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Abstract

We study the problem of cutting a rectangular material en-
tity into smaller sub-entities of trapezoidal forms with min-
imum waste of the material. We introduce an orthogonal
build to provide the optimal horizontal and vertical homoge-
nous strips. In this paper we develop a general heuristic search
based upon orthogonal build. By solving two one-dimensional
knapsack problems, we combine the horizontal and vertical ho-
mogenous strips to give a non orthogonal cutting pattern.

Keywords: combinatorial optimization, cutting problem, heuristic.

1 Introduction

The cutting problem is NP-complete and has many industrial and commercial
applications. Its traditional formulation in the literature is done via the two-
dimensional knapsack problem [10]. This problem consists of cutting a number
of stock entities of given dimensions into smaller sub-entities with minimum
waste or maximum profit. A cutting pattern is represented by a sequence of
possible cuts in the stock entities. All the parts which differ from sub-entities
are regarded as waste. Generally, we distinguish five versions of the problem;

1. The unconstrained unweighed version: each sub-entity appears with no
limits in cutting pattern and the weight of each type of sub-entity is
represented by its area. The goal is to minimize the waste or the unused
area inside the stock entities.

2. The unconstrained weighted version: this version has the same charac-
teristics as the unconstrained unweighed version, but only the vector of
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weights differs. Each sub-entity has a weight assigned independently to
its area . Here, the goal is to maximize the weight or the sum of the
useful values of the produced sub-entities.

3. The constrained unweighed version: it represents a generalization of the
first version, which considers that all the sub-entities can be produced
without violating some fixed bounds on the number of occurrences of
each sub-entity in the solution.

4. The constrained weighted version: it is a generalization of the second
version which additionally uses upper bounds on all sub-entities.

5. The staged version: this problem includes a constraint on the total num-
ber of cuts, i.e. the sum of the vertical and horizontal cuts does not
exceed a constant k > 2[10].

An additional constraint is imposed according to the material used for the cuts
considered. We distinguish three types of cuts:

• Guillotine cut: on a rectangular plate, cutting is carried out in only one
section while going on a side of the rectangular plate to its opposite.

• Non guillotine cut: in general, this cut generates a solution better than
a solution produced by cuts of the guillotine type. Indeed, it consists in
using the same process as in guillotine cut, but it can be carried out by
marking stops, alternating vertical cut and horizontal cut.

• Non orthogonal cut: the parts can be swivelled and relocated (rotations
on the parts are allowed). Generally, this type of cut is typical with
the laser cut: a swivelling arm, which moves in all the directions at a
variable speed, carrying out cuttings. Sometimes, one is confronted with
the problem of optimizing the journey time to be carried out by cutting.

The cutting problem has been intensively studied during the last few years.
Many authors were interested in the study of the problem, by supposing that
the imposed contraint on the cutting is of the type ”guillotine” (see for ex-
ample, Gilmore and Gomory [10], Herz [13], Hifi [14], Adamowicz and Albano
[1], Dyson and Gregory [9], Christofides and Whitlock [6]). In 1985, Beasley
[4] interested in the study of the problem by considering that the cutting con-
straint is of the type ”non guillotine”. Afterwards, other researchers studied
this problem (for example, Daniels and Ghandforoush [7], Hadjiconstantinou
and Christofides [11], Arenales and Morabito [3]). Other authors were also
interested in the study of the cutting problem by imposing a nonorthogonal
cut. Among those which appeared in the literature, one can cite Heassler [12]
(by the use of the nonlinear programming), Biro and Boros [5], Rinnoy Kan
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[15], Dowsland and Dowsland [8].

We study the unconstrained cutting problem of sub-entities with trapezoidal
form on a rectangular plate. This problem will be denoted TCP (Trapezoidal
Cutting Problem). It is an alternative of the problem of non orthogonal cut-
ting. The TCP has many applications in manufacturing processes of various
industries: pipe line design (petrochemistry), the design of airfoil (aeronau-
tical) or cuts of the components of textile products. This paper is organized
as follows: in Section2, we give a detailed description of the problem and in
particular the concept of function of fall used as a criterion for optimality. In
Section 3, we describe build shapes of the homogeneous strips (composed of
only one type of piece). In Section 4, we develop an approximate method for
the TCP which is based on a constructive procedure allowing to obtain the
best non orthogonal cutting pattern from the combination of the horizontal
and vertical optimal homogeneous strips.

2 Presentation of the TCP

The TCP can be simply formulated as follows: maximum cutting of trapezoids
on a rectangular support, so as to minimize the total of waste. An instance of
the TCP is represented by a rectangular support R of dimension (L, H) where
L and H are length and width respectively. The small trapezoidal pieces are
represented by the set S = {t1, ...tn}, in which each piece ti has associated
weight ci = si representing the area of the the piece i, i = 1, ..., n. The TCP
consists in cutting the initial rectangular plate R in small pieces ti without
any limitation on the number of produced pieces, so as to minimize the waste
value on the stock entity defined by the function:

C(R, t1, ...tn, X) = L.H −
n∑

i=1

sixi (1)

Where: X = (x1, ..., xn) indicates a cutting pattern, xi is the number of oc-
currences of the piece ti on the entity R.

2.1 Basic assumptions

The research about the best placement of the pieces to be cut is closely related
to the form and orientation chosen for those pieces. For all trapezoids, we
have to specify the allowed orientations, since some orientations are typically
impossible for some practical considerations. We suppose that the rotations
and the translations allowed on the trapezoids are those which generate hor-
izontally stable trapezoids and therefore nontitled. Thus, the pieces can only
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be swivelled by 180◦ (in the two directions). It is clear that for this purpose,
on the one hand it is supposed that the support is homogeneous on its two
faces and those cuts are of the non orthogonal type. In addition, it is supposed
that all dimensions are non negative integer.

2.2 Characteristics of the cuts

A trapezoid t = (a, b, c, d) of irregular shape is completely specified by the
parameters (α, β, h, θ, ω) where:

α = the length of the lower base ab
β = the length of the upper base dc
h = the height of t
θ = d̂ab
ω = ĉba, where : θ and ω ∈

]
0, π

2

[
.

This supposes obviously that β ≺ α.

Figure 1: Characteristics of the pieces

2.3 Parameterization of the trapezoids

From the above considerations (section 2.1) on the allowed orientations and the
potential positions of the trapezoids, it results some particular forms for the
same piece. In the following definition, we introduce the notion of duplicated
forms of t = (α, β, h, θ, ω), such as their parameterization.

Definition 2.1 The transposed of the trapezoid t = (α, β, h, θ, ω) is the
trapezoid
tr = (β, α, h, π − ω, π − θ) obtained from t by a rotation of 180◦ clockwise and
counter clockwise.(see fig2)
The symmetrical of the trapezoid t is the trapezoid ts = (α, β, h, ω, θ).

All the shapes of duplicated trapezoids have the same area:

s(t) = s(tr) = s(ts) =
1

2
(α + β).h (2)
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Figure 2: The duplicated forms of trapezoid t

2.4 Trapezoids regrouping

The expression of the area of the trapezoid t is obtained from the area of the
pair of trapezoids p = (t, tr), where p represents a horizontal regrouping of the
two contiguous trapezoids t and tr which generates a parallelogram of dimen-
sion (α + β, h) and whose angles are (θ, π − θ). We adopt this constructive
aspect based on the concept of contiguous regrouping of the identical pieces in
the construction of the homogeneous strips of trapezoids. We give the follow-
ing definition for the construction of the various blocks forming a horizontal
homogeneous strip.

Definition 2.2 A sequence of non orthogonal cuts forms a horizontal ho-
mogeneous construction associated to piece t if the combination of the two
trapezoids t and tr generates a parallelogram p = (t, tr) of dimension (α

+β, h).

3 Strip Models

Definition 3.1 A horizontal homogeneous strip is a strip containing one
type of participating piece. A homogeneous strip of order k associated to piece t
is the rectangular module of minimal area containing a horizontal homogeneous
construction made up of k pieces equivalent to piece t .

Proposition 3.1 Given a trapezoid t = (α, β, h, θ, ω). Let:

tr = (β, α, h, π − ω, π − θ) and ts = (α, β, h, ω, θ)

be the duplicated forms obtained by rotation and symmetry of the piece t re-
spectively , then:

1.

(tr)r = (t) , (ts)s = (t) (3)
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2.

((tr)s)r = (ts) , ((ts)r)s = (tr) (4)

3.

(tr)s = (ts)r (5)

4. If p = (t, tr) and ps = (ts, ts
r
), then:

s(p)=s(ps) (6)

Proof. 1. We have : tr = (β, α, h, π − ω, π − θ), thus;

(tr)s = (β, α, h, π − θ, π − ω) (7)

In other ways, ts = (α, β, h, ω, θ), as a results,

(ts)r = (β, α, h, π − θ, π − ω) (8)

and so: (tr)s = (ts)r.
2. It is sufficient to note that the length of the base of the parallelogram p
generated by the regrouping of the pair of contiguous trapezoids (t, tr) is α+β,
its height h, and their angles are (θ, π − θ). In other ways, ps = (ts, ts

r
) is of

dimension (α + β, h), through their angles are (ω, π − ω).

From this result, we note that the strips Rt,k, Rtr ,k and Rts,k are all made
up of k contiguous pieces of identical area. However, the waste on these strips
is not equivalent. In what follows, we show a result that allows characteriza-
tion of the optimal homogeneous strip.

The regrouping of contiguous trapezoids can be carried out in many ways (ac-
cording to the direction of provision of the considered piece). We distinguish
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three types of homogeneous strips denoted Rt,k, Rtr,k and Rts,k and associ-
ated to t = (α, β, h, θ, ω) its equivalent forms tr = (β, α, h, π − ω, π − θ), and
ts = (α, β, h, ω, θ) respectively. these are obtained by the allowed rotations on
the piece t. We show in the following result that among all the possibilities
of regrouping of the trapezoidal pieces in the generation of the homogeneous
strips which are all equivalent in term of component pieces, there is an optimal
configuration in terms of wastage in a strip.

Proposition 3.2 Let us consider the strips Rt,k , Rtr ,k and Rts,k .Wastes
recorded on these strips being respectively C(Rt,k) , C(Rtr ,k) and C(Rts,k).
One has :

1.

C(Rt,k) =

{
h2 tan(π

2
− θ) if k = 2n

h2

2
tan(π

2
− θ) + h2

2
tan(π

2
− ω) if k = 2n + 1

(9)

2.
C(Rtr ,k) = C(Rts,k) (10)

Proof. 1. (l, h) are the dimensions of Rt,k, The waste on Rt,k is written
in the following form :

C(Rt,k) = lh− k

2
(α + β)h = ch (11)

• if k = 2n,

c = 2
h

2
tan(

π

2
− θ) = h tan(

π

2
− θ) (12)

thus,

C(Rt,k) = h2 tan(
π

2
− θ) (13)

• if k = 2n + 1,

c = c
′
+ c

′′

with :

c
′

=
h

2
tan(

π

2
− θ) (14)

c
′′

=
h

2
tan(

π

2
− ω)
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from where :

C(Rt,k) =
h2

2

(
tan(

π

2
− θ) + tan(

π

2
− ω)

)
(15)

Figure 3: The different types of homogeneous strips

2. Strips Rtr,k and Rts,k are equivalent in terms of the pieces they are made
of and which are all equivalent to piece t. Indeed, let (a1, a2, ..., ak) and
(c1, c2, ..., ck) be the pieces returning in Rtr,k and Rts,k respectively. For all
i = 1, ..., k, we have :

ai =

{
tr if i is odd

(tr)r if i is even
(16)

and

ci =

{
ts if i is odd

(ts)r if i is even
(17)

The recorded wastes for the strips Rtr,k and Rts,k are obtained from the config-
uration of the pieces a1 = tr = (β, α, h, π−ω, π−θ) and ak = t = (α, β, h, θ, ω)
for Rtr,k as well as the pieces c1 = ts = (α, β, h, ω, θ) and ck = (ts)r =
(β, α, h, π − θ, π − ω) for Rts,k. It results from it under the terms of the result
from 1)

C(Rtr ,k) = C(Rts,k) =

{
h2 tan(π

2
− ω) if k is even

h2

2
tan(π

2
− ω) + h2

2
tan(π

2
− θ) if k is odd

(18)

3.1 Characterization of the optimal homogeneous strip

Proposition 3.1.1 Let (b1, b2, ..., bk) and (c1,c2, ..., ck) be the pieces composed
respectively Rt,k and Rts,k , such as for i = 1, ..., k:

bi =

{
t if i is odd

(tr) if i is even
(19)
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and

ci =

{
ts if i is odd

(ts)r if i is even
(20)

Then,
C(Rt,k) ≤ C(Rtr ,k) ⇐⇒ θ ≥ ω (21)

Proof. We can easily express from the previous result the waste of the strips
Rt,k and Rtr,k as follows :

• If k = 2n,

C(Rt,k) = h2 tan(
π

2
− θ) (22)

C(Rts ,k) = h2 tan(
π

2
− ω)

• If k = 2n + 1,

C(Rt,k) = C(Rts ,k) =
h2

2

(
tan(

π

2
− θ) + tan(

π

2
− ω)

)
(23)

As tangent is an increasing function, our result is an immediate conse-
quence of the last equality.

Consequently, in all what follows, any trapezoidal piece t will be charac-
terized by t = (α, β, h, θ, ω), with θ ≥ ω.

4 Resolution Algorithm

We propose an algorithm to solve the TCP denoted HTC, and based on a
constructive procedure allowing to obtain the horizontal and vertical homoge-
neous strips. The resolution of two unidimensional knapsack problems enables
us to build two guillotine cutting patterns. The first is a horizontal cutting
pattern obtained from a combination of the horizontal homogeneous strips of
various heights. The second pattern is a vertical cutting pattern obtained by
the combination of the vertical homogeneous strips of various lengths. The
approximate solution being the value of the best cutting patterns among the
two patterns.

4.1 Principle of the algorithm

Let us consider an instance of the TCP defined by : (R,S, c), where: R =
(L, H) is the initial rectangle plate, and L and H its length and width respec-
tively. S = (t1, t2, ..., tn) is the set of the pieces to be cut. Each piece i is
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characterized by ti = (αi, βi, hi, θi, ωi). c = (c1, c2, ..., cn) is the vector weight,
such that:

ci = s(ti) = (αi + βi)
hi

2
for i = 1, ..., n

The steps of the algorithm HTC are summarized as follows:

1. Generation of the horizontal homogeneous strips.
Let Ri,ai

(L), i = 1, .., n, denote the horizontal homogeneous strips of
length L, obtained by the horizontal regrouping of the ai pieces ti and
having value

λi = ciai (24)

2. Generation of the vertical homogeneous strips.
Let Ri,bi

(H), i = 1, .., n, denote the vertical homogeneous strips of height
H, obtained by the vertical regrouping. Each strip is made up of bi pieces,
ti, and of value

ξi = cibi (25)

3. Horizontal cutting pattern. Order the elements of S, such that:

λ1 ≤ λ2 ≤ ... ≤ λr

where r is the number of possible values Ri,ai
(L). Solve the following

knapsack problem:

Fhor = max
r∑

j=1

λjxj (26)

sc :
r∑

j=1

hjxj ≤ H

xj ∈ N, j = 1, ...r

Where Fhor is the value of the horizontal cutting pattern hor = (xj)j=1,...,r,
with xj being the number of occurrences of the strip Rj,aj

(L) in Mhor.

4. Vertical cutting pattern. Order the elements of S as follows:

ξ1 ≤ ξ2 ≤ ... ≤ ξr′

where r′ is the number of possible values Ri,bi
(H), and solve the following

knapsack problem:

Fver = max
r′∑

j=1

ξjyj (27)
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sc :
r′∑

j=1

hjyj ≤ L

yj ∈ N, j = 1, ...r′

where Fver is the value of the vertical cutting pattern ver = (yj)j=1,...,r′ ,
with yj being the number of occurrences of the strip Rj,bj

(H) in Mver.
the solution value is : M∗ = max (Fhor, Fver)

Theorem 4.1 The HTC admits an approximation ratio satisfying:

A(I)

Opt(I)
≥ 1

3
(28)

where A(I) (resp Opt(I) ) is the sub-optimal (resp optimal) value for the in-
stance I.

Proof. The heuristic HTC realizes the best homogenous cutting pattern
associated to ti for 1 ≤ i ≤ n. Therefore it satisfies the inequality

A(I) ≥
∣∣∣∣∣ L

(αi + βi)/2

∣∣∣∣∣
∣∣∣∣Hhi

∣∣∣∣ ci

Where ci = (αi + βi)
hi

2
. we set δ =

∣∣∣ L
(αi+βi)/2

∣∣∣ and δ
′
=
∣∣∣H
hi

∣∣∣. In addition the
optimal solution value verifies

Opt(I) ≤ LH

That enables us to have

Opt(I)

A(I)
≤ L.H

δ.δ′ .(αi + βi).
hi

2

In other way, we have

∣∣∣∣∣ L

(αi + βi)/2

∣∣∣∣∣ .
∣∣∣∣Hhi

∣∣∣∣ ≤ L.H

(αi + βi).
hi

2

≤
(∣∣∣∣∣ L

(αi + βi)/2

∣∣∣∣∣+ 1

)
.
(∣∣∣∣Hhi

∣∣∣∣+ 1
)

Thus

δ.δ
′ ≤ (δ + 1) .

(
δ

′
+ 1

)
And consequently

Opt(I)

A(I)
≤

(δ + 1) .
(
δ

′
+ 1

)
δ.δ′
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Finally, for δ ≥ 1 and δ
′ ≥ 2 (or δ

′ ≥ 1 and δ ≥ 2) we obtain

A(I)

Opt(I)
≥ 1

3

4.2 Illustration of the algorithm with an example

Let us consider the instance (R,S, c), with R = (9, 7) and S = (t1, t2, t3),
where:

t1 = (3, 2, 1), t2 = (2, 1, 2) and t3 = (3, 1, 3)

c1 = 5/2, c2 = 3, c3 = 6

• The horizontal homogenous strips are R1,3(9), R2,5(9), R3,4(9) and have
respective values:

λ1 = 15/2, λ2 = 15, and λ3 = 24

The solution of the knapsack problem:

Fhor = max 15/2x1 + 15x2 + 24x3

s.c : x1 + 2x2 + 3x3 ≤ 7

x1, x2, x3 ∈ N

is Mhor = (1, 0, 2) of value Fhor = 55.5

• The vertical homogenous strips are R1,2(7), R2,4(7), R3,3(7) and have
respective values:

ξ1 = 5, ξ2 = 12, and ξ3 = 18

The solution of the knapsack problem:

Fver = max 5y1 + 12y2 + 18y3

s.c : y1 + 2.y2 + 3.y3 ≤ 9

y1, y2, y3 ∈ N
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is Mver = (0, 0, 3) of value Fhor = 54

The solution is:

Mhor = (1, 0, 2)

Which correspond to the horizontal cutting pattern composed by two strips of
the type R1,3(9) and strip R3,4(9).

4.3 Numerical examples

We consider two groups of 60 randomly generated instances. The first group,
with sizes L and H taken in the interval [250, 500] and the number of pieces
to be cut is taken in the interval [20, 50]. The second, the parameters L and
H are ranged in the interval [500, 750], whereas the number of pieces to be
cut are ranged in the interval [50, 80]. The dimensions of the pieces (αi, βi, hi)
are taken uniformly in the interval ]0, L[, ]0, αi[and ]0, H [ respectively, and
the number of pieces to be cut is also taken uniformly in the specified interval.
the average of the total surface used is 78.45 % in the first test and 85.63% in
the second.
Results of some examples are summarized in Table 1 and 2, which contain the
number of pieces to be cut N, the dimension of the initial rectangle plate R =
(L,H), the waste % S, the solution Z∗ and the computational time required
Time(s).

Table 1: Results of the first test
N R=(L,H ) % S Z ∗ Time(s)

21 (398,310) 24.42 93249 0.980
22 (298,296) 16.49 73660 0.060
23 (309,292) 2.59 87888 1.260
24 (488,300) 32.83 98334 0.050
36 (469,315) 35.97 94588 0.050
44 (415,340) 29.71 99186 0.110
45 (339,256) 7.43 80333 0.060
46 (378,255) 7.38 89278 0.113
48 (253,252) 2.90 61908 0.052
49 (393,278) 9.58 98792.5 0.061
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Table 2: Results of the second test
N R=(L,H ) % S Z∗ Time(s)

50 (847,632) 17.80 439980 0.110
51 (937,715) 6.07 629286 2.530
53 (863,801) 2.85 671540 2.600
56 (524,506) 5.12 251544 4.070
58 (971,811) 2.79 765445 1.380
62 (867,767) 5.25 630018 0.160
68 (837,817) 7.92 629614 3.180
69 (807,660) 2.56 518959 0.160
73 (836,681) 6.74 530903 0.220
78 (847,632) 18.80 499985 0.110

5 Conclusion

We have presented the general context of the cutting problem of trapezoidal
pieces on a rectangular plate and studied the forms of rotations allowed in the
provision of the pieces to be cut out. In addition, we established the prop-
erties and the characteristics of the optimal homogeneous strips. Finally, we
developed a new approach for the resolution of the trapezoidal cutting prob-
lem. This approach is based on a constructive procedure allowing to obtain
nonorthogonal cutting pattern on the initial entity by means of horizontal and
vertical constructions which generate the optimal homogeneous strips. The
selection of the best homogeneous strips leads to the construction of the best
non orthogonal cutting pattern generated from the combinations of the ele-
ments of all the horizontal and vertical homogeneous strips. We showed that
the algorithm admits a constant approximation ratio.

6 Open problems

There are a number of interesting open problems linked to the problem pre-
sented in this paper, we can mentioned how to provide a good heuristic for the
general trapezoidal cutting problem ( with many rectangular stock entities) by
using sequential and parallel implementations. In addition any other heuristic
for solving the (un)weighted (un)constrained (non)staged trapezoidal cutting
problem can be presented as a further research.
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