
ON THE DISTRIBUTION OF EXPONENTIAL SUMS

Sergei V. Konyagin
Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia

kon@nw.math.msu.su

Vsevolod F. Lev1

Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
seva@math.huji.ac.il

Received: 9/3/99, Accepted: 10/12/99, Published: 5/19/00

Abstract

We discuss three problems of the following kind: given a set A ⊆ Fp of n := |A| residues modulo
a prime p, how are the absolute values |SA(z)| of the corresponding exponential sums

SA(z) :=
∑
a∈A

e
2πiaz

p ; z ∈ Fp

distributed in the interval [0, n]?

1. Introduction

One of the most popular tools in number theory, exponential sums, are usually studied from
the following point of view only: given a particular set A of n = |A| residues, integers, or real
numbers, show that the absolute values of the exponential sums corresponding to this set are
small. In this note we adopt a more general standpoint, trying to understand the distribution
of the absolute values of the exponential sums in the interval [0, n]. Moreover, we are interested
not in the sets A of some special arithmetic structure, but rather in the common properties of
the exponential sums, independent of the structure of A. This is primarily a survey note: we
review several known results and pose some new problems.

We stick with the case of residues modulo a prime p. For a set A ⊆ Fp of n = |A| residues
we write

SA(z) :=
∑
a∈A

e
2πiaz

p ; z ∈ Fp.

(More generally, one can consider character sums in any locally compact Abelian group. Local
compactness implies the existence of Haar measure on the group of characters, and we can ask
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“how many” characters with a given property are there.) To avoid trivialities, we often assume
tacitly that 2 ≤ n ≤ p− 1.

The basic observation is that 0 < |SA(z)| ≤ n and moreover, |SA(z)| = n if and only if
z = 0. (The reason why SA(z) is not 0 is that it can be considered as a polynomial of a pth
root of unity, and this polynomial is not divisible by the minimal polynomial xp−1 + · · ·+x+1.)
Furthermore, Parseval’s identity gives

∑
z∈Fp
|SA(z)|2 = np. (1)

Below we address the following three questions.

1) As we have noticed, |SA(z)| are distinct from 0, but how close to 0 can they be?

2) How many of the p sums |SA(z)| can be close to 0?

3) How many of the p sums |SA(z)| can be close to n?

(The answer to the missed question “How large |SA(z)| can be?” is immediate: it can be
equal to n, if z = 0, and plainly the next largest value is | sin(πn/p)/ sin(π/p)|, attained when
A is an arithmetic progression (mod p).)

We discuss these three questions in Sections 2 – 4, respectively.

2. How Small Can Exponential Sums Be?

The first question of this sort was probably first raised in 1975 by Gerry Myerson (see [M86]),
who introduced the function f(n,N), the least absolute value of a sum of n Nth roots of unity.
Myerson allowed the roots of unity to be equal and proved several estimates for the case of N
even. In this note we confine ourselves to N prime and require the roots to be pairwise distinct.

Theorem 1 Suppose that A ⊆ Fp is a set of n = |A| ∈ [3, p − 1] residues (mod p), and let
z ∈ F×p . Then

|SA(z)| > n−
p−3

4 .

Proof. For any fixed z0 ∈ F×p , the sum SA(z0) is an algebraic integer of the norm
∏
z∈F×p SA(z).

This product is, therefore, at least 1 in absolute value, whence by the arithmetic-geometric
means inequality and (1) we have
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1 ≤
∏
z∈F×p

|S(z)|2 = |SA(z0)|4
∏
z∈F×p
z 6=±z0

|S(z)|2

≤ |SA(z0)|4
(

1
p− 3

∑
z∈F×p
z 6=±z0

|S(z)|2
)p−3

< |SA(z0)|4
(
n(p− n)
p− 3

)p−3

≤ np−3 |SA(z0)|4.

¤

On the other hand, we were able to prove the following.

Theorem 2 For any n = 2k < p/20 (where k is a positive integer) there exists A ⊆ Fp of the
cardinality n such that

|SA(1)| < n−
ln p

2 ln 2 .

Proof. Let p′ = (p− 1)/2 and define A to be the set of all the subset sums of

{p′ + 1, p′ + 2, p′ + 4, . . . , p′ + 2k−1} ⊆ Fp.

We first show that all these subset sums are distinct, and therefore |A| = 2k.

We assume that ∑
i∈I

(p′ + 2i) ≡
∑
j∈J

(p′ + 2j) (mod p) (2)

for two subsets I, J ⊆ {0, . . . , k − 1} and we prove that I = J . Define ξ :=
∑

i∈I 2i and
η :=

∑
j∈J 2j . Then

0 ≤ ξ, η, |I|, |J | ≤ 2k − 1 < p/20

and (2) implies

2ξ − |I| ≡ 2η − |J | (mod p),

2ξ − |I| = 2η − |J |.

Next, it is easily seen that

|I| = ξ −
⌊
ξ

2

⌋
−
⌊
ξ

4

⌋
− . . . ,

|J | = η −
⌊η

2

⌋
−
⌊η

4

⌋
− . . . ,
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whence

ξ +
⌊
ξ

2

⌋
+
⌊
ξ

4

⌋
+ · · · = η +

⌊η
2

⌋
+
⌊η

4

⌋
+ . . . .

As x+ bx/2c+ bx/4c+ . . . is a strictly increasing function of x, we obtain ξ = η and therefore
I = J .

It follows that

SA(1) =
k−1∏
j=0

(
1 + e

2πi p
′+2j

p

)
,

and the absolute value of this product is easy to estimate:

|SA(1)| = 2k
k−1∏
j=0

∣∣∣ cosπ
p− 1 + 2j+1

2p

∣∣∣
= 2k

k∏
j=1

∣∣∣ sin π

2p
(2j − 1)

∣∣∣
<

(
π

p

)k
2
k(k+1)

2

= n−
ln(p/π

√
2)

ln 2
+ lnn

2 ln 2

< n−
ln p

2 ln 2 .

¤

It is clear from the proof that ln p/(2 ln 2) in the exponent can be replaced with (1 −
ε) ln p/ ln 2 for any positive ε. However, the gap between the estimates of Theorems 1 and 2
makes refinements of this sort senseless.

3. How Many Small Sums Are There?

Suppose that Z ⊆ Fp is a set of residues such that |SA(z)| is “small” for all z ∈ Z. Then the
sum

∑
z∈Z |SA(z)|2 is small also. We normalize this sum letting

G(Z) :=
1
|Z|

∑
z∈Z
|SA(z)|2.

A way to express the fact that not too many of the exponential sums are small is to bound G(Z)
from below for |Z| large enough. As G(Fp) = n by (1), one could expect that G(Z)À nc with
a positive constant c and assuming that |Z| is large. This, however, is not the case. In fact,
it is easy to show (see Theorem 5 below) that for any ε ∈ (0, 1), any positive integer n, and
sufficiently large p, there exist A and Z with |A| = n and |Z| ≥ (1− ε)p such that G(Z) ≤ 1/ε.
Moreover, there is no δ > 0 such that G(Z) ≥ δ holds for all A,Z ⊆ Fp with |Z| ≥ p/2 (see
Theorem 6). It is reasonable to expect that G(Z)À n−δ for any δ > 0 and |Z| > δp; however,
the estimate we were able to prove is considerably weaker.
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Theorem 3 Let Z ⊆ Fp, and suppose that |Z| ≥ (1− ε)p, where ε ∈ (0, 1). Then

G(Z) >
1
e
n−

ε
1−ε .

Proof. Using the inequality between arithmetic and geometric means, we get

(G(Z))|Z| ≥
∏
z∈Z
|SA(z)|2 =

∏
z∈Fp
|SA(z)|2

∏
z /∈Z
|SA(z)|−2.

The first product in the right-hand side is |SA(0)|2 = n2 times the norm of a non-zero algebraic
integer, whence

(G(Z))|Z| >
∏
z /∈Z
|SA(z)|−2

and therefore using the arithmetic-geometric means inequality once again and taking into ac-
count (1) we obtain

(G(Z))−|Z| <

(
1

p− |Z|
∑
z /∈Z
|SA(z)|2

)p−|Z|
<

(
np

p− |Z|

)p−|Z|
,

G(Z) >
(

np

p− |Z|

)− p−|Z||Z|
. (3)

Write α = (p− |Z|)/|Z|. Then(
p

p− |Z|

)− p−|Z||Z|
=
(

1 +
1
α

)−α
> e−1,

and the result follows from (3) since

p− |Z|
|Z| ≤ ε

1− ε.

¤

A continuous analog of the quantity G(Z) was considered by Pichorides, who proved the
following.

Theorem 4 ([P80, Lemma 1]) Let S(z) = 1 +
∑k

j=1 aje
2πijz, where aj are real coefficients.

For a set Z ⊆ [0, 1) of measure µ(Z) > 0 define

G1(Z) :=
1

µ(Z)

∫
Z
|S(z)| dz.

Suppose that µ(Z) < 1 and let Z̄ be the complement of Z in [0, 1). Then

(G1(Z))µ(Z) (G1(Z̄))µ(Z̄) ≥ 1.

We now show that G(Z) can be rather small even for |Z| large.
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Theorem 5 For any ε ∈ (0, 1), any positive integer n, and p sufficiently large, there exist
A,Z ⊆ Fp such that |A| = n, |Z| ≥ (1− ε)p, and G(Z) ≤ 1/ε.

Proof. Consider the trigonometric polynomial

P (x) =
n−1∑
j=0

e2πijx.

For 0 < x < 1/2 we have

|P (x)| =
∣∣∣∣e2πinx − 1
e2πix − 1

∣∣∣∣ =
| sin(πnx)|

sin(πx)
≤ 1

sin(πx)
<

1
2x
,

whence ∫ 1/2

ε/2
|P (x)|2dx <

∫ 1/2

ε/2

dx

4x2
=

1
2ε
− 1

2
. (4)

Denote
E = [ε/2, 1− ε/2]

and
Eδ = [ε/2− δ, 1− ε/2 + δ]

for δ > 0. By (4), ∫
E
|P (x)|2dx = 2

∫ 1/2

ε/2
|P (x)|2dx < 1

ε
− 1,

and therefore for sufficiently small δ > 0 we have∫
Eδ

|P (x)|2dx < 1
ε
− 1. (5)

Let A = {0, . . . , n− 1}. For any p put Z = {z : z/p ∈ Eδ}, so that

|Z| ≥ (1− ε)p (6)

for p large enough. Also,

lim
p→∞

∑
z∈Z
|SA(z)|2/p =

∫
Eδ

|P (x)|2dx,

and it follows from (5) that for sufficiently large p∑
z∈Z
|SA(z)|2 < p

(
1
ε
− 1
)
. (7)

Inequalities (6) and (7) readily imply the required estimate G(Z) ≤ 1/ε. ¤

The following theorem is the main result of [K97].
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Theorem 6 (cf. [K97]) For any δ > 0 there exist a prime number p and sets A,Z ⊆ Fp such
that |Z| > p/2 and G(Z) < δ.

Sketch of proof. The main part of the proof is a construction of a trigonometric polynomial
P (x) =

∑
a∈A e

2πiax (where A is a finite set of integers) and a set E ∈ [0, 1] such that E is the
union of finitely many segments,

µ(E) > 1/2, (8)

and ∫
E
|P (x)|2dx < δ/2. (9)

Once P and E are constructed, it is easy to complete the proof using the same kind of argument
as in Theorem 5.

We can assume that δ < 1. Let η0, η1, . . . be independent random variables, distributed
uniformly in [0, 1]. We define ξj = 2 cos(πηj) and ψj = ln |ξj |, and we observe that ψj are
independent and satisfy

Eψj = 0, E|ψj |3 <∞.

It follows from the Berry-Essen theorem (see [B76, Theorem 12.4]) that there exists a constant
C > 0 such that for any positive integer m

Pr

m−1∑
j=0

ψj ≤ C

 > 1/2 (10)

and moreover,

Pr

− ln(4/δ) ≤
m−1∑
j=0

ψj ≤ C

 < δ/(4e2C) (11)

for m sufficiently large.

We denote by (Ω, ν) the probability space and by F ⊂ Ω the event
∑m−1

j=0 ψj ≤ C. By (10),

ν(F ) > 1/2 (12)

and from (11) (see [K97] for details)

∫
F

exp

m−1∑
j=0

ψj

 dν < δ/2,

or equivalently ∫
F

m−1∏
j=0

|ξj |dν < δ/2. (13)
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Using weak convergence of the distribution function of the random vectors (2 cos(2πx),
2 cos(2πlx), . . . , 2 cos(2πlm−1x)) to the distribution function of (ξ0, ξ1, . . . , ξm−1) as l → ∞
(cf. [K97])), we get weak convergence of the distribution function of

∏m−1
j=0 2 cos(2πljx) to

the distribution function of
∏m−1
j=0 ξj as l → ∞. Therefore, for the 2m-term trigonometric

polynomial

P (x) =
m−1∏
j=0

(
1 + e2πiljx

)
and for the set

E = {x ∈ [0, 1] : |P (x)| ≤ eC},

using the identity

|P (x)| =
m−1∏
j=0

|2 cos(πljx)|

one can deduce from (12) and (13) the required inequalities (8) and (9), provided that l is
large enough. ¤

Analysis of the proof shows that if n is a power of 2, then one can have G(Z)¿ (lnn)−1/2

with |Z| > p/2 and G(Z) ¿ exp(−c(α)(lnn)1/2) with |Z| ≥ αp, 0 < α < 1/2. Also, for
arbitrary n ≥ 2 we can give examples with the same estimates forG(Z) under weaker restrictions
for |Z|: G(Z)¿ (lnn)−1/2 with |Z| > p/4 and G(Z)¿ exp(−c(α)(lnn)1/2) with |Z| ≥ αp, 0 <
α < 1/4.

4. Large Exponential Sums

For exponential sums corresponding to a set A of integers, a rather precise estimate for the
number of “large” sums was obtained by Yudin in [Y73]. Yudin proved that

mes {z ∈ [0, 1) : |SA(z)| > (1− ε)n} ≤ 2
√

6
π

1
n
ε1/2(1 + o(1)), (14)

where
SA(z) =

∑
a∈A

e2πiaz ; z ∈ R

and assuming that n → ∞ and ε = o(1). Equality is attained when A is an arithmetic
progression. In [B99], Besser replaced the assumption ε = o(1) by ε < c with an absolute
constant c > 0; this required numerous fresh ideas and the final result differs considerably from
(14).

Yudin’s argument was based on a “rearrangement theorem” due to Hardy and Littlewood.
In [L00, Theorem 1], the second of the present authors was able to obtain residue analogs of
the results of Hardy and Littlewood, which allowed him to extend Yudin’s theorem onto the
residues case.
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We now return back to our original notation, assuming A ⊆ Fp and z ∈ Fp. It turns out
that a convenient way to measure the number of large exponential sums is provided by the
function

TA(ϕ) := {z ∈ F×p : |SA(z)| > n cosϕ}; 0 ≤ ϕ ≤ π/2.
Evidently, TA(ϕ) is piecewise constant, monotonically increasing, and satisfies TA(0) = 0 and
TA(π/2) = p− 1. A non-trivial property of TA(ϕ) which explains why it arises naturally in this
context is its sup-additivity, expressed in the following lemma.

Lemma 1 ([L00, Lemma 1]) Suppose that ϕ1, ϕ2 ≥ 0 and ϕ1 + ϕ2 ≤ π/2. Then

TA(ϕ1 + ϕ2) ≥ min{TA(ϕ1) + TA(ϕ2), p− 1}.

(A parallel lemma for sets of integers is implicit in [Y73].)

Assume for a moment that the assertion of the lemma can be strengthened to

TA(ϕ1 + ϕ2) ≥ TA(ϕ1) + TA(ϕ2). (15)

By induction, it follows then that TA(jϕ0) ≥ jTA(ϕ0) provided jϕ0 ≤ π/2. Choosing j =
bϕ/ϕ0c and taking into account that TA(ϕ) ≥ TA(jϕ0) as TA is increasing, we obtain

Corollary 1 ([L00, Lemma 2]) Suppose that 0 < ϕ,ϕ0 ≤ π/2. Then

TA(ϕ) ≥
⌊
ϕ

ϕ0

⌋
TA(ϕ0).

Though it can be shown that (15) does not hold in general, Corollary 1 is true and is
established in [L00]. In conjunction with a rearrangement theorem for residues, it was used to
prove the following analog of (14).

Theorem 7 ([L00, Theorem 5]) For any set A ⊆ Fp of n = |A| ≥ 4 residues modulo a prime
p and any ϕ ∈ [0, π/6] we have

TA(ϕ) ≤ 2
√

3
π

p

n
ϕ (1 + n−2)(1 + 2ϕ2/3).

This theorem is sharp in the sense that equality is attained asymptotically (for n → ∞ and
ϕ→ 0) if A is an arithmetic progression modulo p.

We conclude by outlining the proof of Theorem 7.

Sketch of proof. For brevity we drop below the subscript A in SA(z) and TA(ϕ), and we define

A0 := {0, . . . , n− 1}, S0(z) := SA0(z), T0(z) := TA0(z).

For k ≥ 1 consider the moments

1
p

∑
z∈Fp
|S(z)|2k and

1
p

∑
z∈Fp
|S0(z)|2k.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 0 (2000), #A01 10

The former is the number of solutions of the equation a1 + · · · + ak = a′1 + · · · + a′k in the
variables ai, a′i ∈ A, the latter is the number of solutions of the same equation in the variables
ai, a

′
i ∈ A0. By [L00, Theorem 1], the number of solution is maximized when the variables

range over an arithmetic progression; thus,∑
z∈Fp
|S(z)|2k ≤

∑
z∈Fp
|S0(z)|2k,

and partial integration allows one to rewrite it as∫ π/2

0
T (ϕ) cos2k−1 ϕ sinϕdϕ ≤

∫ π/2

0
T0(ϕ) cos2k−1 ϕ sinϕdϕ.

Furthermore, T0(ϕ) can be estimated explicitly and it can be shown that the integral at the
right does not exceed √

6
π

p

n
(2k)−3/2(1 + o(1))

(as n, k →∞). As to the integral at the left, we use Corollary 1 to estimate it from below by

T (ϕ0)
∫ π/2

0

⌊
ϕ

ϕ0

⌋
cos2k−1 ϕ sinϕdϕ ≥ T (ϕ0)

ϕ0

√
π

2
(2k)−3/2(1 + o(1))

for any fixed ϕ0. Therefore,

T (ϕ0)
ϕ0

√
π

2
(2k)−3/2 ≤

√
6
π

p

n
(2k)−3/2(1 + o(1))

and the result follows. ¤
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