for them to be of cardinality two. We shall see that this
condition is necessary in very many situations. This leads to a further generalization of Vosper’s
theorem in the prime order case. Our main result is :
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Theorem 6 Let m be a non-negative integer and let S be a subset of a group of prime order p
such that 2 ≤ |S| < p−

(
m+4

2

)
. Then either

|S + T | > |S|+ |T |+m,

for any subset T such that 2 ≤ |T | and |S + T | ≤ p − 2, or S is the union of at most m + 2
arithmetic progressions with the same difference.

Our proof leads to the condition |S| < p −
(
m+4

2

)
in a natural way, and we shall see that

this bound is best possible. More precisely, there exist subsets S of Z/pZ with cardinality
p −

(
m+4

2

)
that are not the union of at most m + 2 arithmetic progressions and for which

|S + T | ≤ |S|+ |T |+m ≤ p− 2 for some subset |T | ≥ 2. Note that this situation is unlike that
of Z, but these sets S have to be “large”, i.e. |S| ≥ p−

(
m+4

2

)
.

2. Atoms

Let S be a fixed subset of Z/pZ with 0 ∈ S. For a subset X ⊂ G we write

NS(X) = (X + S) \X.

We omit the subscript S when the reference to it is clear from the context. If 0 ∈ X, we write
X∗ = X \ {0}.

Following the terminology of Hamidoune [4], we say that S is k–separable if there is X ⊂
Z/pZ such that |X| ≥ k and |X+S| ≤ p−k. If S is k–separable, the k–isoperimetric connectivity
of S is

κk(S) = min{|N(X)|, X ⊂ Z/pZ, k ≤ |X| and |X + S| ≤ p− k},
and the k–isoperimetric number of S is

dk(S) = min{|N(X)|, X ⊂ Z/pZ, |X| = k}.

We say that a subset F ⊂ G is a k–fragment of S if |N(F )| = κk(S), |F | ≥ k and |F+S| ≤ p−k.
A k–fragment of minimum cardinality is said to be a k–atom of S. We denote by αk(S) the
cardinality of a k–atom of S. Note that αk(S) > k if and only if κk(S) < dk(S). Note also
that, when |S| = 2 and S is k-separable, then αk(S) = k and κk(S) = 1. To avoid trivial cases
we always assume that |S| > 2.

The following basic property of k–atoms is proved in [4].

Theorem 7 Let A be a k–atom and let F be a k–fragment of a subset S ⊂ Z/pZ with 0 ∈ S.
Then, either A ⊂ F or |A ∩ F | ≤ k − 1.

This theorem has a number of consequences. We use it here to derive some intermediate
results that we shall need. For the rest of this section it is always assumed that S is a 2–separable
subset of Z/pZ, 0 ∈ S, and |S| ≥ 3.
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Proposition 8 Let A be a 2–atom of S. Then, |A|(|A| − 1) ≤ 2κ2(S).

Proof. We may assume |A| > 2. Let S = {0 = s0, s1, . . . , sr}, r ≥ 2. We have

κ2(S) = |A+ S| − |A| =
∣∣∣∣∣
r⋃
i=1

[(A+ si) \ ∪0≤j<i(A+ sj)]

∣∣∣∣∣ . (1)

If A is a 2–atom then so is A+ z for any z. Therefore equation (1) and Theorem 7 imply

κ2(S) ≥ (|A| − 1) + (|A| − 2) + max{|A| − 3, 0}+ . . .+ max{|A| − r, 0}.

If |A| > |S| then |A + S| − |A| ≥ (|A| − 1) + (|A| − 2) ≥ 2|A| − 3 ≥ 2|S| − 1 ≥ d2(S), which
implies α2(S) = 2. Hence |A| ≤ |S|. Therefore,

κ2(S) ≥ (|A| − 1) + . . .+ 2 + 1 = |A|(|A| − 1)/2,

as claimed.

Recall that X ⊂ G is a Sidon set if |2X| =
(|X|+1

2

)
, that is, there are no two unordered pairs

of (possibly equal) elements in X with the same sum. The following is an easy consequence of
Theorem 7.

Proposition 9 Let A be a 2–atom of S. If |A| > 2 then A is a Sidon set.

Proof. Suppose that x+ y = x′ + y′ for x, y, x′, y′ in A. Then {x, y′} ∈ (A+ x− x′)∩A. Since
A + z is a 2–atom for each z ∈ Z/pZ, Theorem 7 implies either x = y′ or x = x′. Hence, all
twofold sums of elements of A are different and A is a Sidon set.

Proposition 10 Suppose S is a Sidon set in Z/pZ. Then, α2(S) = 2.

Proof.

For each x ∈ Z/pZ, x 6= 0, we have |S ∩ (S + x)| ≤ 1. For k ≤ |S| let X = {x1, . . . , xk} ⊂
Z/pZ. Then,

|N(X)| = |S +X| − |X| =

∣∣∣∣∣∣
k⋃
i=1

[(S + xi) \
⋃
j<i

(S + xj)]

∣∣∣∣∣∣− |X|
≥ [|S|+ (|S| − 1) + (|S| − 2) + · · ·+ (|S| − |X|+ 1)]− |X| = 1

2
|X|(2|S| − |X| − 1).

In particular,

dk(S) ≥ 1
2
k(2|S| − k − 1). (2)
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Let A be a 2–atom of S and suppose that |A| > 2, so that |N(A)| < d2(S). We have, for
any s ∈ S∗, |S + {0, s}| = 2|S| − 1 so that |N({0, s})| = 2|S| − 3 : we conclude therefore that
|N(A)| < 2|S| − 3. But according to the lower bound (2), which is a quadratic function of k
with negative leading term and zeros at k = 0 and k = 2|S| − 1, this implies |A| > 2|S| − 3. By
Proposition 8 we then have (2|S| − 3)(2|S| − 4) < 2(2|S| − 4), which implies |S| < 3 against our
assumption. Hence, α2(S) = 2.

Finally we have :

Proposition 11 Let A be a 2–atom of S. Then, α2(A) = 2. Moreover, |A| ≤ m + 3, where
m = κ2(S)− |S|.

Proof. If α2(S) = |A| = 2 there is nothing to prove. Suppose that |A| > 2. We may assume
that 0 ∈ A. By Proposition 9, A is a Sidon set. By Proposition 10 we have α2(A) = 2.

On the other hand, we have |S +A| − |A| = |S|+m, which implies

|A|+m = |S +A| − |S| ≥ κ2(A) = d2(A) = 2|A| − 3.

Hence |A| ≤ m+ 3.

3. Surjective pairs of subsets

To prove that a set S is the union of sufficiently few arithmetic progressions, say of difference
a, our basic strategy is to show that {0, a} is a 2-atom of S. This is why, in this section, we
study 2–atoms A of sets S such that |A| > 2. We shall prove that these 2–atoms have very
special structure, namely that they define, together with S, surjective pairs. Before defining
this concept we need some notation.

Let Y be a fixed subset of Z/pZ. For each subset X ⊂ Z/pZ and each integer i ≥ 2 we
denote

Ni(X) = NY (X + (i− 1)Y ),

where iY = Y + . . .+ Y︸ ︷︷ ︸
i

. We write N0(X) = X and N1(X) = NY (X). Note that

Ni+1(X) = (Ni(X) + Y ) \
⋃

0≤j≤i
Ni(X).

For a subset U of Y and i ≥ 1, we denote by NU
i (X) the set of elements z ∈ Ni(X) such

that z − U ⊂ Ni−1(X) and U is a maximal subset of Y with this property. We also write

N≤Ui (X) =
⋃
V⊂U

NV
i (X).
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Lemma 12 For each U ⊂ Y and i ≥ 1, if NU
i+1(X) 6= ∅ then

NU
i+1(X)− U ⊂ N≤Ui (X).

Proof. Let z ∈ NU
i+1(x), u ∈ U and z′ = z − u ∈ Ni(X). Then z′ ∈ NV

i (X) for some subset
V of Y . But, for any v ∈ V , we have z − v = z′ − v + u ∈ Nj(X) for some j < i + 1. Since
z ∈ Ni+1(X) we must have j = i : this implies V ⊂ U . In particular, if NU

i+1(X) 6= ∅, then
NU
i+1(X)− U ⊂ ∪V⊂UNV

i (X) = N≤Ui (X).

Definition A pair (X,Y ) of subsets of Z/pZ is said to be h-surjective if X,Y 6= Z/pZ and

|(z − Y ) ∩X| ≥ h for each z ∈ NY (X). (3)

The following two lemmas are the key steps in our proof of Theorem 6.

Lemma 13 Let S be a 2-separable subset of Z/pZ and let A be a 2–atom of S such that
|A∗| ≥ 2. Then

(i) (S,A) is a 2-surjective pair, and

(ii) (S +A,A) is a |A∗|-surjective pair.

Proof. We may assume that 0 ∈ A. Let z ∈ NA(S) and suppose that there is only a single
element z′ ∈ A such that z − z′ ∈ S. Let A′ = A \ {z′}. Then |A + S| = |(A′ + S) ∪ {z}| =
|A′ + S| + 1. Therefore, |NS(A)| = |NS(A′)| and |A′| ≥ 2, contradicting the minimality of A.
Hence, (S,A) is 2-surjective.

Let U be a subset of A∗ with at most |A| − 2 elements.

By Lemma 12 and the Cauchy-Davenport theorem, if NU
i (S) 6= ∅ for some i ≥ 2, then we

have
|N≤Ui−1(S)| ≥ |NU

i (S)− U | ≥ |NU
i (S)|+ |U | − 1. (4)

If |U | ≤ |N≤U1 (S)|, then

|S + (A \ U)| − |A \ U | ≥ |S +A| − |N≤U1 (S)|+ |U | − |A| ≤ |S +A| − |A|,

thus contradicting the hypothesis that A is a 2-atom. Hence,

|N≤U1 (S)| ≤ |U | − 1, U ⊂ A∗, |U | ≤ |A| − 2.

Therefore, if NU
2 (S) 6= ∅, then (4) implies

|NU
2 (S)| ≤ |N≤U1 (S)| − (|U | − 1) ≤ 0,

a contradiction. Hence NU
2 (S) = ∅ for each proper subset of A∗ and therefore (S +A,A) is an

|A∗|-surjective pair.
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Lemma 14 Let (X,Y ) be an h-surjective pair in Z/pZ and i ≥ 1. If X + iY 6= Z/pZ then
(X + iY, Y ) is also an h-surjective pair. In particular, if |N≤Ui (X)| < h for some U ⊂ Y and
i ≥ 1 then NU

i+1(X) = ∅.

Proof. Assume that (X+(i−1)Y, Y ) is h-surjective for some i ≥ 1. We have N1(X+(i−1)Y ) =
Ni(X). For each subset U of Y with strictly less than h elements, we have N≤Ui (X) = ∅. If
NU
i+1(X) 6= ∅, i ≥ 1 then Lemma 12 implies NU

i+1(X) − U ⊂ N≤Ui (X) = ∅, a contradiction.
Therefore, (X + iY, Y ) is also h-surjective. The first part of the result follows by induction.

Suppose now that |N≤Ui (X)| < h for some U ⊂ Y . Then, if NU
i+1(X) 6= ∅, Lemma 12 implies

h > |N≤Ui (X)| ≥ |NU
i+1(X)− U | ≥ |U |, this contradicts the h-surjectivity of (X + iY, Y ).

Theorem 15 Let S ⊂ Z/pZ be a 2-separable subset. If α2(S) > 2 then

|S| ≥ p−
(
m+ 4

2

)
,

where m = κ2(S)− |S|.

Proof. We may assume |S| > 2. Let A be a 2–atom of S containing 0 and suppose that |A| > 2.

We use the above notation with Y = S, namely, Ni(S) = NA(S + (i− 1)A). By definition
of κ2(S) and m we have |S +A| = |A|+ |S|+m, so that |N1(S)| = |A|+m.

1. Suppose first |A| = 3, so that N1(S) = |A|+ 3.

By Lemma 13 and Lemma 14, if S + iA 6= Z/pZ, i ≥ 1, then (S + iA,A) is a 2-surjective
pair. Therefore Ni(S) = NA∗

i (S) for i ≥ 2. If Ni(S) 6= ∅, then Lemma 12 implies
Ni(S)−A∗ ⊂ Ni−1(S). By the Cauchy-Davenport theorem this implies, for all i ≥ 2 such
that Ni(S) 6= ∅,

|Ni(S)| ≤ |Ni−1(S)| − 1.

Therefore, |Ni(S)| ≤ (m+ 3)− (i− 1) = m+ 4− i and Ni(S) = ∅ for i ≥ m+ 4. Hence,
Z/pZ = ∪m+3

i=0 Ni(X) which implies

|S| ≥ p−
m+3∑
i=1

|Ni(S)| ≥ p− (m+ 3)(m+ 4)
2

,

as claimed.

2. Suppose now that h+ 1 = |A| > 3. Let us write Z/pZ = ∪ki=0Ni(X), so that we have

|S| = p−
k∑
i=1

|Ni(S)|.
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By Lemma 13 and Lemma 14, if S + iA 6= Z/pZ, i ≥ 1, then (S + iA,A) is an h-
surjective pair. Therefore Ni(S) = NA∗

i (S) for i ≥ 2. If Ni(S) 6= ∅, then Lemma 12
implies Ni(S) − A∗ ⊂ Ni−1(S). Since A∗ is a Sidon set with more than 2 elements, it is
not an arithmetic progression. By Vosper’s theorem this implies, for all i ≥ 2 such that
|Ni(S)| > 1,

|Ni(S)| ≤ |Ni−1(S)| − h.

Therefore, |N2(S)| ≤ m+ |A| − h = m+ 1, and if k ≥ 3,

(i) |Ni(S)| ≤ (m+ 1)− (i− 2)h for all i such that 3 ≤ i ≤ k − 1, and

(ii) either |Nk(S)| = 1 and |Nk−1(S)| = h or |Nk(S)| ≤ (m+ 1)− (k − 2)h.

In every case we get k ≤ 2 + (m+ 1)/h.

By Proposition 11, |N1(S)| = m+ |A| ≤ 2m+ 3; therefore, if k = 2 we get

|N1(S)|+ |N2(S)| ≤ 3m+ 4

and it is routinely checked that this is always smaller than
(
m+4

2

)
.

If k ≥ 3 we get

k∑
i=1

|Ni(S)| ≤ (2m+ 3) + (m+ 1)(k − 1)− h(k − 2)(k − 1)
2

+ 1

which gives, since we have supposed h ≥ 2,

k∑
i=1

|Ni(S)| ≤ (2m+ 4) + (k − 1)[(m+ 1)− (k − 2)] ≤ (2m+ 4) + (k − 1)m,

and, since k − 1 ≤ 1 + (m+ 1)/h, we get

k∑
i=1

|Ni(S)| ≤ (3m+ 4) +m(m+ 1)/2

which is less than
(
m+4

2

)
.

This concludes the proof.

4. A Proof of Theorem 6: Discussion

Suppose S is a subset of Z/pZ satisfying the conditions of Theorem 6 and suppose there exists
T ⊂ Z/pZ such that 2 ≤ |T |, |S + T | ≤ p− 2, and |S + T | ≤ |S|+ |T |+m. Then, without loss
of generality we may suppose 0 ∈ S, and S is a 2-separable set for which κ2(S) ≤ |S|+m. Let
A be a 2-atom of S containing 0. By Theorem 15 we have |A| = 2 and therefore

|S +A| ≤ |S|+ |A|+m = |S|+m+ 2.
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Let A = {0, a}. Let S = S1 ∪ . . . ∪ Sh be a partition of S into arithmetic progressions of
difference a such that (Si + a) ∩ Sj = ∅ for each pair of different subscripts i, j. Then,

|S +A| =
h∑
i=1

|Si + {0, a}| = |S|+ h,

which implies h ≤ m+ 2 and Theorem 6 is proved.

We now show that the term
(
m+4

2

)
in Theorem 6 cannot be reduced. First consider the

following example. Let p be a prime number of the form p = 3b+ 1 for some positive integer b
and let S = [0, b−1]∪ [b+ 1, 2b−2]∪ [2b+ 1, 3b−3] and A = {0, 1, b}. Then |S+A| = |S|+ |A|,
i.e. |NS(A)| = |S|. Note that |S| = p − 6 =

(
4+0

2

)
. Note also that |NS({0, x})| ≥ |S| + 1 for

any x 6= 0, since otherwise Vosper’s theorem would imply that S is an arithmetic progression
of difference x, which can be easily checked not to be the case. This shows that 2-atoms of size
more than 2 do exist. Furthermore, by Proposition 11, the size of a 2-atom is at most 3 in this
example, so that A is actually a 2-atom of S.

This example can be generalized to sets S with κ2(S) = |S| + m for m > 0 and for which
α2(S) = 3. They are built with a similar pattern. Let b be a positive integer such that
p = (m+ 3)b+ 1 is a prime number. Let

S = [0, b− 1] ∪ [b+ 1, 2b− 2] ∪ [2b+ 1, 3b− 3] ∪ . . . ∪ [(m+ 2)b+ 1, (m+ 3)b− (m+ 3)].

Again set A = {0, 1, b}. We have |S+A| = |S|+ |A|+m. Note that |S| = p−
(
m+4

2

)
, i.e. exactly

the bound of Theorem 6. It is not quite clear to us how to formally prove that d2(S) > |S|+m,
or, equivalently, that S is not the union of k arithmetic progressions for k ≤ m + 2, but this
can be checked by exhaustive search for many values of m as long as p is not too large. In
these cases we actually have κ2(S) = |S|+ m. This is because the second part of the proof of
Theorem 15 shows us that atoms of size > 3 are incompatible with |S| achieving the bound
p−

(
m+4

2

)
: therefore A actually is a 2–atom.

The above examples are sets S

(i) that satisfy |S + T | = |S| + |T | + m < p − 2 for some set T containing more than one
element,

(ii) that are the union of m+ 3 arithmetic progressions with the same difference but not less.

Additional examples of sets S of cardinality larger than p−
(
m+4

2

)
can be found

(i) that are the union of m+ k arithmetic progressions but not less, for k > 3,

(ii) for which we also have |S + T | = |S| + |T | + m < p − 2 for some set T containing more
than one element.

As a simple example, take A = {0, 1, 3, 13, 41} ⊂ Z/91Z. Then translates S of Z/91Z \
(A + A) have κ2(S) = |S| + 5, α2(S) = 5, and S is not the union of less than 9 arithmetic
progressions.
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