Int. J. Open Problems Compt. Math., Vol. 1, No. 1, June 2008

Drift Estimation From $\tilde{\rho}$-Mixing Sequences

MOUNIR ARFI
Dept. of Mathematics, University of Bahrain, Kingdom of Bahrain
e-mail : m-arfi@hotmail.com

Abstract

we obtain the almost sure convergence for a kernel estimate of the drift coefficient in the diffusion equation for $\tilde{\rho}$ mixing sequences over a sequence of compact sets which increases to \Re when n approaches infnity.

Keywords: Almost sure convergence, Diffusion equation, Drift coefficient, Kernel estimate, $\tilde{\rho}$-mixing sequences.

1 Introduction

Let X_{t} be a diffusion solution of the stochastic differential equation:

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t} \quad t \in \Re^{+}
$$

$\left(W_{t} ; t \in \Re^{+}\right)$is a standard Brownian motion; μ and σ are two Lipschitz and unknown functions of class C^{1} with σ strictly positive. We know that under Lipschitz conditions on μ and σ, there exists for any given initial X_{0} independent of ($W_{t} ; t \geq 0$) a unique, with probability one, solution to the equation above and this solution is a measurable Markov process (Wong [11]) .

This unique solution must have a stationary transition density, say $f_{X_{t} \mid X_{0}}($. satisfying the forward equation of Kolmogorov:

$$
\frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{2} \sigma^{2}(x) f_{X_{t} \mid X_{0}}(x)\right)-\frac{\partial}{\partial x}\left(\mu(x) f_{X_{t} \mid X_{0}}(x)\right)=\frac{\partial}{\partial t} f_{X_{t} \mid X_{0}}(x)
$$

with $f_{X_{t} \mid X_{0}}($.$) tending to a limiting density, say f($.$) as t$ goes to infinity.

For simplicity, we shall suppose that the initial distribution of X_{0} has density $f($.$) so that \left(X_{t}\right)_{t \geq 0}$ is a stationary process and we are interested in estimation of $\mu(x)$ for each $x \in S$ where S is the nonempty set $\{x \in \Re / f(x)>0\}$.

Moreover, under conditions of existence and uniqueness of the solution to the stochastic differential equation, the stationary diffusion X is ergodic (see Brown and Hewitt [7]).

This problem has been considered by several authors, among others Pham [10] gave a convergence in quadratic mean for the kernel estimate of the drift coefficient from the regression equation $E\left(X_{t+p} \mid X_{t}=.\right) ; p \geq 1$, Arfi [1] established the almost sure convergence when the observed process is ergodic, Arfi and Lecoutre [3] established the almost sure convergence for a kernel estimate of the diffusion coefficient, and lately, Arfi [2] studied the almost sure convergence for a kernel estimate of the drift coefficient when the observed process is mixing over a sequence of compact sets which increases to \Re.

In this paper we give the almost sure convergence for the kernel estimate of the drift coefficient when the observed sequences are $\tilde{\rho}$ - mixing over a sequence of compact sets C_{n} which increases to \Re when $n \rightarrow \infty$.

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space. Given the σ-algebras \mathcal{B} and \mathcal{R} in \mathcal{F}, let $\rho(\mathcal{B}, \mathcal{R})=\sup \left\{\operatorname{corr}(X, Y), X \in L_{2}(\mathcal{B}), Y \in L_{2}(\mathcal{R})\right\}$ where $\operatorname{corr}(X, Y)=$ $(E X Y-E X E Y) / \sqrt{v a r X v a r Y}$.

Bradley [5] introduced the following coefficients of dependence $\tilde{\rho}(k)=$ $\sup \left\{\rho\left(\mathcal{F}_{S}, \mathcal{F}_{T}\right)\right\}, k \geq 0$ where the supermum is taken over all finite subsets $S, T \subset N$ such that $\operatorname{dist}(S, T) \geq k$.

Obviously,

$$
0 \leq \tilde{\rho}(k+1) \leq \tilde{\rho}(k) \leq 1, \quad k \geq 0, \quad \text { and } \quad \tilde{\rho}(0)=1 .
$$

Definition

A random variable sequence ($X_{t}, t \geq 1$) is said to be $\tilde{\rho}$-mixing sequence if there exists $k \in N$ such that $\tilde{\rho}(k) ; 1$.

Without loss of generality we may assume that the observed process is such that
$\tilde{\rho}(k)$; 1 (see Bryc and Smolenski [8]).
In the study of $\tilde{\rho}$-mixing sequences we refer to Bradley [5], [6] for the central limit theorem, Bryc and Smolenski [8] for moment inequalities and almost sure convergence, Peligrad and Gut [9] for almost sure results.

2. The Model, the Notation, Some definitions

Let d be positive and fixed and $n \in \mathrm{~N}$, the Markov observation ($X_{j d}$; $0 \leq j \leq n-1$) permit to write:

$$
X_{j d+d}-X_{j d}=\mu_{d}\left(X_{j d}\right)+\sigma_{d}\left(X_{j d}\right) Y_{j d+d}
$$

where $\mu_{d}\left(X_{j}\right)=E\left(X_{j+d}-X_{j} \mid X_{j}\right)$ and $\sigma_{d}^{2}\left(X_{j}\right)=V\left(X_{j+d} \mid X_{j}\right)$ are supposed to exist and define discrete versions of μ and $\sigma^{2},\left(Y_{j}\right)$ being a stationary Gaussian process such that:

$$
E\left(Y_{j+d} \mid X_{s} ; s \leq j\right)=0 \text { and } E\left(Y_{j+d}^{2} \mid X_{s} ; s \leq j\right)=1
$$

A natural estimator of μ_{d} is:

$$
\mu_{d, n}(x)=\frac{\sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right)\left(X_{j d+d}-X_{j d}\right)}{\sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right)} \quad \forall x \in S
$$

where $\left(h_{n}\right)$ is a positive sequence of real numbers such that $h_{n} \rightarrow 0$, and $n h_{n} \rightarrow$ ∞ when $n \rightarrow \infty$, and K a Parzen Rosenblatt kernel type, that is a bounded function satisfying $\int K(x) d x=1$ and $\lim |x| K(x)=0$ when $|x| \rightarrow \infty$, in addition we will assume it to be strictly positive and with bounded variation .

The almost sure convergence of $\mu_{d, n}$ to μ_{d} is established under the $\tilde{\rho}$-mixing condition and using the fact that : $\mu(x)=\lim _{d \rightarrow 0} d^{-1} E\left(X_{j+d}-X_{j} \mid X_{j}=x\right)$, we deduce an estimate $\left(\mu_{d, n} / d\right)$ of μ, if $d=d(n)$ such that $N=n d \rightarrow \infty$, which is a necessary condition for both $N h_{n} \rightarrow \infty$ and the $\tilde{\rho}$-mixing condition

We make the following assumptions:
(A.1) The process $\left(X_{j d}\right), j \in \mathrm{~N}$ is strictly stationary and $\tilde{\rho}$-mixing.
(A.2) The initial random variable X_{0} is of second order : $E\left(X_{0}^{2}\right)<\infty$.
(A.3) The kernel K is Lipschitz of order γ_{1}.
(A.4) The functions $\mu($.$) and \sigma($.$) are Borel measurable on \Re$ satisfying for $x, y \in \Re$ the uniform Lipschitz condition:

$$
\begin{aligned}
|\mu(x)-\mu(y)| & \leq c|x-y| \\
|\sigma(x)-\sigma(y)| & \leq c|x-y|
\end{aligned}
$$

and the linear growth condition

$$
\begin{aligned}
& |\mu(x)| \leq c \sqrt{1+x^{2}} \\
& |\sigma(x)| \leq c \sqrt{1+x^{2}}
\end{aligned}
$$

where c is a positive constant.
(A.5) $\exists \Gamma<\infty, \quad \forall x \in \Re \quad f(x) \leq \Gamma$
and
$\exists \gamma_{n}>0, \quad \forall x \in C_{n} \quad f(x) \geq \gamma_{n}$.
where C_{n} is a sequence of compact sets such that $C_{n}=\left\{x:\|x\| \leq c_{n}\right\}$ with $c_{n} \rightarrow \infty$.
(A.6) The density f is twice differentiable and its derivatives are bounded.

3. Main Results

The main results of this paper are the following theorem and corollary.

Theorem

Suppose that h_{n} is a positive sequence of real numbers such that $h_{n}=$ $o\left(\gamma_{n}\right)$ that satisfying $\lim _{n \rightarrow \infty} \frac{n^{1-\xi} h_{n}}{\operatorname{Logn}}=\infty \quad$ for some $\left.\quad \xi \in\right] 0,1 / 2[$; and let K to be Lipschitz kernel with bounded variation; i.e. $\int z^{2} K(z) d z<\infty$, then under assumptions A1-A6, and for a compact sets C_{n} we have

$$
\sup _{x \in C_{n}}\left|\mu_{d, n}(x)-\mu_{d}(x)\right| \longrightarrow 0, \quad \text { a.s. } \quad n \rightarrow \infty
$$

Corollary Under assumptions of Theorem 1, if we choose h_{n} and d such that:

$$
d \rightarrow 0, \quad \lim _{n \rightarrow \infty} \frac{n^{1-\xi} d h_{n}}{\log n}=\infty, \quad h_{n}=o(d)
$$

then we have:

$$
\sup _{x \in C_{n}}\left|\frac{\mu_{d, n}(x)}{d}-\mu(x)\right| \longrightarrow 0, \quad \text { a.s. } \quad n \rightarrow \infty
$$

Remark If we assume that the initial condition X_{0} is independent of ($W_{j} ; j \in \Re^{+}$) with density f, then a condition such as : for all $x \in$ $\Re|\mu(x)|+\sigma(x) \leq c\left(1+x^{2}\right)^{1 / 2}$ where c is a strictly positive constant, implies that the process (X_{j}) is stationary (Wong [11]).

Remark As sequences c_{n} and h_{n} defined in the Theorem 1, we can choose $c_{n}=O\left((\operatorname{Logn})^{1 / \gamma_{1}}\right)$ and $h_{n}=O\left(n^{-\tau}\right)$ with $0<\tau<1$. On the other part, the construction of the estimator requires a choice of K and h_{n}. If the choice of K does not much influence the asymptotic behavior of $\mu_{d, n}$, on the contrary the choice of h_{n} turns to be crucial for the estimator's accuracy. One can employ a cross-validation or plug-in method. In a forthcoming paper using simulations, we give comparisons of the results between two methods of estimation.

4. Preliminary Results

We make use of the following decomposition:

$$
\mu_{d, n}(x)-\mu_{d}(x)=A_{n}(x)+B_{n}(x)
$$

with

$$
\begin{aligned}
& A_{n}(x)=\frac{1}{f(x)}\left\{\left[g_{n}(x)-\mu_{d}(x) f(x)\right]-W_{n, d}(x)\left[f_{n}(x)-f(x)\right]\right\} \\
& B_{n}(x)=\frac{1}{f(x)}\left\{G_{n}(x)-T_{n}(x)\left[f_{n}(x)-f(x)\right]\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
g_{n}(x) & =\frac{1}{n h_{n}} \sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right) \mu_{d}\left(X_{j d}\right) \\
f_{n}(x) & =\frac{1}{n h_{n}} \sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right) \\
W_{n, d}(x) & =\frac{\sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right) \mu_{d}\left(X_{j d}\right)}{\sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right)} \\
G_{n}(x) & =\frac{1}{n h_{n}} \sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right) \sigma_{d}\left(X_{j d}\right) Y_{j d+d}
\end{aligned}
$$

$$
T_{n}(x)=\frac{\sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right) \sigma_{d}\left(X_{j d}\right) Y_{j d+d}}{\sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right)}
$$

If $\left|Y_{j d+d}\right|<M_{n}$ then $\left|T_{n}(x)\right|<$ constant $\times M_{n} \quad$ a.s. where M_{n} $\rightarrow \infty$ is a sequence to be defined later.

And we can write:

$$
\begin{gathered}
\sup _{x \in C_{n}}\left|A_{n}(x)\right| \leq \frac{1}{\gamma_{n}}\left\{\sup _{x \in C_{n}}\left|g_{n}(x)-\mu_{d}(x) f(x)\right|+\sup _{x \in C_{n}}\left|W_{n, d}(x)\right|\left|f_{n}(x)-f(x)\right|\right\} \\
\sup _{x \in C_{n}}\left|B_{n}(x)\right| \leq \frac{1}{\gamma_{n}}\left\{\sup _{x \in C_{n}}\left|G_{n}(x)\right|+\rho_{2} M_{n} \sup _{x \in C_{n}}\left|f_{n}(x)-f(x)\right|\right\}
\end{gathered}
$$

where ρ_{2} is an upperbound of $\sigma_{d}($.

Lemma

Under hypotheses of Theorem 1, we have:

$$
\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|g_{n}(x)-\mu_{d}(x) f(x)\right| \rightarrow 0, \text { a.s. } \quad n \rightarrow \infty
$$

proof
We have $C_{n}=\left\{x:\|x\| \leq c_{n}\right\}$ where $c_{n} \rightarrow \infty$ and

$$
g_{n}(x)=\frac{1}{n h_{n}} \sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right) \mu_{d}\left(X_{j d}\right)
$$

then we write

$$
g_{n}(x)-\mu_{d}(x) f(x)=\left(g_{n}(x)-E g_{n}(x)\right)+\left(E g_{n}(x)-\mu_{d}(x) f(x)\right) .
$$

We put $g_{n}(x)-E g_{n}(x)=\sum_{j=0}^{n-1} Z_{j} \quad$ with

$$
Z_{j}=\frac{1}{n h_{n}}\left\{K\left(\frac{x-X_{j d}}{h_{n}}\right) \mu_{d}\left(X_{j d}\right)-E\left(K\left(\frac{x-X_{j d}}{h_{n}}\right) \mu_{d}\left(X_{j d}\right)\right)\right\}
$$

by construction $E Z_{j}=0$.

If \bar{K} and ρ_{1} are upperbounds of K and μ_{d} respectively, we have: $\left|Z_{j}\right| \leq$ $\left(2 \bar{K} \rho_{1}\right) /\left(n h_{n}\right)$ and $E\left|Z_{j}\right| \leq\left(2 \bar{K} \rho_{1}\right) / n$.

Now, let us write

$$
\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1}\left|g_{n}(x)-E g_{n}(x)\right|>\varepsilon\right)=\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1}\left|\sum_{j=0}^{n-1} Z_{j}\right|>\varepsilon\right) .
$$

Now we write for $\alpha>1$

$$
\psi_{n j}=Z_{j} I_{\left(\left|Z_{j}\right| \leq n^{\alpha}\right)} \quad \text { and } \quad V_{n j}=Z_{j} I_{\left(\left|Z_{j}\right|>n^{\alpha}\right)} \quad \text { for } 0 \leq j \leq n-1 .
$$

Then,

$$
\left|\sum_{j=0}^{n-1} Z_{j}\right| \leq\left|\sum_{j=0}^{n-1}\left(\psi_{n j}-E \psi_{n j}\right)\right|+\left|\sum_{j=0}^{n-1} V_{n j}\right|+\left|\sum_{j=0}^{n-1} E \psi_{n j}\right|
$$

We need to show the following:

$$
\begin{gathered}
\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1}\left|\sum_{j=0}^{n-1}\left(\psi_{n j}-E \psi_{n j}\right)\right|>\varepsilon n^{\alpha} / 3\right)<\infty \\
\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1}\left|\sum_{j=0}^{n-1} V_{n j}\right|>\varepsilon n^{\alpha} / 3\right)<\infty \\
\gamma_{n}^{-1}\left|\sum_{j=0}^{n-1} E \psi_{n j}\right| / n^{\alpha} \longrightarrow 0, \quad n \rightarrow \infty .
\end{gathered}
$$

The Markov inequality and Chebyshev's inequality lead to:

$$
\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1}\left|\sum_{j=0}^{n-1}\left(\psi_{n j}-E \psi_{n j}\right)\right|>\varepsilon n^{\alpha} / 3\right) \leq c_{1} \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} E\left|\psi_{n j}\right|^{b} / \gamma_{n}^{b} n^{\alpha b} \leq c_{2} \sum_{n=1}^{\infty} \gamma_{n}^{-b} n^{-\alpha b}<\infty
$$

if we choose $\gamma_{n}=n^{-a}$ with $\alpha>a>0$ and where c_{1} and c_{2} are two positive constants and b such that $b>1 /(\alpha-a)$. The Borel-Cantelli lemma permits to conclude for (4.2).

Now, note that

$$
\left(\left|\sum_{j=0}^{n-1} V_{n j}\right|>\varepsilon n^{\alpha} / 3\right) \subset \bigcup_{j=0}^{n-1}\left(\left|Z_{j}\right|>n^{\alpha}\right)
$$

then,

$$
\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1}\left|\sum_{j=0}^{n-1} V_{n j}\right|>\varepsilon n^{\alpha} / 3\right) \leq \sum_{n=1}^{\infty} n P\left(\left|Z_{j}\right|>n^{\alpha} \gamma_{n} / 3\right) \leq \sum_{n=1}^{\infty} n E\left|Z_{j}\right|^{b} / n^{\alpha b} \gamma_{n}^{b} \leq c_{3} \sum_{n=1}^{\infty} n^{-\alpha b} \gamma_{n}^{-b}<
$$

with $\gamma_{n}=n^{-a}$ for $a>0$ and such that $b(\alpha-a)>1$ and where c_{3} is a positive constant.

Lastly, we can write for $\alpha>a$:

$$
\gamma_{n}^{-1} n^{-\alpha}\left|\sum_{j=0}^{n-1} E \psi_{n j}\right| \leq \gamma_{n}^{-1} n^{-\alpha} \sum_{j=0}^{n-1}\left|E V_{n j}\right|=\gamma_{n}^{-1} n^{-\alpha} \sum_{j=0}^{n-1} E\left|Z_{j}\right| I_{\left(\left|Z_{j}\right|>n^{\alpha}\right)}=n^{a-\alpha} E\left|Z_{j}\right| I_{\left(\left|\left|Z_{j}\right|>n^{\alpha}\right)\right.} \longrightarrow 0 .
$$

Next we cover C_{n} by δ_{n} spheres in the shape of $\left\{x:\left\|x-x_{n k}\right\| \leq c_{n} \delta_{n}^{-1}\right\}$ for $1 \leq k \leq \delta_{n}$,
$c_{n} \rightarrow \infty$ and δ_{n} chosen such that $\delta_{n} \rightarrow \infty$ to be defined later, and we make use of the following decomposition.

$$
\left|\sum_{j=0}^{n-1} Z_{j}\right| \leq\left|g_{n}(x)-g_{n}\left(x_{n k}\right)\right|+\left|E\left[g_{n}(x)-g_{n}\left(x_{n k}\right)\right]\right|+\left|g_{n}\left(x_{n k}\right)-E g_{n}\left(x_{n k}\right)\right|
$$

The first and the second component in the right-hand side of the inequality above, will be considered in the same manner.

The kernel K being Lipschitz, we obtain

$$
\sup _{x \in C_{n}}\left|g_{n}(x)-g_{n}\left(x_{n k}\right)\right| \leq \frac{L_{K} \rho_{1}}{h_{n}^{1+\gamma_{1}}}\left\|x-x_{n k}\right\|^{\gamma_{1}} \leq \frac{L_{K} \rho_{1}}{h_{n}^{1+\gamma_{1}}} c_{n}^{\gamma_{1}} \delta_{n}^{-\gamma_{1}}=\frac{1}{\operatorname{Logn}}
$$

δ_{n} is chosen such that:

$$
\delta_{n}=\frac{L_{K}^{1 / \gamma_{1}} \rho_{1}^{1 / \gamma_{1}}(\log n)^{1 / \gamma_{1}} c_{n}}{h_{n}^{\left(1+\gamma_{1}\right) / \gamma_{1}}} \rightarrow \infty .
$$

Then

$$
\left|\sum_{j=0}^{n-1} Z_{j}\right| \leq \sup _{1 \leq k \leq \delta_{n}}\left|g_{n}\left(x_{n k}\right)-E g_{n}\left(x_{n k}\right)\right|+\frac{2}{\log n}
$$

so that for all $n \geq n_{1}\left(\varepsilon_{n}\right), \forall \varepsilon_{n}>0$ we have

$$
P\left(\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|\sum_{j=0}^{n-1} Z_{j}\right|>2 \varepsilon_{n}\right) \leq \sum_{k=1}^{\delta_{n}} P\left\{\gamma_{n}^{-1}\left|g_{n}\left(x_{n k}\right)-E g_{n}\left(x_{n k}\right)\right|>\varepsilon_{n}\right\}
$$

Now, using similar decomposition as in (4.1) δ_{n} times; the use of $\delta_{n} n^{\alpha} \gamma_{n}^{-1}$ instead of $\gamma_{n}^{-1} n^{\alpha}$ and hypotheses of Theorem 1 permit to conclude that

$$
\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|\sum_{j=0}^{n-1} Z_{j}\right| \longrightarrow 0, \quad \text { a.s. }, n \rightarrow \infty
$$

It remains to show that : $\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|E g_{n}(x)-\mu_{d}(x) f(x)\right| \rightarrow 0, \quad n \rightarrow$ ∞.

We write

$$
\begin{aligned}
& \gamma_{x \in C_{n}}^{-1} \sup _{\substack{ }}\left|E g_{n}(x)-\mu_{d}(x) f(x)\right| \leq \gamma_{n}^{-1} h_{n}^{-1} \sup _{x \in C_{n}} \int K\left(h_{n}^{-1}(u-x)\right)\left|\mu_{d}(u)-\mu_{d}(x)\right| f(u) d u \\
& \quad+\gamma_{n}^{-1} h_{n}^{-1} \sup _{x \in C_{n}}\left|\mu_{d}(x)\right| \int K\left(h_{n}^{-1}(u-x)\right)|f(u)-f(x)| d u=I_{1}+I_{2} .
\end{aligned}
$$

Now if we put $z=h_{n}^{-1}(u-x)$, the fact that μ_{d} is Lipschitz provides

$$
I_{1} \leq \gamma_{n}^{-1} h_{n} \sup _{x \in C_{n}} \int|z| K(z) f\left(z h_{n}+x\right) d z
$$

then a choice such as $\gamma_{n}^{-1} h_{n} \longrightarrow 0$ conclude that $I_{1} \longrightarrow 0$ when $n \longrightarrow \infty$.

It remains to show that $I_{2} \longrightarrow 0$.

$$
I_{2}=\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|\mu_{d}(x)\right| \int K(z)\left|f\left(z h_{n}+x\right)-f(x)\right| d z
$$

A taylor expansion gives:

$$
I_{2} \leq \rho_{1} \gamma_{n}^{-1} h_{n} \int|z| K(z) f^{\prime}(x) d z+0.5 \rho_{1} \gamma_{n}^{-1} h_{n}^{2} \int z^{2} K(z) f^{\prime \prime}(x) d z \longrightarrow 0, n \rightarrow \infty
$$

where ρ_{1} is an upper bound of μ_{d}.

Lemma

Under hypotheses of Theorem 1, we have:

$$
\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|f_{n}(x)-f(x)\right| \rightarrow 0, \text { a.s. when } \quad n \rightarrow \infty
$$

proof

This is a particular case of Lemma 3 when $\mu_{d}(x)=1$.
Now, the kernel K being positive, we get $\sup _{x \in C_{n}}\left|W_{n, d}(x)\right|<\rho_{1}$ where ρ_{1} is an upperbound of μ_{d}.

And we conclude that :

$$
\sup _{x \in C_{n}}\left|A_{n}(x)\right| \leq \frac{1}{\gamma_{n}} \sup _{x \in C_{n}}\left|g_{n}(x)-\mu_{d}(x) f(x)\right|+\frac{\rho_{1}}{\gamma_{n}} \sup _{x \in C_{n}}\left|f_{n}(x)-f(x)\right| .
$$

Lemma

Under hypotheses of Theorem 1, we have:

$$
\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|G_{n}(x)\right| \rightarrow 0 \quad \text { a.s. } \quad n \rightarrow \infty
$$

proof

The study of $G_{n}(x)$ cannot be made directly because of the possible large values of the variables $Y_{j d+d}$ so we use a truncation technique which consists in decomposing $G_{n}(x)$ in $G_{n}^{+}(x)$ and $G_{n}^{-}(x)$ where

$$
G_{n}^{+}(x)=\frac{1}{n h_{n}} \sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right) \sigma_{d}\left(X_{j d}\right) Y_{j d+d} I_{\left[|Y|>M_{n}\right]}
$$

and $G_{n}^{-}(x)=G_{n}(x)-G_{n}^{+}(x)$ with M_{n} a nondecreasing and unbounded sequence.

We write:

$$
\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|G_{n}^{+}(x)-E G_{n}^{+}(x)\right| \leq \mathrm{E}_{n}+\mathrm{F}_{n}
$$

with :

$$
\mathrm{E}_{n}=\frac{1}{n \gamma_{n} h_{n}} \sup _{x \in C_{n}} \sigma_{d}\left(X_{j d}\right) \sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right)\left|Y_{j d+d}\right| I_{\left[|Y|>M_{n}\right]}
$$

we have $\quad\left(\mathrm{E}_{n} \neq 0\right) \subset\left\{\exists j_{0} \in[0,1, \ldots, n-1]\right.$ such that $\left.\left|Y_{j_{0}}\right|>M_{n}\right\}$

$$
\begin{gathered}
\left(\mathrm{E}_{n} \neq 0\right) \subset \bigcup_{j=0}^{n-1}\left\{\left|Y_{j d+d}\right|>M_{n}\right\} \\
P\left(\mathrm{E}_{n} \neq 0\right) \leq \sum_{j=0}^{n-1} P\left\{\left|Y_{j d+d}\right|>M_{n}\right\}=n P\left\{\left|Y_{0}\right|>M_{n}\right\} \\
\sum_{n} P\left(\mathrm{E}_{n} \neq 0\right) \leq \sum_{n} n \frac{E\left|Y_{0}\right|^{\beta}}{M_{n}^{\beta}} \leq M \sum_{n} n M_{n}^{-\beta}
\end{gathered}
$$

with M being a positive constant and β such that $\beta>(2 / \xi)$. Then it is sufficient to choose $M_{n}=n^{\xi}$ for some $\left.\xi \in\right] 0,1 / 2\left[\right.$ to get $\sum_{n} P\left(\mathrm{E}_{n} \neq 0\right)<\infty$.

We conclude with Borel-Cantelli Lemma that $\mathrm{E}_{n} \rightarrow 0$, a.s. $\quad n \rightarrow \infty$
and $\sup _{0 \leq j \leq n-1}\left|Y_{j d+d}\right| \leq M_{n}$ a.s.
Then the kernel K being strictly positive, we deduce that $\left|T_{n}(x)\right| \leq$ $\rho_{2} M_{n}$ a.s.
Now,

$$
\begin{gathered}
\mathrm{F}_{n}=\frac{1}{n \gamma_{n} h_{n}} \sup _{x \in C_{n}}\left|E \sum_{j=0}^{n-1} K\left(\frac{x-X_{j d}}{h_{n}}\right) \sigma_{d}\left(X_{j d}\right) Y_{j d+d} I_{\left[|Y|>M_{n}\right]}\right| \\
E\left(\mathrm{~F}_{n}\right) \leq \frac{\bar{K} \rho_{2}}{\gamma_{n} h_{n}} E\left(|Y| I_{\left[|Y|>M_{n}\right]}\right)
\end{gathered}
$$

where \bar{K} and ρ_{2} are upperbounds of K and σ_{d} respectively.
Then

$$
E\left(\mathrm{~F}_{n}\right) \leq \frac{\bar{K} \rho_{2}}{\gamma_{n} h_{n}}\left(E\left(Y^{2}\right)\right)^{1 / 2}\left(P\left(|Y|>M_{n}\right)\right)^{1 / 2} \leq \frac{c_{3}}{\gamma_{n} h_{n} M_{n}^{\beta / 2}}
$$

where c_{3} is a positive constant and M_{n} is the sequence defined above.
This leads to $E\left(\mathrm{~F}_{n}\right) \rightarrow 0, n \rightarrow \infty \Longrightarrow \mathrm{~F}_{n} \rightarrow 0$, a.s. when $n \rightarrow \infty$, with the choice $\gamma_{n}=n^{-a}$ for $a>0, h_{n}=n^{-\tau}$ for $0<\tau<1$ and $1<\beta<2(a+\tau)$.

It remains to show that:

$$
\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|G_{n}^{-}(x)-E G_{n}^{-}(x)\right| \longrightarrow 0, \quad \text { a.s. } \quad n \rightarrow 0
$$

we write:

$$
G_{n}^{-}(x)-E G_{n}^{-}(x)=\sum_{j=0}^{n-1} T_{j}
$$

with

$$
T_{j}=\frac{1}{n h_{n}}\left\{K\left(\frac{x-X_{j d}}{h_{n}}\right) \sigma_{d}\left(X_{j d}\right) Y_{j d+d} I_{\left[|Y| \leq M_{n}\right]}-E\left[K\left(\frac{x-X_{j d}}{h_{n}}\right) \sigma_{d}\left(X_{j d}\right) Y_{j d+d} I_{\left[|Y| \leq M_{n}\right]}\right]\right\}
$$

$\left|T_{j}\right| \leq\left(c_{4} M_{n}\right) /\left(n h_{n}\right)$, where c_{4} is a positive constant.
Now let us write

$$
\sum_{n=1}^{\infty} P\left(\gamma_{n}^{-1}\left|G_{n}^{-}(x)-E G_{n}^{-}(x)\right|>\varepsilon\right)=\sum_{n=1}^{\infty} P\left(\left|G_{n}^{-}(x)-E G_{n}^{-}(x)\right|>\gamma_{n} \varepsilon\right)
$$

same arguments as in the proof of lemma 3 permit to conclude that

$$
\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|G_{n}^{-}(x)-E G_{n}^{-}(x)\right| \rightarrow 0, \text { a.s. } \quad n \rightarrow \infty
$$

In the end, the fact that :

$$
G_{n}(x)=G_{n}(x)-E G_{n}(x)
$$

permit to conclude that

$$
\gamma_{n}^{-1} \sup _{x \in C_{n}}\left|G_{n}(x)\right| \rightarrow 0, \quad \text { a.s., } \quad n \rightarrow \infty .
$$

Finally, similar works to those used in Lemma 4 with the use of $\gamma_{n}^{-1} M_{n}$ instead of γ_{n}^{-1} permit to conclude that:

$$
\gamma_{n}^{-1} M_{n} \sup _{x \in C_{n}}\left|f_{n}(x)-f(x)\right| \longrightarrow 0, \quad \text { a.s. } \quad n \longrightarrow \infty
$$

5. Proof of the Main Results

5.1 Proof of Theorem 1

Lemmas 3, 4 and 5 permit to conclude.

5.2 Proof of Corollary 2

It suffices to write:

$$
\frac{\mu_{d, n}(x)}{d}-\mu(x)=\frac{\mu_{d, n}(x)-\mu(x)}{d}+\left[\frac{\mu_{d}(x)}{d}-\mu(x)\right]
$$

Then, similar techniques to those of Theorem 1 with the conditions of Corollary 2 permit to conclude.

Acknowledgements

The author is grateful to the referees for their comments.

References

[1] Arfi, M. Nonparametric drift estimation from ergodic samples. J. Nonparametric Statistics. 5, 1995, pp.381-389
[2] Arfi, M. Nonparametric estimation in the diffusion equation. Jour. of Math. Sciences. 12, pp. 129-136
[3] Arfi,M., Lecoutre, J.P. Estimation of the diffusion coefficient under strong mixing. Statistics 33,1999 , pp. 73-84
[4] Banon, G. Estimation non parametrique de densite de probabilite pour les processus de Markov.These. Univ. Paul Sabatier de Toulouse, 1977
[5] Bradley, R.C. Equivalent mixing conditions of random fields, Technical Report 336. Center for Stochastic Processes. University of North Carolina, 1990
[6] Bradley, R.C. On the spectral density and asymptotic normality of weakly dependent random fields. J. Theoret. Probab. 5, , 1992, pp. 355-374
[7] Brown, B., Hewitt, J.I. Asymptotic likelihood theory for diffusion processes, J. Appl. Prob. 12, 1975, pp. 228-238
[8] Bryc, W., Smolenski, W. Moment conditions for almost sure convergence of weakly correlated random variables. Proc. mer. Math. Soc. 119, 1993, pp. 629-635
[9] Peligrad, M., Gut, A. Almost sure results for a class of dependent random variables. J. Theoret. Probab. 12, 1999, pp. 87-104
[10] Pham, D.T. Nonparametric estimation of the drift coefficient in the diffusion equation. Math. Oper. Statist., ser. Statistics 12, 1981 pp. 61-73
[11] Wong, E. Stochastic process in information and dynamical system. Mc Graw Hill, 1971

