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Abstract

For analytic functions in the open wunit disk, J. Becker
(Math. Ann. 202(1973)) has given some univalent conditions.
In the present paper, some extensions of Becker’s type are

considered.
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1 Introduction

Let U ={z€C,|z| < 1}
be the open unit disk and A denote the class of the functions f(z) of the

form
f(2)=2+a2® +azz®+---
which are analytic in &. Consider
S={fe€A: fis univalent in U}.
Let Ay be the subclass of A consisting of functions f(z) of the form

f(z) :z+iakzk. (1)
k=3

Let 75 be the univalent subclass of A, which satisfies

2 f'(2)

TG

<1 (zel). (2)
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Let 75, be the subclass of Ay consisting of functions is of the form (1)
which satisfy

2f'(2)
(f(2))?

for some p (0 < p < 1). Furthermore, for some real p with 0 < p < 2, we
define the subclass S(p) of A consisting of all function f(z) which satisfy

()

Singh [8] has shown that if f(z) € S(p), then f(z) satisfies

2f'(2)
(f(=))?

—l<p (zel) (3)

<p (z€l).

— 1| <plz]*, (z€U). (4)

Alfors [1] and Becker [2] have obtained the next univalence criterion:

Theorem 1.1. Let ¢ be a complex number, |c| <1, c# —1. If f(z) € A
satisfies

for all z € U, then f(z) € S.

Furthermore, we need the following theorem given by Pescar [6].

Theorem 1.2. Let 3 be a complex number, Re3 > 0, and c be a complex
number, |c| < 1,c# —1. If f(z) € A satisfies

o+ (1= 1) | <

for all the z € U, then the function

1
B

Fy(z) = [ﬁ / tﬁ-lf%t)dt]

15 1s in the class S.

Next lemma is well-kwon as the Schwarz lemma (cf. [4]).
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The Schwarz Lemma 1.3. Let the function f(z) be regular in U with
f0)=0.If|f(z)| <1 (2 €U, then
1f(2)] < |2]
for all z € U, where the equality can be hold only if f(z) = Kz and |K| = 1.

Breaz and Breaz [3] have considered for f; € Ay (i = 1,2,---,n) and
a1, Qo+, ay, 3 € C, the integral operator

G(z) = {ﬁ/oz tﬁ_li_ﬁl (@)a dt}é . (5)

2 Main results

Our first result for univalence of G(z) is contained in the following theorem.

Theorem 2.1. Let the functions f; € S(p;), fori € {1,...,n} satisfy the
condition (4) with 0 < p; < 2 and |fi(2)] < Mi(z € U). If oy, B, and c are
complex numbers such that Ref > 0 and

n

1
e <1- Rej i:1[(1 +p)M + 1] |ai] (6)

then the function G(2) defined in (5) is in the class S.

Proof. Define a function
h(z) = / 11 (f(ﬂ) dt,
0 ;3 t
then we have h(0) = A/(0) — 1 = 0. Also a simple computation yields

z

and

o 3 (76 ) "

From the equation (7), we have
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22 fl(2)

< s ({751 -
N 2\

From the hypothesis, we have | f;(z)| < M; (z €U, i=1,2,---,n), then
by Schwarz Lemma, we obtain that

zh"(2)
W ()

fi(2)

+ 1) (8)

Ifi(2)| < My|z| (€U, i=1,2,---,n).

We apply this result in inequality (8), we obtain

(s
"

22fl(2)
;| (piMi |Z’|2 + M; + 1)

zh"(2)
h(z)

M=

<

M—|—1>

7

NgE

2

<

<m»f%M+M+Q

7

Il

@
Il
MR

A\

@
Il
=

{1+ pi) M; + 1} [l

We have:

h//
C’Z‘Qﬁ + (1 o ’2‘26) < (Z)

V() g3 (F 1) <

2 fi(2)
f7(2)

“”wwz'<

wmm+0_

E

We obtain:

243 + (1 . |Z|2 ) h”(Z)

<]c\—|—|mz 1+ p)M; + 1] |ay| <

n

1
e+ g 2210+ P0M:+ 1] o]

So, from (6) we have:
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<1

9 o5\ 2h"(z
e+ (1= ) i

Applying Theorem 2.1, we obtain that G(z) is univalent.

Corollary 2.2. Let the functions f; € S(p;), for i € {1,...,n} satisfy the
condition (4) with 0 < p; < 2 and |f;(2)] < Mi(z € U). If , 3, and ¢ are
complex numbers such that Re > 0 and

le] <1-— n((pi+ 1)M; +1) |of,

1
Repj
then the function

z n i t « %
Fua) = (o [ 11 (1) )
0 =1 t
18 in the class S.
Proof. In Theorem 2.1, we consider oy = as = ... = o, = Q.

Taking M =1 in Theorem 2.1, we have

Corollary 2.3. Let the functions f; € S(p;), for i € {1,...,n} satisfy the
condition (4) with 0 < p; < 2 and |f;(2)| < 1(z € U). If oy, B, and ¢ are
complex numbers such that Re3 > 0 and

|C’§ sz+2|o%;

then the function G(z) defined in (5) is in the class S.

If we take n = 1 in Theorem 2.1, then we see

Corollary 2.4. Let the function f € S(p) satisfy the condition (4) and
lf(2)] < M(z € U). If a,3, and ¢ are complex numbers such that Ref > 0
and

1
A <1 gosl+ P 4 1ol

then the function

Gap(z) = {ﬁ/o i1 (ff))adt}é :
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18 1n the class S.

Letting M =1 in Corollary 2.4, we have

Corollary 2.5. Let the function f € S(p), satisfy the condition (4) and
lf(2)| < 1(zel). If a, 3, and ¢ are complex numbers such that Ref > 0 and

1
e <1 —=—(p+2)]al,
Reg

then the function

Gap(z) = {5/0 A1 (@)adt}é :

18 in the class S.

Next we derive

Theorem 2.6. Let the functions f; € Ty ,,, fori € {1,...,n} with 0 <
w; <1 satisfy the condition (3) and |f;(2)| < M; (z € U).
If a;, 3, and ¢ are complex numbers such that Re > 0 and

1 n
=1

then the function G(z) defined in (5) is in the class S.

Proof. Define a function
h(z) = / 11 (f(ﬂ) dt,
0 ;3 t
then we have h(0) = A/(0) — 1 = 0. Also a simple computation yields

z

and

() (i)
W) ’(fi(Z) 1)' (10)

From equation (10), we have
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2fi(2) 2 fi(2)

Si‘“‘(m )Z <f2()

From the hypothesis, we have |f;(2)| < M; (z€ U, i=1,2,---,n), then
by Schwarz Lemma, we obtain that

zh"(2)
W (z)

fi(2)

z

+1> (11)

1fi(2)| < Mi|z| (z€U, i=1,2,---,n).

We apply this result in inequality (11), we obtain

zh'(z) 21i(2)
V| S Xl ( <>>2M“>
< Z| ( 2{/(;)2—1’M+M+1>
— z|ai|(NiMz’+Mi+1).
We have:
2 2 Zh”(Z) _
) G
_ |28 18 o 2fi(2)
(1-:7) 5% @(fxz) )"
. 21| i) )
el + 37 25 o ( e |
We obtain:
9 (1= o) S <+ S M+ T <
pr(z)| = T8l & Z Z
o] + =—— i[u + i) M + 1] || -

Ref =

So, from (9) we have:

h//
c|z|* + (1 - \z|26) 2h(2)




50 Daniel Breaz et al.

Applying Theorem 2.1, we obtain that G(z) is univalent in Y.

Corollary 2.7. Let the functions f; € Ty, for i € {1,...,n} with 0 <
w <1 satisfy the condition (3) and |f;(2)] < M (z € U).
If a, B, and ¢ are complex numbers such that Ref > 0 and

1
A <1 goan((L+m +1)fal,

then the function

o Py (BN
Faﬁ(z)_{ﬁ/o t Hl< , dt
18 in the class S.

Proof. In Theorem 2.6, we consider p; = p, 1 = g = ... = a,, = « and

If we make M =1 in Theorem 2.6, then we obtain

Corollary 2.8. Let the functions f; € Ty,,, fori € {1,...,n} with 0 <
wi <1 satisfy the condition (3) and |f;(2)| < 1(z € U).
If a;, B, and ¢ are complex numbers such that ReB > 0 and

n

1
o] <1 == (i +2) o,
Ref =

then the function G(z) defined in (5) is in the class S.

Letting n = 1 in Theorem 2.6, we have

Corollary 2.9. Let the function f € Ty, satisfy the condition (3) and
1f(2)] < M(z €U).
If a, B, and c are complex numbers such that Ref > 0 and

1
lef <1 - @[(1 + )M +1]af

then the function

a2 of

18 in the class S.
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Further, taking M = 1 in Corollary 2.9, we see

Corollary 2.10. Let the function f € Ty, satisfy the condition (3) and
1f(2)] < 1(z €U).
If a, B, and ¢ are complex numbers such that Ref > 0 and

1
\C|§1—R7e5(ﬂ+2)\047

then the function

o= ()

18 in the class S.
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