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Abstract

we obtain the almost sure convergence for a kernel estimate
of the drift coefficient in the diffusion equation for

∼
ρ mixing

sequences over a sequence of compact sets which increases to
< when n approaches infnity.
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1 Introduction

Let Xt be a diffusion solution of the stochastic differential equation:

dXt = µ(Xt)dt+σ(Xt)dWt t ∈ <+

(Wt ; t ∈ <+) is a standard Brownian motion; µ and σ are two Lipschitz and
unknown functions of class C1 with σ strictly positive.We know that under
Lipschitz conditions on µ and σ , there exists for any given initial X0 indepen-
dent of (Wt; t ≥ 0) a unique, with probability one, solution to the equation
above and this solution is a measurable Markov process (Wong [11]) .

This unique solution must have a stationary transition density, say fXt|X0(.)
satisfying the forward equation of Kolmogorov:

∂2

∂x2

(
1
2
σ2(x)fXt|X0(x)

)
− ∂

∂x

(
µ(x)fXt|X0(x)

)
= ∂

∂t
fXt|X0(x)

with fXt|X0(.) tending to a limiting density, say f(.) as t goes to infinity.
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For simplicity, we shall suppose that the initial distribution of X0 has den-
sity f(.) so that (Xt)t≥0 is a stationary process and we are interested in estima-
tion of µ(x) for each x ∈ S where S is the nonempty set {x ∈ < / f(x) > 0} .

Moreover, under conditions of existence and uniqueness of the solution to
the stochastic differential equation , the stationary diffusion X is ergodic (see
Brown and Hewitt [7]).

This problem has been considered by several authors, among others Pham
[10] gave a convergence in quadratic mean for the kernel estimate of the drift
coefficient from the regression equation E(Xt+p|Xt = .); p ≥ 1, Arfi [1] estab-
lished the almost sure convergence when the observed process is ergodic, Arfi
and Lecoutre [3] established the almost sure convergence for a kernel estimate
of the diffusion coefficient, and lately, Arfi [2] studied the almost sure conver-
gence for a kernel estimate of the drift coefficient when the observed process
is mixing over a sequence of compact sets which increases to <.

In this paper we give the almost sure convergence for the kernel estimate
of the drift coefficient when the observed sequences are

∼
ρ − mixing over a

sequence of compact sets Cn which increases to < when n→∞.

Let (Ω,F , P) be a probability space. Given the σ-algebras B and R in F ,
let ρ(B,R) = sup {corr(X, Y ), X ∈ L2(B), Y ∈ L2(R)} where corr(X, Y ) =
(EXY − EXEY )/

√
varXvarY .

Bradley [5] introduced the following coefficients of dependence
∼
ρ(k) =

sup {ρ(FS,FT )} , k ≥ 0 where the supermum is taken over all finite subsets
S, T ⊂ N such that dist(S, T ) ≥ k.

Obviously,

0 ≤ ∼
ρ(k + 1) ≤ ∼

ρ(k) ≤ 1, k ≥ 0, and
∼
ρ(0) = 1.

Definition
A random variable sequence (X t, t ≥ 1) is said to be

∼
ρ-mixing sequence if there

exists k∈ N such that
∼
ρ(k) ¡ 1.

Without loss of generality we may assume that the observed process is such
that

∼
ρ(k) ¡ 1 ( see Bryc and Smolenski [8]).

In the study of
∼
ρ-mixing sequences we refer to Bradley [5], [6] for the central

limit theorem, Bryc and Smolenski [8] for moment inequalities and almost sure
convergence, Peligrad and Gut [9] for almost sure results.
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2. The Model, the Notation, Some definitions

Let d be positive and fixed and n ∈N, the Markov observation (Xjd ;
0 ≤ j ≤ n− 1) permit to write:

Xjd+d −Xjd = µd(Xjd) + σd(Xjd)Yjd+d

where µd(Xj) = E(Xj+d−Xj |Xj) and σ2
d(Xj) = V (Xj+d |Xj) are supposed

to exist and define discrete versions of µ and σ2, (Yj) being a stationary Gaus-
sian process such that :

E(Yj+d |Xs ; s ≤ j) = 0 and E(Y 2
j+d | Xs ; s ≤ j) = 1.

A natural estimator of µd is :

µd,n(x) =

∑n−1
j=0 K

(
x−Xjd

hn

)
(Xjd+d −Xjd)∑n−1

j=0 K
(

x−Xjd

hn

) ∀ x ∈ S

where (hn) is a positive sequence of real numbers such that hn → 0, and nhn →
∞ when n → ∞, and K a Parzen Rosenblatt kernel type, that is a bounded
function satisfying

∫
K(x)dx = 1 and lim |x|K(x) = 0 when |x| → ∞, in

addition we will assume it to be strictly positive and with bounded variation .
The almost sure convergence of µd,n to µd is established under the

∼
ρ-mixing

condition and using the fact that : µ(x) = limd→0 d
−1E(Xj+d −Xj | Xj = x)

, we deduce an estimate (µd,n/d) of µ , if d = d(n) such that N = nd→∞,

which is a necessary condition for both Nhn →∞ and the
∼
ρ-mixing condition

.

We make the following assumptions:
(A.1) The process (Xjd) , j ∈N is strictly stationary and

∼
ρ-mixing.

(A.2) The initial random variable X0 is of second order : E(X2
0 ) <∞.

(A.3) The kernel K is Lipschitz of order γ1.

(A.4) The functions µ(.) and σ(.) are Borel measurable on < satisfying for
x, y ∈ < the

uniform Lipschitz condition:

|µ(x)− µ(y)| ≤ c |x− y|
|σ(x)− σ(y)| ≤ c |x− y|
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and the linear growth condition

|µ(x)| ≤ c
√

1 + x2

|σ(x)| ≤ c
√

1 + x2

where c is a positive constant.
(A.5) ∃Γ <∞, ∀ x ∈ < f(x) ≤ Γ

and
∃ γn > 0, ∀ x ∈ Cn f(x) ≥ γn.

where Cn is a sequence of compact sets such that Cn = {x : ||x|| ≤ cn} with
cn →∞.

(A.6) The density f is twice differentiable and its derivatives are bounded.

3. Main Results
The main results of this paper are the following theorem and corollary.
Theorem
Suppose that hn is a positive sequence of real numbers such that hn =

o(γn) that satisfying lim
n→∞

n1−ξhn

Logn
= ∞ for some ξ ∈]0, 1/2[; and let K to

be Lipschitz kernel with bounded variation; i.e.
∫
z2K(z)dz < ∞, then under

assumptions A1 - A6, and for a compact sets C n we have

sup
x∈Cn

|µd,n(x)− µd(x)| −→ 0, a.s. n→∞.

Corollary Under assumptions of Theorem 1, if we choose hn and d such

that :

d→ 0, lim
n→∞

n1−ξdhn

Logn
= ∞, hn = o(d),

then we have:

sup
x∈Cn

|µd,n(x)

d
− µ(x)| −→ 0, a.s. n→∞.
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Remark If we assume that the initial condition X0 is independent of

(Wj ; j ∈ <+) with density f , then a condition such as : for all x ∈
< |µ(x)| + σ(x) ≤ c(1 + x2)1/2 where c is a strictly positive constant,
implies that the process (Xj) is stationary (Wong [11]).

Remark As sequences cn and hn defined in the Theorem 1, we can choose
cn = O((Logn)1/γ1) and hn = O(n−τ ) with 0 < τ < 1.On the other part, the
construction of the estimator requires a choice of K and hn. If the choice of K
does not much influence the asymptotic behavior of µd,n,on the contrary the
choice of hn turns to be crucial for the estimator’s accuracy. One can employ
a cross-validation or plug-in method. In a forthcoming paper using simula-
tions,we give comparisons of the results between two methods of estimation.

4. Preliminary Results

We make use of the following decomposition:

µd,n(x)− µd(x) = An(x) +Bn(x)

with

An(x) =
1

f(x)
{[gn(x)− µd(x)f(x)]−Wn,d(x) [fn(x)− f(x)]}

Bn(x) =
1

f(x)
{Gn(x)− Tn(x) [fn(x)− f(x)]}

where

gn(x) =
1

nhn

n−1∑
j=0

K

(
x−Xjd

hn

)
µd(Xjd)

fn(x) =
1

nhn

n−1∑
j=0

K

(
x−Xjd

hn

)

Wn,d(x) =

∑n−1
j=0 K

(
x−Xjd

hn

)
µd(Xjd)∑n−1

j=0 K
(

x−Xjd

hn

)
Gn(x) =

1

nhn

n−1∑
j=0

K

(
x−Xjd

hn

)
σd(Xjd)Yjd+d
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Tn(x) =

∑n−1
j=0 K

(
x−Xjd

hn

)
σd(Xjd)Yjd+d∑n−1

j=0 K
(

x−Xjd

hn

)
If |Yjd+d| < Mn then |Tn(x)| < constant × Mn a.s. where Mn

→∞ is a sequence to be defined later.
And we can write:

sup
x∈Cn

|An(x)| ≤ 1

γn

{
sup
x∈Cn

|gn(x)− µd(x)f(x)|+ sup
x∈Cn

|Wn,d(x)||fn(x)− f(x)|
}

sup
x∈Cn

|Bn(x)| ≤ 1

γn

{
sup
x∈Cn

|Gn(x)|+ ρ2Mn sup
x∈Cn

|fn(x)− f(x)|
}

where ρ2 is an upperbound of σd(.)

Lemma

Under hypotheses of Theorem 1, we have:

γ−1
n sup

x∈Cn

|gn(x)− µd(x)f(x)| → 0, a.s. n→∞.

proof
We have Cn = {x : ||x|| ≤ cn} where cn →∞ and

gn(x) =
1

nhn

n−1∑
j=0

K

(
x−Xjd

hn

)
µd(Xjd)

then we write

gn(x)− µd(x)f(x) = (gn(x)− Egn(x)) + (Egn(x)− µd(x)f(x)) .

We put gn(x)− Egn(x) =
∑n−1

j=0 Zj with

Zj =
1

nhn

{
K

(
x−Xjd

hn

)
µd(Xjd)− E

(
K

(
x−Xjd

hn

)
µd(Xjd)

)}
by construction EZj = 0.
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If K and ρ1are upperbounds of K and µd respectively, we have: |Zj| ≤
(2K ρ1)/(nhn) and E|Zj| ≤ (2K ρ1)/n .

Now, let us write

∞∑
n=1

P (γ−1
n |gn(x)− Egn(x)| > ε) =

∞∑
n=1

P (γ−1
n |

n−1∑
j=0

Zj| > ε).

Now we write for α > 1

ψnj = ZjI(|Zj |≤nα) and Vnj = ZjI(|Zj |>nα) for 0 ≤ j ≤ n− 1.

Then,

|
∑n−1

j=0 Zj| ≤ |
∑n−1

j=0 (ψnj − Eψnj)|+ |
∑n−1

j=0 Vnj|+ |
∑n−1

j=0 Eψnj|

We need to show the following:

∞∑
n=1

P (γ −1
n |

n−1∑
j=0

(ψnj − Eψnj)| > εnα/3) <∞

∞∑
n=1

P (γ−1
n |

n−1∑
j=0

Vnj| > εnα/3) <∞

γ−1
n |

n−1∑
j=0

Eψnj|/nα −→ 0, n→∞.

The Markov inequality and Chebyshev’s inequality lead to:
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∞∑
n=1

P (γ−1
n |

n−1∑
j=0

(ψnj−Eψnj)| > εnα/3) ≤ c1

∞∑
n=1

n−1∑
j=0

E|ψnj|b�γb
nn

αb ≤ c2

∞∑
n=1

γ−b
n n−αb <∞

if we choose γn = n−a with α > a > 0 and where c1and c2 are two positive
constants and b such that b > 1/(α− a). The Borel-Cantelli lemma permits to
conclude for (4.2).

Now, note that

(|
n−1∑
j=0

Vnj| > εnα/3) ⊂
n−1⋃
j=0

(|Zj| > nα)

then,

∞∑
n=1

P (γ−1
n |

n−1∑
j=0

Vnj| > εnα/3) ≤
∞∑

n=1

nP (|Zj| > nαγn/3) ≤
∞∑

n=1

nE|Zj|b�nαbγb
n ≤ c3

∞∑
n=1

n−αbγ−b
n <∞

with γn = n−a for a > 0 and such that b(α − a) > 1 and where c3 is a
positive constant.

Lastly, we can write for α > a:

γ−1
n n−α|

n−1∑
j=0

Eψnj| ≤ γ−1
n n−α

n−1∑
j=0

|EVnj| = γ−1
n n−α

n−1∑
j=0

E|Zj|I(|Zj |>nα) = na−αE|Zj|I(||Zj |>nα) −→ 0.

Next we cover Cn by δn spheres in the shape of {x : ||x− xnk|| ≤ cnδ
−1
n }

for 1 ≤ k ≤ δn ,
cn → ∞ and δn chosen such that δn → ∞ to be defined later, and we

make use of the following decomposition.

∣∣∣∣∣
n−1∑
j=0

Zj

∣∣∣∣∣ ≤ |gn(x)− gn(xnk)|+ |E [gn(x)− gn(xnk)]|+ |gn(xnk)− Egn(xnk)| .

The first and the second component in the right-hand side of the inequality
above, will be considered in the same manner.

The kernel K being Lipschitz, we obtain
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sup
x∈Cn

|gn(x)− gn(xnk)| ≤
LKρ1

h1+γ1
n

||x− xnk||γ1 ≤ LKρ1

h1+γ1
n

cγ1
n δ

−γ1
n =

1

Logn

δn is chosen such that :

δn =
L

1/γ1

K ρ
1/γ1

1 (Logn)1/γ1cn

h
(1+γ1)/γ1
n

→∞.

Then ∣∣∣∣∣
n−1∑
j=0

Zj

∣∣∣∣∣ ≤ sup
1≤k≤δn

|gn(xnk)− Egn(xnk)|+
2

Logn

so that for all n ≥ n1(εn), ∀ εn > 0 we have

P

(
γ−1

n sup
x∈Cn

∣∣∣∣∣
n−1∑
j=0

Zj

∣∣∣∣∣ > 2εn

)
≤

δn∑
k=1

P
{
γ−1

n |gn(xnk)− Egn(xnk)| > εn

}
.

Now, using similar decomposition as in (4.1) δn times; the use of δnn
αγ−1

n

instead of γ−1
n nα and hypotheses of Theorem 1 permit to conclude that

γ−1
n supx∈Cn

∣∣∣∑n−1
j=0 Zj

∣∣∣ −→ 0, a.s., n→∞.

It remains to show that : γ−1
n supx∈Cn |Egn(x)− µd(x)f(x)| → 0, n→

∞.

We write

γ−1
n sup
x∈Cn

|Egn(x)− µd(x)f(x)| ≤ γ−1
n h−1

n sup
x∈Cn

∫
K(h−1

n (u−x))|µd(u)−µd(x)|f(u)du

+γ−1
n h−1

n sup
x∈Cn

|µd(x)|
∫
K(h−1

n (u− x))|f(u)− f(x)|du = I1 + I2.

Now if we put z = h−1
n (u− x), the fact that µd is Lipschitz provides

I1 ≤ γ−1
n hn sup

x∈Cn

∫
|z|K(z)f(zhn + x)dz

then a choice such as γ−1
n hn −→ 0 conclude that I1 −→ 0 when n −→∞.
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It remains to show that I2 −→ 0.

I2 = γ−1
n sup

x∈Cn

|µd(x)|
∫
K(z)|f(zhn + x)− f(x)|dz

A taylor expansion gives:

I2 ≤ ρ1γ
−1
n hn

∫
|z|K(z)f ′(x)dz + 0.5ρ1γ

−1
n h2

n

∫
z2K(z)f

′′(x)dz −→ 0, n→∞.

where ρ1 is an upper bound of µd.
Lemma

Under hypotheses of Theorem 1, we have:

γ−1
n sup

x∈Cn

|fn(x)− f(x)| → 0, a.s. when n→∞.

proof
This is a particular case of Lemma 3 when µd(x) = 1.

Now, the kernel K being positive, we get supx∈Cn
|Wn,d(x)| < ρ1 where ρ1

is an upperbound of µd.
And we conclude that :

sup
x∈Cn

|An(x)| ≤ 1

γn

sup
x∈Cn

|gn(x)− µd(x)f(x)|+ ρ1

γn

sup
x∈Cn

|fn(x)− f(x)|.

Lemma

Under hypotheses of Theorem 1, we have:

γ−1
n sup

x∈Cn

|Gn(x)| → 0 a.s. n→∞.

proof
The study of Gn(x) cannot be made directly because of the possible large

values of the variables Yjd+d so we use a truncation technique which consists
in decomposing Gn(x) in G+

n (x) and G−n (x) where

G+
n (x) =

1

nhn

n−1∑
j=0

K

(
x−Xjd

hn

)
σd(Xjd)Yjd+dI[|Y |>Mn]
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and G−n (x) = Gn(x)− G+
n (x) with Mn a nondecreasing and unbounded

sequence.
We write:

γ−1
n sup

x∈Cn

|G+
n (x)− EG+

n (x)| ≤ En + Fn

with :

En =
1

nγnhn

sup
x∈Cn

σd(Xjd)
n−1∑
j=0

K

(
x−Xjd

hn

)
|Yjd+d|I[|Y |>Mn]

we have (En 6= 0) ⊂ {∃ j0 ∈ [0, 1, ..., n− 1] such that |Yj0| > Mn}

(En 6= 0) ⊂
n−1⋃
j=0

{|Yjd+d| > Mn}

P (En 6= 0) ≤
∑n−1

j=0 P {|Yjd+d| > Mn} = nP {|Y0| > Mn}∑
n

P (En 6= 0) ≤
∑

n

n
E|Y0|β

Mβ
n

≤M
∑

n

nM−β
n

with M being a positive constant and β such that β > (2/ξ). Then it is
sufficient to choose Mn = nξ for some ξ ∈ ]0, 1/2[ to get

∑
n P (En 6= 0) <∞.

We conclude with Borel-Cantelli Lemma that En → 0, a.s. n→∞
and sup0≤j≤n−1 |Yjd+d| ≤Mn a.s.
Then the kernel K being strictly positive , we deduce that |Tn(x)| ≤

ρ2Mn a.s.
Now,

Fn =
1

nγnhn

sup
x∈Cn

∣∣∣∣∣E
n−1∑
j=0

K

(
x−Xjd

hn

)
σd(Xjd)Yjd+dI[|Y |>Mn]

∣∣∣∣∣
E(Fn) ≤ Kρ2

γnhn

E
(
|Y | I[|Y |>Mn]

)
where K and ρ2 are upperbounds of K and σd respectively.
Then

E(Fn) ≤ Kρ2

γnhn

(
E
(
Y 2
))1/2

(P (|Y | > Mn))1/2 ≤ c3

γnhnM
β/2
n

where c3 is a positive constant and Mn is the sequence defined above.
This leads to E (Fn) → 0, n→∞ =⇒ Fn → 0, a.s. when n→∞, with

the choice γn = n−a for a > 0, hn = n−τ for 0 < τ < 1 and 1 < β < 2(a+ τ).
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It remains to show that :

γ−1
n sup

x∈Cn

|G−n (x)− EG−n (x)| −→ 0, a.s. n→ 0

we write:

G−n (x)− EG−n (x) =
n−1∑
j=0

Tj

with

Tj =
1

nhn

{
K

(
x−Xjd

hn

)
σd (Xjd)Yjd+dI[|Y |≤Mn] − E

[
K

(
x−Xjd

hn

)
σd (Xjd)Yjd+dI[|Y |≤Mn]

]}
|Tj| ≤ (c4Mn) / (nhn) , where c4 is a positive constant.
Now let us write

∞∑
n=1

P (γ−1
n |G−n (x)− EG−n (x)| > ε) =

∞∑
n=1

P (|G−n (x)− EG−n (x)| > γnε)

same arguments as in the proof of lemma 3 permit to conclude that

γ−1
n sup

x∈Cn

|G−n (x)− EG−n (x)| → 0, a.s. n→∞.

In the end , the fact that :

Gn(x) = Gn(x)− EGn(x)

permit to conclude that

γ−1
n sup

x∈Cn

|Gn(x)| → 0, a.s., n→∞.

Finally, similar works to those used in Lemma 4 with the use of γ−1
n Mn

instead of γ−1
n permit to conclude that :
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γ−1
n Mn sup

x∈Cn

|fn(x)− f(x)| −→ 0, a.s. n −→∞.

5. Proof of the Main Results

5.1 Proof of Theorem 1
Lemmas 3, 4 and 5 permit to conclude.

5.2 Proof of Corollary 2

It suffices to write:

µd,n(x)

d
− µ(x) =

µd,n(x)− µ(x)

d
+

[
µd(x)

d
− µ(x)

]
Then, similar techniques to those of Theorem 1with the conditions of

Corollary 2 permit to conclude.
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