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Abstract

we obtain the almost sure convergence for a kernel estimate
of the drift coefficient in the diffusion equation for p mizing
sequences over a sequence of compact sets which increases to
R when n approaches infnity.
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1 Introduction

Let X; be a diffusion solution of the stochastic differential equation:

dX; = p(Xy)dt+o(Xy)dW, te Rt

(Wi t € RT) is a standard Brownian motion; p and o are two Lipschitz and
unknown functions of class C' with o strictly positive.We know that under
Lipschitz conditions on p and o , there exists for any given initial X indepen-
dent of (W;; ¢t > 0) a unique, with probability one, solution to the equation
above and this solution is a measurable Markov process (Wong [11]) .

This unique solution must have a stationary transition density, say fx,x,(.)
satisfying the forward equation of Kolmogorov:

ar (30%(@) e (7)) = & (1) o (@) = ifxixo (@)

with fx,x,(.) tending to a limiting density, say f(.) as t goes to infinity.
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For simplicity, we shall suppose that the initial distribution of X, has den-
sity f(.) so that (X});>ois a stationary process and we are interested in estima-
tion of u(z) for each x € S where S is the nonempty set {x € R/ f(x) > 0}.

Moreover, under conditions of existence and uniqueness of the solution to
the stochastic differential equation , the stationary diffusion X is ergodic (see
Brown and Hewitt [7]).

This problem has been considered by several authors, among others Pham
[10] gave a convergence in quadratic mean for the kernel estimate of the drift
coeflicient from the regression equation E(X;1,|X; =.); p > 1, Arfi [1] estab-
lished the almost sure convergence when the observed process is ergodic, Arfi
and Lecoutre [3] established the almost sure convergence for a kernel estimate
of the diffusion coefficient, and lately, Arfi [2] studied the almost sure conver-
gence for a kernel estimate of the drift coefficient when the observed process
is mixing over a sequence of compact sets which increases to R.

In this paper we give the almost sure convergence for the kernel estimate
of the drift coefficient when the observed sequences are p — mixing over a
sequence of compact sets C),, which increases to & when n — oo.

Let (2, F, P) be a probability space. Given the o-algebras B and R in F,
let p(B,R) = sup{corr(X,Y), X € Ly(B),Y € Lay(R)} where corr(X,Y) =
(EXY — EXEY)/VvarXvarY.

Bradley [5] introduced the following coefficients of dependence p(k) =
sup{p(Fs, Fr)}, k > 0 where the supermum is taken over all finite subsets
S,T C N such that dist(S,T) > k.

Obviously,

0<p(k+1)<pk)<1, k>0, and p0)=1.

Definition
A random variable sequence (X, t > 1) is said to be p-miving sequence if there
exists k€ N such that p(k) | 1.

Without loss of generality we may assume that the observed process is such
that
p(k) i 1 ( see Bryc and Smolenski [8]).
In the study of p-mixing sequences we refer to Bradley [5], [6] for the central
limit theorem, Bryc and Smolenski [8] for moment inequalities and almost sure
convergence, Peligrad and Gut [9] for almost sure results.
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2. The Model, the Notation, Some definitions

Let d be positive and fixed and n €N, the Markov observation (X4 ;
0 <j<n-—1) permit to write:

Xjara — Xja = pa(Xja) + 04(Xja)Yiard

where 14(X;) = E(Xj1qa— X; | X;) and 03(X;) = V(X;14| X;) are supposed
to exist and define discrete versions of u and o2, (Y;) being a stationary Gaus-
sian process such that :

E(Yjia| Xs;$<j)=0 and E(Y?

j+d‘Xs;3§j):1'

A natural estimator of pg is :

S K ( ) (Xjara — Xja)
Zn 1K (m Xj,i>

where (h,,) is a positive sequence of real numbers such that h,, — 0, and nh,, —
oo when n — oo, and K a Parzen Rosenblatt kernel type, that is a bounded
function satisfying [ K(z)dz = 1 and lim|z|K(z) = 0 when |z| — oo, in
addition we will assume it to be strictly positive and with bounded variation .

The almost sure convergence of 14, to piq is established under the p-mixing
condition and using the fact that : u(z) =limgo d'E(X;30 — X; | X; = 2)
, we deduce an estimate (p4,/d) of p,if d = d(n) such that N = nd — oo,

fan(x) = VeelsS

which is a necessary condition for both Nh,, — oo and the p-mixing condition

We make the following assumptions:

(A.1) The process (Xj4) , j €N is strictly stationary and p-mixing.
(A.2) The initial random variable Xj is of second order : E(X?) < oo
(A.3) The kernel K is Lipschitz of order 7.

(A.4) The functions u(.) and o(.) are Borel measurable on R satisfying for
x,y € RN the
uniform Lipschitz condition:

clr —yl
clr —yl

=
=
|
=
s
A IA
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and the linear growth condition

()] < eVl +a?
lo(x)] < V1422

where ¢ is a positive constant.
(A5)dl<oo, VzeR f(z)<T
and
37, >0, Vezel, f(zr)>.
where (), is a sequence of compact sets such that C,, = {z : ||z|| < ¢,} with
Cp — O0.
(A.6) The density f is twice differentiable and its derivatives are bounded.

3. Main Results
The main results of this paper are the following theorem and corollary.
Theorem
Suppose that h, is a positive sequence of real numbers such that h, =
o(v,) that satisfying nli_)Iglonl_sh” =00 for some £ €]0,1/2[; and let K to

Logn
be Lipschitz kernel with bounded variation; i.e. [ z*K(z)dz < oo, then under
assumptions A1 - A6, and for a compact sets C,, we have

Sup |ttan (@) — pal)| — 0, as. n— oo
zeC)y,

Corollary Under assumptions of Theorem 1,if we choose h, and d such
that :

1=€4qhp
d— 0, lim n_
n—oo  Logn

o0, hy, =o0(d),

then we have:

—pu(x)] — 0, a.s. n— oo.
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Remark If we assume that the initial condition X is independent of

(W; 5 j € RT) with density f , then a condition such as : for all z €
R ()| + o(x) < (1 4+ 2*)Y? where ¢ is a strictly positive constant,
implies that the process (X;) is stationary (Wong [11]).

Remark As sequences ¢, and h,, defined in the Theorem 1, we can choose
cn = O((Logn)) and h, = O(n™7) with 0 < 7 < 1.0n the other part, the
construction of the estimator requires a choice of K and h,,. If the choice of K
does not much influence the asymptotic behavior of fi4,,0n the contrary the
choice of h,, turns to be crucial for the estimator’s accuracy. One can employ
a cross-validation or plug-in method. In a forthcoming paper using simula-
tions,we give comparisons of the results between two methods of estimation.

4. Preliminary Results

We make use of the following decomposition:

pan () = pa(r) = An(2) + Bn(z)

with
Ay(x) = %{[gm 1a@) ()] = Woal@) ) — F(2)]}
Bu(z) = %{Gnm—n(m) fale) — F@)]}

where

n—1
gn(z) = nhn 2 K( W )Md(de)
n—1
. 1 Tr — de
7=0
1 X,

Wnd(l') =
’ n— r—X;
Sk (45)
n—1
1 z—X;
Gu(z) = — K( - ]d) 0d(Xja)Yjard
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2 1K< )Ud(de)dem
Zn 1 K <:p de>
If |Yigra < M, then |7,(z)| < constant x M,  a.s. where M,

— 00 is a sequence to be defined later.
And we can write:

T,(z) =

sup | An(@)] < {sup 19a(2) — @) F@)] + sup [Woa@)[| () - f(fv>|}

zeCly Tn (zeCn zeChp

sup | By ()] < < {Sup |G ()] + p2My sup | fn(z) — f(-’f)l}

z€CH Tn zeCn z€Ch

where ps is an upperbound of o,(.)

Lemma

Under hypotheses of Theorem 1, we have:

3t Sp 19, () — pala) f(@)] = 0, a5 = o
xeln

proof
We have C,, = {z:||z|| < ¢,} where ¢, — oo and

YR z—X
X
gn(x) = e JZ:;K ( W 2 ) pa(Xja)

then we write

gn(x) = pa(2) f(x) = (gn(2) — Egn(z)) + (Egn(z) — pa(2) (1)) -
We put g,(z) — Egn(x) = Z;:& Z; with

e (8522 (x5 i)

by construction £Z; = 0.
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It K and pare upperbounds of K and pq respectively, we have: |Z;| <
(2K p1)/(nhy,) and E|Z;| < (2K p1)/n .
Now, let us write

> Py, gn(z) — Egn(z)] > €) ZP %1122 | >¢€).
n=1

Now we write for o > 1
1/Jnj = Zj[(|Zj|§na) and an = Zj[(|Zj|>n°‘) for 0 S j S n — 1.
Then,

32500 Zil < 132520 (Wng — Evbug)| + 132720 Vil + 1 32520 Bt

We need to show the following:

') n—1
STP D (W — Eay)| > en®/3) < oo
n=1 j=0

0o n—1
> PO Y Vigl > en/3) < o0
n=1 7=0

n—1
ol ZEwnﬂ/na — 0, n — oo.
=0

The Markov inequality and Chebyshev’s inequality lead to:
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b oo n—1 00
3Py, Z Gng—Etn)| > en2/3) < e 35 Bl /200 < e St < o
n=1 =1 j=0 —

if we choose 7, = n~* with a > a > 0 and where c¢;and ¢, are two positive
constants and b such that b > 1/(«a — a). The Borel-Cantelli lemma permits to
conclude for (4.2).

Now, note that

n—1 n—1
(1Y Vil > en®/3) < [ J(1Z,] > n®)
j=0 Jj=0

then,

ZP 1]Zan\>sna/3 <ZnP |Z;| > n%y,/3) < ZnE\Zj]b/no‘b”yZ§cgzn_ab’y;b<
n=1 n=1 n=1

7=0

with 7, = n=® for @ > 0 and such that b(a — a) > 1 and where ¢; is a
positive constant.

Lastly, we can write for a > a:

n—1 n—1 n—1
W N D Bl St Y | BVl = 2T Y BN Zi Lz e = 0" B Z 7,5 — 0.
=0 =0 =0

Next we cover C,, by 4, spheres in the shape of {z : ||z — 2| < .0, '}
for 1 <k <9,,

¢, — oo and 6, chosen such that §, — oo to be defined later, and we
make use of the following decomposition.

Zj < |gn(ZL‘) - gn(mnk” + |E [gn(x) - gn(xnk)” + |gn(xnk) - Egn($nk)| .

n—1
j=0
The first and the second component in the right-hand side of the inequality

above, will be considered in the same manner.
The kernel K being Lipschitz, we obtain
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LKpl ’715 o4 1

h1+71 Cn On LOng

KPIH

1+7 ”kH’Yl <

Sup [gn () — gn(@nk)| <
zeCly, h

0, 1s chosen such that :

5 L (Logn) ey
" h?(11+71)/n
Then
— 2
Z; < sup lgn(ew) = Bgalaw) + 7o

so that for all n > n4(e,), Ve, > 0 we have

-1
Sllp E
zeChp P
a~—1

Now, using similar decomposition as in (4.1) d,, times; the use of §,n%y,
instead of 7, 'n® and hypotheses of Theorem 1 permit to conclude that

On
> 2€n> < ZP {70 g0 (@nk) — Egn(zar)| > €0} -
k=1

Yo SUD e, | Do 1 — 0, a.s.,n — oo.
It remains to show that : 7, 'sup,ec, |Fgn(z) — pa(x) f(z)] — 0, n—
0.
We write
%flgup |Egn () — pa(z) f(2)] < Sucp /K (u=2)) | pa(w) —pa(e)| f (u)du
zeln HAS

4 sup oo [ K (g = o))~ f@)ldu =T+ I

xECn

Now if we put z = h,'(u — ), the fact that pg is Lipschitz provides

I < 7 sup / 2K (=) f (zhn + 2)d=

CCECn

then a choice such as v, 'h,, — 0 conclude that I; — 0 when n — co.
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It remains to show that I, — 0.

b:vfammam[/K@Mﬂd%+xw—ﬂ@wz

IGCTL

A taylor expansion gives:

I < p1y, tha / |2 K (2) f'(x)dz + 0.5p17, iy / PE(2)f % — 0, n— oo.

where p; is an upper bound of pg.
Lemma

Under hypotheses of Theorem 1, we have:

vt sup | fu(x) — f(x)] — 0, a.s. when n — oo.
zeCly

proof
This is a particular case of Lemma 3 when pg4(x) = 1.

Now, the kernel K being positive, we get sup,cq, |[Wh.a(x)| < p1 where p;
is an upperbound of pi,.
And we conclude that :

sup |An(2)] < = sup |ga(@) — pal@)f (@) + 2 sup [fule) — f(2)].

zeCh Tn zeCy, Yn zeCy,

Lemma

Under hypotheses of Theorem 1, we have:

v, b sup |G(z)] — 0 a.s. n— oo.
xGCn

proof
The study of G,,(z) cannot be made directly because of the possible large

values of the variables Y414 so we use a truncation technique which consists
in decomposing G, (z) in G,f (z) and G, (x) where

n—1
1 z— X,
GHz) = — ZK( ; jd) 0d(Xja)Yjaral[y >
n §=0 n
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and G, (x) = G,(z)— G} (x) with M, a nondecreasing and unbounded

n

sequence.
We write:
'7771 sup |G:(x) - EG:(£)| <E,+F,
Q?ECn
with :
E, = ! sup o, ZK Xjd \Yjaral ]
n annhn vech d ]d Jd+d|L[|Y|>My)

we have (E, #0) C {3 j € [O, 1,...,n — 1] such that |Y} | > M,}
(E, #0) C U{\ jard| > My}
P(E, #0) < Z@;&P{|de+d| > M} =nP{[Yo| > M,}

ZPE #0) <Z

with M being a positive constant and 3 such that § > (2/£). Then it is
sufficient to choose M, = n® for some £ € ]0,1/2[to get Y, P (E, # 0) < oo.

<MZnM s

We conclude with Borel-Cantelli Lemma that E,, — 0, a.s. n — o0
and  supocj<p1 [Yiaral < My as.
Then the kernel K being strictly positive , we deduce that |T,(z)| <
po M, a.s.
Now,

sup
n’Yn n x€Ch

EZK(

) 0a(Xja)Yjaraly >,

EF,) <

" E (Y| Ijy(>a1,))

n''n

where K and ps are upperbounds of K and o, respectively.
Then

Fpg
Tnhon

C3
Yl M
where c3 is a positive constant and M,, is the sequence defined above.

This leads to £ (F,,) - 0, n - co = F,, — 0, a.s. when n — oo, with
the choice v, =n"*fora >0, h,=n""for0<7<land 1< <2(a+r71).

E(F,) < =2 (E () (P (Y| > M.)"? <
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It remains to show that :

v, tsup |G, (z) — EG ()] — 0, a.s. n—0

zeChp
we write:
n—1
G, (x) = EG, (x) = ) T,
§=0
with

1 r—X; r—X;
= {K ( h jd) 04 (Xja) Yiaralyvicm,) — B [K < . ]d> 74 (Xja) Y}'d+dI[YSMn]]}

n

|T;| < (caM,,) / (nhy,) , where ¢4 is a positive constant.
Now let us write

ZP G (2) = BEGL(2)] > €) = ) P(IG, (x) = EG, (2)] > 7me)

same arguments as in the proof of lemma 3 permit to conclude that

v, ' sup |G, (z) — EG(x)| — 0, a.s.  n — oo.

xECn

In the end , the fact that :

permit to conclude that
v, sup |Gu(z)| — 0, a.s., n — 0o.
zeChp

Finally, similar works to those used in Lemma 4 with the use of 7, 'M,
instead of 7, ! permit to conclude that :
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'Y;an sup ‘fn(x) - f(l’)‘ - 07 a.s. n — o0.
zeCp

5. Proof of the Main Results

5.1 Proof of Theorem 1
Lemmas 3, 4 and 5 permit to conclude.

5.2 Proof of Corollary 2

It suffices to write:

faale) _ ) - bl Z00)  le) ]

Then, similar techniques to those of Theorem 1with the conditions of
Corollary 2 permit to conclude.
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