Int. J. Open Problems Comput. Sci. Math., Vol. 1, 2008, No. 1, June 2008

Coefficient ConditionsFor Certain Univalent Functions

Toshio Hayami and Shigeyoshi Owa
Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan
e-mail : ha_ya_to112@hotmail.com; owa@math.kindai.ac.jp

Abstract

Some subclasses of analytic functions $f(z)$ in the open unit disk \mathbb{U} are introduced. In the present paper, Some interesting sufficient conditions, including coefficient inequalities related close-to-convex functions $f(z)$ of order α with respect to a fixed starlike function $g(z)$ and strongly starlike functions $f(z)$ of order μ in \mathbb{U}, are discussed. Several special cases and consequences of these coefficient inequalities are also pointed out.

Keywords: Coefficient inequality, analytic function, univalent function, close-to-convex function, spiral-like function, strongly starlike function.

1 Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$.
Furthermore, let \mathcal{P} be the class of functions $p(z)$ of the form

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{2}
\end{equation*}
$$

which are analytic in \mathbb{U}.
If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0 \quad(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

then $f(z)$ is said to be starlike in \mathbb{U}.
We denote by \mathcal{S}^{*} the class of all functions $f(z)$ which are starlike in \mathbb{U}. Also, $f(z) \in \mathcal{A}$ is said to be convex in \mathbb{U} if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad(z \in \mathbb{U}) \tag{4}
\end{equation*}
$$

We denote by \mathcal{K} the subclass of \mathcal{A} consisting of all convex functions $f(z)$ in \mathbb{U}. We begin with the definitions for the subclasses $\mathcal{T}(\alpha)$ and $\mathcal{U}(\alpha)$ of \mathcal{A}.

Definition 1.1 A function $f(z) \in \mathcal{A}$ belongs to $\mathcal{T}(\alpha)$ if and only if it satisfies

$$
\begin{equation*}
\operatorname{Re} \frac{f(z)}{z}>\alpha \quad(z \in \mathbb{U}) \tag{5}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$.
Definition 1.2 A function $f(z) \in \mathcal{A}$ is in the class $\mathcal{U}(\alpha)$ if and only if it satisfies

$$
\begin{equation*}
\operatorname{Re} f^{\prime}(z)>\alpha \quad(z \in \mathbb{U}) \tag{6}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$.
For the proof of our results, we need the following lemma.
Lemma 1.3 (see, [1], [3]) A function $p(z) \in \mathcal{P}$ satisfies $\operatorname{Re} p(z)>0(z \in \mathbb{U})$ if and only if

$$
p(z) \neq \frac{x-1}{x+1} \quad(z \in \mathbb{U})
$$

for all $|x|=1$.
By observation of this, many relations concerning the various subclasses of \mathcal{A}, for example, the class of starlike, convex or λ-spiral-like functions were studied (cf. [1], [2], [3]). Our results are motivated by these investigation. In this paper, we discuss the sufficient conditions for the known or new classes involving the above.

Lemma 1.4 A function $f(z) \in \mathcal{A}$ is in $\mathcal{T}(\alpha)$ if and only if

$$
\begin{equation*}
1+\sum_{n=2}^{\infty} A_{n} z^{n-1} \neq 0 \tag{7}
\end{equation*}
$$

where

$$
A_{n}=\frac{x+1}{2(1-\alpha)} a_{n} \quad(n \geqq 2) .
$$

Proof. Putting $p(z)=\frac{\frac{f(z)}{z}-\alpha}{1-\alpha}$ for $f(z) \in \mathcal{T}(\alpha)$, we obtain that $p(z) \in \mathcal{P}$, and $\operatorname{Re} p(z)>0$. Using Lemma 1.3, we have that

$$
\frac{\frac{f(z)}{z}-\alpha}{1-\alpha} \neq \frac{x-1}{x+1} \quad(z \in \mathbb{U})
$$

for all $|x|=1$. Then, we need not consider Lemma 1.3 for $z=0$, because it follows that

$$
p(0)=1 \neq \frac{x-1}{x+1}
$$

for all $|x|=1$. This implies that

$$
\begin{equation*}
(x+1) f(z)+(1-2 \alpha-x) z \neq 0 \tag{8}
\end{equation*}
$$

It follows that (8) is equivalent to

$$
(x+1)\left(z+\sum_{n=2}^{\infty} a_{n} z^{n}\right)+(1-2 \alpha-x) z \neq 0
$$

or

$$
\begin{equation*}
2(1-\alpha) z\left\{1+\sum_{n=2}^{\infty} \frac{x+1}{2(1-\alpha)} a_{n} z^{n-1}\right\} \neq 0 . \tag{9}
\end{equation*}
$$

Dividing the both sides of (9) by $2(1-\alpha) z(z \neq 0)$, we know that

$$
1+\sum_{n=2}^{\infty} \frac{x+1}{2(1-\alpha)} a_{n} z^{n-1} \neq 0 .
$$

This completes the proof of lemma.

2 Coefficient conditions for functions in the classes $\mathcal{T}(\alpha)$ and $\mathcal{C} \mathcal{C}_{\lambda}(\alpha ; g(z))$

Our result for $f(z)$ to be in $\mathcal{T}(\alpha)$ is contained in
Theorem 2.1 If $f(z) \in \mathcal{A}$ satisfies the following condition

$$
\sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right| \leqq 1-\alpha
$$

for some $\alpha(0 \leqq \alpha<1), \beta \in \mathbb{R}$ and $\gamma \in \mathbb{R}$, then $f(z) \in \mathcal{T}(\alpha)$.

Proof. Note that

$$
(1-z)^{\beta} \neq 0,(1+z)^{\gamma} \neq 0(\beta, \gamma \in \mathbb{R} ; z \in \mathbb{U})
$$

Hence if the following expression

$$
\begin{equation*}
\left(1+\sum_{n=2}^{\infty} A_{n} z^{n-1}\right)(1-z)^{\beta}(1+z)^{\gamma} \neq 0 \tag{10}
\end{equation*}
$$

holds true, then we have

$$
1+\sum_{n=2}^{\infty} A_{n} z^{n-1} \neq 0
$$

which is the relation (7) of Lemma 1.4. We know that (10) is equivalent to

$$
1+\sum_{n=2}^{\infty}\left[\sum_{k=1}^{n}\left\{\sum_{j=1}^{k} A_{j}(-1)^{k-j}\binom{\beta}{k-j}\right\}\binom{\gamma}{n-k}\right] z^{n-1} \neq 0 .
$$

Therefore, if $f(z) \in \mathcal{A}$ satisfies

$$
\sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k} A_{j}(-1)^{k-j}\binom{\beta}{k-j}\right\}\binom{\gamma}{n-k}\right| \leqq 1
$$

with $A_{n}=\frac{x+1}{2(1-\alpha)} a_{n}$, that is, that

$$
\begin{aligned}
& \frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}(x+1) a_{j}(-1)^{k-j}\binom{\beta}{k-j}\right\}\binom{\gamma}{n-k}\right| \\
& \leqq \frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty}\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right. \\
&\left.+|x|\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \\
&= \frac{1}{1-\alpha} \sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right| \\
& \leqq 1,
\end{aligned}
$$

then $f(z) \in \mathcal{T}(\alpha)$. This completes the proof of Theorem 2.1.

Putting $\beta=\gamma=0$ in Theorem 2.1, we see the following corollary.
Corollary 2.2 If $f(z) \in \mathcal{A}$ satisfies

$$
\sum_{n=2}^{\infty}\left|a_{n}\right| \leqq 1-\alpha
$$

for some $\alpha(0 \leqq \alpha<1)$, then $f(z) \in \mathcal{T}(\alpha)$.

Next, we derive the coefficient condition for $f(z)$ to be in the class $\mathcal{U}(\alpha)$.
Theorem 2.3 If $f(z) \in \mathcal{A}$ satisfies the following condition

$$
\sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}(-1)^{k-j}\binom{\beta}{k-j} j a_{j}\right\}\binom{\gamma}{n-k}\right| \leqq 1-\alpha
$$

for some $\alpha(0 \leqq \alpha<1), \beta \in \mathbb{R}$, and $\gamma \in \mathbb{R}$, then $f(z) \in \mathcal{U}(\alpha)$.

Proof. Since $f(z) \in \mathcal{U}(\alpha) \Leftrightarrow z f^{\prime}(z) \in \mathcal{T}(\alpha)$ and

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z f^{\prime}(z)=z+\sum_{n=2}^{\infty} n a_{n} z^{n}
$$

replacing a_{j} of Theorem 2.1 with $j a_{j}$, we prove the theorem.

Taking $\beta=\gamma=0$ in Theorem 2.3, we obtain
Corollary 2.4 If $f(z) \in \mathcal{A}$ satisfies

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leqq 1-\alpha
$$

for some $\alpha(0 \leqq \alpha<1)$, then $f(z) \in \mathcal{U}(\alpha)$.
Definition 2.5 (see, for details, [2]) If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\operatorname{Re} e^{i \lambda}\left(\frac{z f^{\prime}(z)}{g(z)}-\alpha\right)>0 \quad(z \in \mathbb{U}) \tag{11}
\end{equation*}
$$

for some $\alpha(0 \leqq \alpha<1)$, $\lambda\left(-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right)$ and starlike function $g(z)=z+$ $\sum_{n=2}^{\infty} b_{n} z^{n}$, then $f(z)$ is said to be close-to-convex of order α with respect to a fixed starlike function $g(z)$, and let $\mathcal{C C}_{\lambda}(\alpha ; g(z))$ denote the class of functions $f(z)$ which are close-to-convex of order α with respect to a fixed starlike function $g(z)$.

In particular, when $g(z)=z \in \mathcal{S}^{*}$ and $\lambda=0$, we see that

$$
\mathcal{C C}_{0}(\alpha ; z) \equiv \mathcal{U}(\alpha)
$$

Remark 2.6 Replacing $g(z)$ by $f(z)$ in (11), we say that $f(z)$ is said to be λ-spiral of order α in \mathbb{U}, and write $\mathcal{S P}(\lambda, \alpha)$ defined by

$$
\mathcal{S P}(\lambda, \alpha)=\left\{f(z) \in \mathcal{A}: \operatorname{Re} e^{i \lambda}\left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right)>0\right\} .
$$

Lemma 2.7 A function $f(z) \in \mathcal{A}$ is in $\mathcal{C C}_{\lambda}(\alpha ; g(z))$ if and only if

$$
\begin{equation*}
1+\sum_{n=2}^{\infty} B_{n} z^{n-1} \neq 0 \tag{12}
\end{equation*}
$$

where

$$
B_{n}=\frac{n a_{n}+\left(2(1-\alpha) e^{-i \lambda} \cos \lambda-1\right) b_{n}+x\left(n a_{n}-b_{n}\right)}{2(1-\alpha) e^{-i \lambda} \cos \lambda} .
$$

Proof. Letting $p(z)=\frac{e^{i \lambda}\left(\frac{z f^{\prime}(z)}{g(z)}-\alpha\right)-i(1-\alpha) \sin \lambda}{(1-\alpha) \cos \lambda}$, we see that $p(z) \in$ \mathcal{P} and $\operatorname{Re} p(z)>0(z \in \mathbb{U})$. It follows from Lemma 1.1 that

$$
\begin{equation*}
\frac{e^{i \lambda}\left(\frac{z f^{\prime}(z)}{g(z)}-\alpha\right)-i(1-\alpha) \sin \lambda}{(1-\alpha) \cos \lambda} \neq \frac{x-1}{x+1} \quad(z \in \mathbb{U}) \tag{13}
\end{equation*}
$$

for all $|x|=1$. Then, we need not consider Lemma 1.1 for $z=0$, because it follows that

$$
p(0)=1 \neq \frac{x-1}{x+1}
$$

for all $|x|=1$. Since (13) implies that

$$
\frac{e^{i \lambda}\left(z f^{\prime}(z)-\alpha g(z)\right)-i(1-\alpha) g(z) \sin \lambda}{(1-\alpha) \cos \lambda} \neq \frac{x-1}{x+1} g(z),
$$

we obtain that

$$
(x+1)\left\{e^{i \lambda}\left(z f^{\prime}(z)-\alpha g(z)\right)-i(1-\alpha) g(z) \sin \lambda\right\} \neq(x-1)(1-\alpha) g(z) \cos \lambda
$$

or

$$
\begin{align*}
(x+1) e^{i \lambda} z f^{\prime}(z)-\alpha e^{i \lambda} g(z)-x \alpha e^{i \lambda} & g(z)-i(1-\alpha) g(z) \sin \lambda-i x(1-\alpha) g(z) \sin \lambda(14) \tag{14}\\
& \neq x(1-\alpha) g(z) \cos \lambda-(1-\alpha) g(z) \cos \lambda
\end{align*}
$$

The relation (14) is equivalent to
$(x+1) e^{i \lambda} z f^{\prime}(z)-\alpha e^{i \lambda} g(z)-x \alpha e^{i \lambda} g(z)-x(1-\alpha) e^{i \lambda} g(z)+(1-\alpha) e^{-i \lambda} g(z) \neq 0$ that is,

$$
(1+x) e^{i \lambda} z f^{\prime}(z)+\left(e^{-i \lambda}-x e^{i \lambda}-2 \alpha \cos \lambda\right) g(z) \neq 0
$$

Note that the above relation can be weitten with

$$
(x+1) e^{i \lambda}\left(z+\sum_{n=2}^{\infty} n a_{n} z^{n}\right)+\left(e^{-i \lambda}-x e^{i \lambda}-2 \alpha \cos \lambda\right)\left(z+\sum_{n=2}^{\infty} b_{n} z^{n}\right) \neq 0
$$

or

$$
\begin{equation*}
2(1-\alpha) \cos \lambda z\left\{1+\sum_{n=2}^{\infty} \frac{n(x+1) a_{n}+\left(e^{-2 i \lambda}-x-2 \alpha e^{-i \lambda} \cos \lambda\right) b_{n}}{2(1-\alpha) e^{-i \lambda} \cos \lambda} z^{n-1}\right\} \neq 0 \tag{15}
\end{equation*}
$$

Dividing the both sides of (15) by $2(1-\alpha) \cos \lambda z(z \neq 0)$ and noting

$$
\begin{equation*}
e^{-2 i \lambda}=-1+2 e^{-i \lambda} \cos \lambda, \tag{16}
\end{equation*}
$$

we know that

$$
1+\sum_{n=2}^{\infty} \frac{n a_{n}+\left(2(1-\alpha) e^{-i \lambda}-1\right) b_{n}+x\left(n a_{n}-b_{n}\right)}{2(1-\alpha) e^{-i \lambda} \cos \lambda} z^{n-1} \neq 0
$$

This completes the proof of the lemma.

Applying Lemma 2.7, we obtain
Theorem 2.8 If $f(z) \in \mathcal{A}$ satisfies the following condition

$$
\begin{aligned}
\sum_{n=2}^{\infty} & {\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j a_{j}+\left((1-\alpha) e^{-2 i \lambda}-\alpha\right) b_{n}\right)(-1)^{k-j}\binom{\beta}{k-j}\right\}\binom{\gamma}{n-k}\right|\right.} \\
& \left.+\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j a_{j}-b_{n}\right)(-1)^{k-j}\binom{\beta}{k-j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2(1-\alpha) \cos \lambda
\end{aligned}
$$

for some $\alpha(0 \leqq \alpha<1)$, $\lambda\left(-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right), \beta \in \mathbb{R}, \gamma \in \mathbb{R}$ and $g(z)=$ $z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}^{*}$, then $f(z) \in \mathcal{C C}_{\lambda}(\alpha ; g(z))$.

Proof. Applying the same method of the proof in Theorem 2.1, we know that $f(z)$ belongs to $\mathcal{C C}_{\lambda}(\alpha ; g(z))$ if $f(z) \in \mathcal{A}$ satisfies

$$
\sum_{n=2}^{\infty}\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k} B_{j}(-1)^{k-j} c_{k-j}\right\} d_{n-k}\right| \leqq 1
$$

where $c_{n}=\binom{\beta}{n}, d_{n}=\binom{\gamma}{n}$ and B_{j} is the coefficient defined by Lemma 2.7.

Now, we consider that

$$
\begin{aligned}
& \left.\frac{1}{\left|2(1-\alpha) e^{-i \lambda} \cos \lambda\right|} \sum_{n=2}^{\infty} \right\rvert\, \sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j a_{j}+\left(2(1-\alpha) e^{-i \lambda} \cos \lambda-1\right) b_{j}+x\left(j a_{j}-b_{j}\right)\right)(-1)^{k-j} c_{k-j}\right\} d_{r} \\
& \leqq \frac{1}{2(1-\alpha) \cos \lambda} \sum_{n=2}^{\infty}\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j a_{j}+\left(2(1-\alpha) e^{-i \lambda} \cos \lambda-1\right) b_{j}\right)(-1)^{k-j} c_{k-j}\right\} d_{n-k}\right|\right. \\
& \left.+|x|\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j a_{j}-b_{j}\right)(-1)^{k-j} c_{k-j}\right\} d_{n-k}\right|\right] \\
& \leqq 1 .
\end{aligned}
$$

This implies that if $f(z) \in \mathcal{A}$ satisfies

$$
\begin{aligned}
\sum_{n=2}^{\infty} & {\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j a_{j}+\left(2(1-\alpha) e^{-i \lambda} \cos \lambda-1\right) b_{j}\right)(-1)^{k-j}\binom{\beta}{k-j}\right\}\binom{\gamma}{n-k}\right|\right.} \\
& \left.+\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j a_{j}-b_{j}\right)(-1)^{k-j}\binom{\beta}{k-j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2(1-\alpha) \cos \lambda
\end{aligned}
$$

then $f(z) \in \mathcal{C C}_{\lambda}(\alpha ; g(z))$. This completes the proof of Theorem 2.8.

Considering $g(z)=f(z)$ in Theorem 2.8 and noting (16), we have the following corollary.

Corollary 2.9 ([1], Theorem 3) If $f(z) \in \mathcal{A}$ satisfies the following inequality

$$
\begin{aligned}
\sum_{n=2}^{\infty} & {\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j-\alpha+(1-\alpha) e^{-2 i \lambda}\right)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right.} \\
& \left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k}(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2(1-\alpha) \cos \lambda
\end{aligned}
$$

for some $\alpha(0 \leqq \alpha<1)$, $\lambda\left(-\frac{\pi}{2}<\lambda<\frac{\pi}{2}\right), \beta \in \mathbb{R}$ and $\gamma \in \mathbb{R}$, then $f(z) \in$ $\mathcal{S P}(\lambda, \alpha)$.

Furthermore, setting $\lambda=0$ in Theorem 2.8, we obtain the following condition for $\mathcal{C} \mathcal{C}_{0}(\alpha ; g(z))$.

Corollary 2.10 If $f(z) \in \mathcal{A}$ satisfies the following condition

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left[\mid \sum_{k=1}^{n}\right. & \left.\left\{\sum_{j=1}^{k}\left(j a_{j}+(1-2 \alpha) b_{j}\right)(-1)^{k-j}\binom{\beta}{k-j}\right\}\binom{\gamma}{n-k} \right\rvert\, \\
& \left.+\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j a_{j}-b_{j}\right)(-1)^{k-j}\binom{\beta}{k-j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2(1-\alpha)
\end{aligned}
$$

for some $\alpha(0 \leqq \alpha<1), \beta \in \mathbb{R}, \gamma \in \mathbb{R}$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{S}^{*}$, then $f(z) \in \mathcal{C} \mathcal{C}_{0}(\alpha ; g(z))$.

3 Coefficient conditions for functions in the class $\mathcal{S T} \mathcal{S}\left(\mu_{1}, \mu_{2}\right)$

In this section, we consider the subclass $\mathcal{S} \mathcal{T} \mathcal{S}\left(\mu_{1}, \mu_{2}\right)$ of \mathcal{A} due to Takahashi and Nunokawa [4] as follows:
$\mathcal{S T} \mathcal{S}\left(\mu_{1}, \mu_{2}\right)=\left\{f(z) \in \mathcal{A}: \frac{\pi \mu_{1}}{2}<\arg \frac{z f^{\prime}(z)}{f(z)}<\frac{\pi \mu_{2}}{2} \quad\left(-1 \leqq \mu_{1}<0<\mu_{2} \leqq 1\right)\right\}$.
Now, taking $\mu_{1}=-\mu$ and $\mu_{2}=\mu$ for some $\mu(0<\mu \leqq 1)$, we have the class $\mathcal{S T} \mathcal{S}(\mu)$ of strongly starlike functions of order μ in \mathbb{U} defined by

$$
\mathcal{S T} \mathcal{S}(\mu)=\left\{f(z) \in \mathcal{A}:\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi \mu}{2} \quad(0<\mu \leqq 1)\right\} .
$$

Similary, we also define the subclasses $\mathcal{S T C}\left(\mu_{1}, \mu_{2}\right)$ and $\mathcal{S T C}(\mu)$ of \mathcal{A} by

$$
\mathcal{S T C}\left(\mu_{1}, \mu_{2}\right)=\left\{f(z) \in \mathcal{A}: \frac{\pi \mu_{1}}{2}<\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{\pi \mu_{2}}{2} \quad\left(-1 \leqq \mu_{1}<0<\mu_{2} \leqq 1\right)\right\}
$$

and

$$
\mathcal{S T C}(\mu)=\left\{f(z) \in \mathcal{A}:\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\pi \mu}{2} \quad(0<\mu \leqq 1)\right\},
$$

respectively.
Now, we derive
Theorem 3.1 If $f(z) \in \mathcal{A}$ saitsfies the both conditions of

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j-e^{i \pi \mu_{1}}\right)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right. \tag{17}\\
+ & \left.\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k}(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq-2 \sin \frac{\pi \mu_{1}}{2}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j-e^{i \pi \mu_{2}}\right)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right. \tag{3.2}\\
& \left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k}(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2 \sin \frac{\pi \mu_{2}}{2}
\end{align*}
$$

for some $\mu_{1}\left(-1 \leqq \mu_{1}<0\right)$, $\mu_{2}\left(0<\mu_{2} \leqq 1\right), \beta \in \mathbb{R}$ and $\gamma \in \mathbb{R}$, then $f(z) \in \mathcal{S T} \mathcal{S}\left(\mu_{1}, \mu_{2}\right)$.

Proof. Setting $\lambda=-\frac{1+\mu_{1}}{2} \pi$ or $\lambda=\frac{1-\mu_{2}}{2} \pi$ and taking $\alpha=0$ in Corollary 2.9, we obtain the inequality (17) or (18).

Thus, it follows that

$$
-\frac{\pi}{2}<\arg \left(e^{-\frac{1+\mu_{1}}{2} \pi} \frac{z f^{\prime}(z)}{f(z)}\right)<\frac{\pi}{2} \quad \text { and } \quad-\frac{\pi}{2}<\arg \left(e^{\frac{1-\mu_{2}}{2} \pi} \frac{z f^{\prime}(z)}{f(z)}\right)<\frac{\pi}{2}
$$

that is, that

$$
\frac{\pi \mu_{1}}{2}<\arg \frac{z f^{\prime}(z)}{f(z)}<\frac{\pi\left(2+\mu_{1}\right)}{2} \quad \text { and } \quad-\frac{\pi\left(2-\mu_{2}\right)}{2}<\arg \frac{z f^{\prime}(z)}{f(z)}<\frac{\pi \mu_{2}}{2} .
$$

Therefore, we have

$$
\frac{\pi \mu_{1}}{2}<\arg \frac{z f^{\prime}(z)}{f(z)}<\frac{\pi \mu_{2}}{2} .
$$

This completes the proof of Theorem3.1.

Letting $\mu_{1}=-\mu$ and $\mu_{2}=\mu$ for some $\mu(0<\mu \leqq 1)$ in Theorem 3.1, we know the following corollary.

Corollary 3.2 If $f(z) \in \mathcal{A}$ satisfies the both inequalities of

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j-e^{-i \pi \mu}\right)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right. \\
&\left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k}(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2 \sin \frac{\pi \mu}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k}\left(j-e^{i \pi \mu}\right)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right. \\
&\left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k}(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2 \sin \frac{\pi \mu}{2}
\end{aligned}
$$

for some $\mu(0<\mu \leqq 1), \beta \in \mathbb{R}$ and $\gamma \in \mathbb{R}$, then $f(z) \in \mathcal{S} \mathcal{T} \mathcal{S}(\mu)$.
In particular, putting $\mu_{1}=-1$ and $\mu_{2}=1$ in Theorem 3.1, we see the following result.

Corollary 3.3 ([1], Corollary 2) If $f(z) \in \mathcal{A}$ satisfies the following condition

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left[\mid \sum_{k=1}^{n}\left\{\sum_{j=1}^{k}(j\right.\right. & \left.+1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\} \left.\binom{\gamma}{n-k} \right\rvert\, \\
& \left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k}(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2
\end{aligned}
$$

for some $\beta \in \mathbb{R}$ and $\gamma \in \mathbb{R}$, then $f(z) \in \mathcal{S}^{*}$.
Finally, noting that

$$
f(z) \in \mathcal{S T \mathcal { C }}\left(\mu_{1}, \mu_{2}\right) \Longleftrightarrow z f^{\prime}(z) \in \mathcal{S T} \mathcal{S}\left(\mu_{1}, \mu_{2}\right)
$$

we have the following results.
Theorem 3.4 If $f(z) \in \mathcal{A}$ satisfies the both conditions of

$$
\begin{aligned}
\sum_{n=2}^{\infty}[\mid & \left.\sum_{k=1}^{n}\left\{\sum_{j=1}^{k} j\left(j-e^{i \pi \mu_{1}}\right)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k} \right\rvert\, \\
& \left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k} j(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq-2 \sin \frac{\pi \mu_{1}}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left[\mid \sum_{k=1}^{n}\right. & \left.\left\{\sum_{j=1}^{k} j\left(j-e^{i \pi \mu_{2}}\right)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k} \right\rvert\, \\
& \left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k} j(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2 \sin \frac{\pi \mu_{2}}{2}
\end{aligned}
$$

for some $\mu_{1}\left(-1 \leqq \mu_{1}<0\right)$, $\mu_{2}\left(0<\mu_{2} \leqq 1\right), \beta \in \mathbb{R}$ and $\gamma \in \mathbb{R}$, then $f(z) \in \mathcal{S T C}\left(\mu_{1}, \mu_{2}\right)$.

Corollary 3.5 If $f(z) \in \mathcal{A}$ satisfies the both relations of

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left[\mid \sum_{k=1}^{n}\right. & \left.\left\{\sum_{j=1}^{k} j\left(j-e^{-i \pi \mu}\right)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k} \right\rvert\, \\
& \left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k} j(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2 \sin \frac{\pi \mu}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left[\mid \sum_{k=1}^{n}\right. & \left.\left\{\sum_{j=1}^{k} j\left(j-e^{i \pi \mu}\right)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k} \right\rvert\, \\
& \left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k} j(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2 \sin \frac{\pi \mu}{2}
\end{aligned}
$$

for some $\mu(0<\mu \leqq 1)$, $\beta \in \mathbb{R}$ and $\gamma \in \mathbb{R}$, then $f(z) \in \mathcal{S T C}(\mu)$.
Corollary 3.6 ([1], Corollary 4) If $f(z) \in \mathcal{A}$ satisfies the following condition

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[\left|\sum_{k=1}^{n}\left\{\sum_{j=1}^{k} j(j+1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right. \\
& \left.+\left|\sum_{k=1}^{\infty}\left\{\sum_{j=1}^{k} j(j-1)(-1)^{k-j}\binom{\beta}{k-j} a_{j}\right\}\binom{\gamma}{n-k}\right|\right] \leqq 2
\end{aligned}
$$

for some $\beta \in \mathbb{R}$ and $\gamma \in \mathbb{R}$, then $f(z) \in \mathcal{K}$.

References

[1] T. Hayami, S. Owa, and H. M. Srivastava, Coefficient inequalities for certain classes of analytic and univalent functions, J. Ineq. Pure and Appl. Math., 8(4) Article 95 (2007), 1-10.
[2] I. R. Nezhmetdinov and S. Ponnusamy, New coefficient conditions for the starlikeness of analytic functions and their applications, Houston J. Math. 31, No. 2 (2005), 587-604.
[3] H. Silverman, E. M. Silvia, and D. Telage, Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Z., 162 (1978), 125-130.
[4] N. Takahashi and M. Nunokawa, A certain connection between starlike and convex functions, Appl. Math. Lett., 16 (2003), 653-655.

