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Abstract  

 
     In the classical Lotka - Volterra Prey - Predator model, there is 
no protection for Prey from the Predator and Predator sustains on 
the Prey alone. When the Prey population falls below a certain level, 
the predator would migrate to another region in search of food and 
return only when the Prey-Population rises to the required level. A 
population model with time delay was proposed by Kapur, (c.f. Deley 
differential and integro-differential equations in population 
dynamics, J.Math.Phy.Sci., 14, 107-29, 1980) and this model 
motivated the present investigation. In   the present    investigation  
we  studied  a     prey - predator     model    incorporating  i)  the   
predator  is provided   with    an   alternative   food    in    addition     
to   the    prey, ii) both the prey and the predator are harvested 
proportional to their population sizes and iii) a gestation period for 
interaction. The model is characterized by a couple of first order 
integro-differential equations. All the four equilibrium points of the 
model are identified and stability criteria are discussed. Some 
threshold results are illustrated. 
 

     Keys words: Equilibrium points, Normal Study State, Normalized Kernels, 
Prey, Predator, Stability, Threshold Diagrams, and Threshold Results.,  

1     Introduction 
Some of the prey-predator models were discussed by Michale Olinnck [4], May 
[5], Varma [6] Colinvaux [7], Freedman [8], Narayan [9]. A population model 
with time delay was proposed by Kapur [1]. Volterra formulated   a distributed   
time delay   model   for   prey - predator ecological   models.  Kapur, [2] discussed 
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the solution in the closed form for that model. Inspired from that, we discussed a 
more general model by taking an alterative food for the predator and harvesting of 
both the species. The model is characterized by a couple of first order ordinary 
delay-differential equations. All the four equilibrium points of the model are 
identified and stability criteria are discussed. In consonance with the principle of 
competitive exclusion (Gause [3]) some threshold results are illustrated.  

 
   2     Basic Equations 
 

The model equations for a two species Prey-Predator system is given by the 
following system of first order delay - differential equations employing the 
following notation: 

1N  and 2N are the populations of the prey and predator with the natural growth 
rates 1a and 2a respectively, 11α is rate of decrease of the prey due to insufficient 
food, 12α is rate of decrease of the prey due to inhibition by the predator, 21α  is 
rate of increase of the predator due to successful attacks on the prey, 22α  is rate of 
decrease of the predator due to insufficient food other than the prey,  1k  and 2k are 
rate of decrease of the prey and predator due to harvesting,  3( )k t s− , 4 ( )k t s− are 
weight factors to give the influence at time t  of 1N , 2N  of time ( )s t≤   i.e. 

3( )k t s− , 4 ( )k t s− are rate of changes of 1N , 2N after a time interval ( )t s− . 
     Further both the variables 2N and 2N  are non-negative and the model 
parameters 1a , 2a , 11α , 12α , 21α , 22α , 1k , 2k are assumed to be non-negative 
constants. 
 

 1
1 1 1 11 1 12 4 2(1 ) ( ) ( )

TdN N a k N k t s N s ds
dt

α α
⎧ ⎫⎪ ⎪= − − − −∫⎨ ⎬
⎪ ⎪−∞⎩ ⎭

    (2.1) 

2
2 2 2 22 2 21 3 1(1 ) ( ) ( )

TdN N a k N k t s N s ds
dt

α α
⎧ ⎫⎪ ⎪= − − + −∫⎨ ⎬
⎪ ⎪−∞⎩ ⎭

    (2.2) 

put t s z− = , i.e. s t z= −                                                                                (2.3) 

3 4( ), ( ) 0k z k z∴ ≥ , are time delayed so that 3 4( ) ( ) 1
0 0

k z dz k z dz
∞ ∞

= =∫ ∫    (2.4) 

are normalized kernels. 
Now we rewrite the basic equations as      

    1
1 1 1 11 1 12 4 2(1 ) ( ) ( )

0

dN N a k N k z N t z dz
dt

α α
∞⎧ ⎫⎪ ⎪= − − − −⎨ ⎬

⎪ ⎪⎩ ⎭
∫                        (2.5) 
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     2
2 2 2 22 2 21 3 1(1 ) ( ) ( )

0

dN N a k N k z N t z dz
dt

α α
∞⎧ ⎫⎪ ⎪= − − + −⎨ ⎬

⎪ ⎪⎩ ⎭
∫                  (2.6) 

   
3      Equilibrium Points 
 
The system under investigation has four equilibrium states: 
1. The fully washed out state with the equilibrium points 1 20; 0N N= = .     (3.1) 
2. The state in which predator survives and the preys are washed out. The 
equilibrium point is   

1 0N = ; 2 2
2

22

(1 )a kN
α
−

=                                                 (3.2) 

3. The state in which, only the prey survives and the predators are washed out. 
The equilibrium point is  

1 1
1

11

(1 )a kN
α
−

= ;
2

0N =                                                  (3.3)                

   
4. The co-existence state (normal study state). The equilibrium point is  

1 1 22 2 2 12
1

11 22 12 21

(1 ) (1 )a k a kN α α
α α α α

− − −
=

+
;     2 2 11 1 1 21

2
11 22 12 21

(1 ) (1 )a k a kN α α
α α α α
− + −

=
+

        (3.4) 

since 3 4( ) ( ) 1
0 0

k z dz k z dz
∞ ∞

= =∫ ∫ and this state can exist only when 

                          1 1 11

2 2 12

(1 )1
(1 )

a k
a k

α
α

−
<

−
                                                                    (3.5)  

 
4      The Stability of the Equilibrium States 

 
Let N = (N1, N2) T =  N U+                              (4.1) 
where U = T

1 2( , )u u  is a small perturbation over the equilibrium state 
,1 2( )TN N N= . The basic equations (2.5), (2.6) are quasi-linearized to obtain the 

equations for the perturbed state. (By trying the solutions t t
1 1 2 2u c e and u c eλ λ= =    

for the equations (2.5) and (2.6)) 

                                    [ ]dU A U
dt

=                                        (4.2) 

where          
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111
112 4

221 3

222

( )
0( )

0

N zN k z e dz
A zN k z e dz

N

α λα
λα

α

−

−

∞⎡ ⎤−
−⎢ ⎥∫∞= ⎢ ⎥

∫⎢ ⎥
−⎢ ⎥⎣ ⎦

            (4.3) 

        The characteristic equation for the system is    [ ] 0det A Iλ− = .     (4.4) 

     The equilibrium state is stable only when the roots of the equation (4.4) are 
negative in case they are real or have negative real parts in case they are complex. 
 

4.1     Stability of the equilibrium state I 
 
The trajectories for both washed out state are  

  1 1
1 10

(1 )t =  a ku u e −                                                                 (4.5) 

  2 2
2 20

(1 )t =  a ku u e −            (4.6)   

     The solution curves are illustrated in figures 1 and 2: 
Case 1: In this case the predator dominates the prey in natural growth as well as 
in its initial population strength. i.e. 10u < 20u  and 1 1(1 )a k− < 2 2(1 )a k− as shown 
in Fig.1 
Case 2: The predator dominates the prey in natural growth rate but its initial 
strength is less than that of prey. i.e. 10u > 20u and 2 2(1 )a k− > 1 1(1 )a k− as 
illustrated in Fig.2. In this case, the prey out numbers the predator till the time-

instant
[ ]

10 20

2 2 1 1

 {  / }= * = 
(1 )- (1 )
ln u ut t

a k a k− −
after that the predator out number the prey. 

(At = *t t , populations of both the species are same, and from (4.5)&(4.6) 1 2u u= ) 
 
4.2      Stability of the equilibrium state II 

  
The trajectories for only prey washed out state are: 

1
1 10 = tu u eλ  and  

  10 2 2 21 3 1
2

1 2 2 22

*(1- )  ( )=
{ (1 )}

u a k k tu e
a k

α λ λ
λ α

+
+ −

 
1

10 2 2 21 3 2 2
20

1 2 2 22

*(1- )  ( ) (1 ){ }
{ (1 )}

tu a k e k a k tu e
a k

λα λ
λ α

− −−
+ −

 (4.7) 

where  3
*( )k λ is Laplace transformation of 3 ( )k z and 3 4( ) ( ) 1

0 0
k z dz k z dz

∞ ∞
= =∫ ∫  

and 12 2 2
1 1 1

22

(1 )(1 ) - a ka k αλ
α

−
= −       (4.8) 

     The solution curves are illustrated in Fig. 3 & 4.   
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 Case 1: Initially the prey dominates the predator and it continues throughout its 

growth 10u > 20u  and 12 2 2
1 1 2 2

22

(1 )(1 ) (1 )a ka k a kα
α

−
− − > −  as illustrated in Fig. 3. 

Case 2: Initially the predator dominates the prey i.e. 10u < 20u and   

12 2 2
1 1 2 2

22

(1 )(1 ) (1 )a ka k a kα
α

−
− − > − . In this case, the predators out number the 

prey till the time-instant  

      

2 2 21 10 3 2
20

22 2 2 2

2 2 2 2 2 21 10 3 2
10

22 2 2 2

*(1 ) ( ) 
{ (1 )}1

*(1 ) (1 ) ( )  
{ (1 )}

a k u ku
a kt t ln

a k a k u ku
a k

α λ
α λ

λ α λ
α λ

⎡ ⎤−⎢ ⎥−
+ −⎢ ⎥∗= = ⎢ ⎥+ − −⎢ ⎥−

⎢ ⎥+ −⎣ ⎦

          (4.9)  

 after that, the prey out number the predator. This is illustrated in Fig. 4 
 
4.3      Stability of the equilibrium state III 
 
The trajectories for only the predator washed out state are: 

20 1 1 12 4 2 2
1

2 1 1 11

*(1 )  ( )=
{ (1 )}

u a k k tu e
a k

α λ λ
λ α

−
− +

+ −

2
20 1 1 12 4 2 1 1

10
2 1 1 11

*(1 )  ( ) - (1 ){ }
{ (1 )}

tu a k e k a k tu e
a k

λα λ
λ α
− −+
+ −

 (4.10) 

 

                              2
2 20 = tu u eλ ,       (4.11) 

where 4
*( )k λ is Laplace transformation of 4 ( )k z and 2λ = 1 1 21

2 2
11

(1 )(1 )+ a ka k α
α
−

−  

Case 1: The initial strength of the prey is greater than that of the predator. i. 
e. 10u > 20u  
Initially the prey out number the predator and this continues up to the time instant, 

20 1 1 12 4 2
10

2 1 1 11

2 2 2 20 1 1 12 4 2
20

2 1 1 11

*(1- )  ( )
{ (1 )}1* *(1 ) (1- )  ( )
{ (1 )}

u a k ku
a kt t

a k u a k ku
a k

α λ
λ α

λ α λ
λ α

⎡ ⎤
⎢ ⎥+

+ −⎢ ⎥= = ⎢ ⎥+ −
⎢ ⎥+
⎢ ⎥+ −⎣ ⎦

,     (4.12) 

after which the predator out numbers the prey. And also the predator species is 
noted to be going away from the equilibrium point while the prey-species would 
become extinct at the instant (t*) of time given by the positive root of the equation  

10 2 2 11 1 1 11 212 2 2

20 1 1 12

{ (1 ) (1 )[ ]}(1 )
(1 )

u a k a kt a k te e
u a k
α α αλ

α
− + − +− −+ =

−
    (4.13) 

This is illustrated in Fig. 5 
Case 2: The predator dominates the prey in its initial strength. i.e. 10u < 20u  
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     In this case the predator species is noted to be going away from the equilibrium 
point while the prey-species would become extinct at the instant (t*) of time given 
by the positive root of the equation 

10 2 2 11 1 1 11 212 2 2

20 1 1 12

{ (1 ) (1 )[ ]}(1 )
(1 )

u a k a kt a k te e
u a k
α α αλ

α
− + − +− −+ =

−
 

     As such the state is unstable. This is illustrated in Fig. 6 
 
4.4      Stability of the normal study state 
 
The trajectories for normal study state are: 

1u = 10 1 22 20 122 1

1 2

( )-u N u Nλ α α
λ λ

⎡ ⎤+
⎢ ⎥

−⎢ ⎥⎣ ⎦
 1 teλ + 10 2 22 20 122 1

2 1

( )-u N u Nλ α α
λ λ

⎡ ⎤+
⎢ ⎥

−⎢ ⎥⎣ ⎦
 2  te λ  (4.14) 

2 =u 20 1 11 10 211 2

1 2

( )-u N u Nλ α α
λ λ

⎡ ⎤+
⎢ ⎥

−⎢ ⎥⎣ ⎦
1 teλ  +  20 2 11 10 211 2

2 1

( )-u N u Nλ α α
λ λ

⎡ ⎤+
⎢ ⎥

−⎢ ⎥⎣ ⎦
2  te λ  (4.15) 

where 1 2andλ λ   are roots of the characteristic equation. 
Case 1: Initially the prey dominates the predator and it continues through out its 
growth i.e. 10 20< u u  In this case the predator always out numbers the prey. It is 
evident that both the species converging asymptotic to the equilibrium point. 
Hence this state is stable. This is illustrated in Fig. 7. 
Case 2: The prey dominates the predator in natural growth rate but its initial 
strength is less than that of predator. i.e. 10 20> u u .Initially the prey out number the 
predator and this continues till the time-instant 

 = * =t t  
2 1

1
λ λ+

 ln 3 5 10 3 1 20

2 6 10 4 1 20

 ( ) ( )
( )  ( )

b a u a b u
b a u a b u

⎡ ⎤− + +
⎢ ⎥− + +⎣ ⎦

 (4.16) 

 
where  , 3 1 11 1

a Nλ α= + ; 4 2 11 1a Nλ α= + ; 25 1 22a Nλ α= + ; 26 2 22a Nλ α= + ;

11 12b Nλ= ;   22 21b Nλ=                                        (4.17) 
after which the predator out number the prey. The solution curves are illustrated in 
Fig. 8. 
     When 2

1 211 22( )N Nα α− <  2
1 212 21 3 4

* *4 (1 ) ( ) ( )k N N k kα α λ λ−  the roots are 
complex with negative real part. Hence the equilibrium state is stable. This is 
illustrated in Fig. 9. 
 
5      Threshold Results 
 
Employing the principle of competitive exclusion (Gauss [3]), the following 
threshold results are established. 
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a.  When, 1 1 2 2

12 22

(1 ) (1 )a k a k
α α
− −

>  and 2 2 1 1

21 11

(1 ) (1 )a k a k
α α
− −

>   (5.1) 

Both the species co-exist as shown in Fig. 10 
 

b.  When, 1 1 2 2

12 22

(1 ) (1 )a k a k
α α
− −

>  and 2 2 1 1

21 11

(1 ) (1 )a k a k
α α
− −

<   (5.2) 

Only prey species survives as illustrated in Fig. 11 

c. When, 1 1 2 2

12 22

(1 ) (1 )a k a k
α α
− −

<  and 2 2 1 1

21 11

(1 ) (1 )a k a k
α α
− −

>   (5.3) 

Only predator species survives as illustrated in Fig. 12. 
 

6.      Trajectories 
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7      Threshold Diagrams 
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8      Future Works 
 
In the present paper it is investigated that a Prey-Predator model with harvesting 
is proportional to the population sizes of the species with gestation period for 
interaction. There is a scope to study the model with constant harvesting of both 
species, or harvesting of any of the species. Further cover can be taken for the 
Prey to protect it from the attacks of the Predator.  One can construct Lypunov’s 
function to study the global stability of the model. 
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