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Abstract

There are many results for sufficient conditions of functions f(z)
which are analytic in the open unit disc U to be starlike and convex in
U. The object of the present paper is to derive some interesting sufficient
conditions for f(z) to be starlike of order α and convex of order α in U
concerned with Jack’s lemma. Some examples for our results are also
considered with the help of Mathematica 5.2.
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1 Introduction

Let A denote the class of functions f(z) that are analytic in the open unit
disk U = {z ∈ C : |z| < 1}, so that f(0) = f ′(0)− 1 = 0.

We denote by S the subclass of A consisting of univalent functions f(z) in
U. Let S∗(α) be the subclass of A consisting of all functions f(z) which satisfy

Re

(
zf ′(z)

f(z)

)
> α (z ∈ U)

for some 0 5 α < 1. A function f(z) ∈ S∗(α) is sais to be starlike of order α
in U. We denote by S∗ = S∗(0).
Also, let K(α) denote the subclass of A consisting of functions f(z) which
satisfy

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U)

for some 0 5 α < 1. A function f(z) in K(α) is said to be convex of order α in
U. We say that K = K(0). From the definitions for S∗(α) and K(α), we know
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that f(z) ∈ K(α) if and only if zf ′(z) ∈ S∗(α).
Let f(z) and g(z) be analytic in U. Then f(z) is said to be subordinate
to g(z) if there exists an analytic function w(z) in U satisfying w(0) = 0,
|w(z)| < 1 (z ∈ U) and f(z) = g(w(z)). We denote this subordination by

f(z) ≺ g(z) (z ∈ U).

The basic tool in proving our results is the following lemma due to Jack [1]
(also, due to Miller and Mocanu [2]).

Lemma 1 Let w(z) be analytic in U with w(0) = 0. Then if |w(z)|
attains its maximum value on the circle |z| = r at a point z0 ∈ U, then we
have z0w

′(z0) = kw(z0), where k = 1 is a real number.

2 Main results

Applying Lemma 1, we drive the following result.

Theorem 1 If f(z) ∈ A satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
<

α + 1

2(α− 1)
(z ∈ U)

for some α (2 5 α < 3), or

Re

(
1 +

zf ′′(z)

f ′(z)

)
<

5α− 1

2(α + 1)
(z ∈ U)

for some α (1 < α 5 2), then

zf ′(z)

f(z)
≺ α(1− z)

α− z
(z ∈ U)

and ∣∣∣∣zf ′(z)

f(z)
− α

α + 1

∣∣∣∣ <
α

α + 1
(z ∈ U).

This implies that f(z) ∈ S∗ and

∫ z

0

f(t)

t
dt ∈ K.

Proof. Let us define the function w(z) by

zf ′(z)

f(z)
=

α(1− w(z))

α− w(z)
(w(z) 6= α).
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Clearly, w(z) is analytic in U and w(0) = 0. We want to prove that
|w(z)| < 1 in U. Since

1 +
zf ′′(z)

f ′(z)
=

α(1− w(z))

α− w(z)
− zw′(z)

1− w(z)
+

zw′(z)

α− w(z)
,

we see that

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
α(1− w(z))

α− w(z)
− zw′(z)

1− w(z)
+

zw′(z)

α− w(z)

)
<

α + 1

2(α− 1)
(z ∈ U)

for 2 5 α < 3, and

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
α(1− w(z))

α− w(z)
− zw′(z)

1− w(z)
+

zw′(z)

α− w(z)

)
<

5α− 1

2(α + 1)
(z ∈ U)

for 1 < α 5 2. If there exists a point z0 ∈ U such that

max
|z|5|z0|

|w(z)| = |w(z0)| = 1,

then Lemma 1 gives us that w(z0) = eiθ and z0w
′(z0) = kw(z0), k = 1.

Thus we have

1 +
z0f

′′(z0)

f ′(z0)
=

α(1− w(z0))

α− w(z0)
− z0w

′(z0)

1− w(z0)
+

z0w
′(z0)

α− w(z0)

= α + α(1− α + k)
1

α− eiθ
− k

1− eiθ
.

If follows that

Re

(
1

α− w(z0)

)
= Re

(
1

α− eiθ

)
=

1

2α
+

α2 − 1

2α(1 + α2 − 2 cos θ)

and
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Re

(
1

1− w(z0)

)
= Re

(
1

1− eiθ

)
=

1

2
.

Therefore, we have

Re

(
1 +

z0f
′′(z0)

f ′(z0)

)
=

1 + α

2
+

(α2 − 1)(1− α + k)

2(1 + α2 − 2α cos θ)
.

This implies that, for 2 5 α < 3,

Re

(
1 +

z0f
′′(z0)

f ′(z0)

)
=

1 + α

2
+

(α + 1)(1− α + k)

2(α− 1)

=
1 + α

2
+

(α + 1)(2− α)

2(α− 1)

=
α + 1

2(α− 1)

and, for 1 < α 5 2,

Re

(
1 +

z0f
′′(z0)

f ′(z0)

)
=

1 + α

2
+

(α− 1)(1− α + k)

2(α + 1)

=
1 + α

2
+

(α− 1)(2− α)

2(α + 1)

=
5α− 1

2(α + 1)
.

This contradicts the condition in the theorem. Therefore, there is no z0 ∈ U
such that |w(z0)| = 1 for all z ∈ U, that is, that

zf ′(z)

f(z)
≺ α(1− z)

α− z
(z ∈ U).

Furthermore, since

w(z) =

α

(
zf ′(z)

f(z)
− 1

)
zf ′(z)

f(z)
− α

(z ∈ U)

and |w(z)| < 1 (z ∈ U), we conclude that
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∣∣∣∣zf ′(z)

f(z)
− α

α + 1

∣∣∣∣ <
α

α + 1
(z ∈ U),

which implies that f(z) ∈ S∗. Furthermore, we see that f(z) ∈ S∗ if and only

if

∫ z

0

f(t)

t
dt ∈ K.

Thaking α = 2 in the theorem, we have following corollary due to R. Singh
and S. Singh [3].

Corollary 1 If f(z) ∈ A satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
<

3

2
(z ∈ U),

then

zf ′(z)

f(z)
≺ 2(1− z)

2− z
(z ∈ U)

and ∣∣∣∣zf ′(z)

f(z)
− 2

3

∣∣∣∣ <
3

2
(z ∈ U).

With Theorem 1, we give the following example.

Example 1 For 2 5 α < 3, weconsider the function f(z) given by

f(z) =
α− 1

2

(
1− (1− z)

2
α−1

)
(z ∈ U).

If follows that

zf ′(z)

f(z)
=

2z(1− z)
3−α
α−1

(α− 1)
(
1− (1− z)

2
α−1

) (z ∈ U)

and

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
α− 1− 2z

(α− 1)(1− z)

)
= Re

(
2

α− 1
− 3− α

(α− 1)(1− z)

)
<

α + 1

2(α− 1)
(z ∈ U).
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Therefore, the function f(z) satisfies the condition in Theorem 1. If we
define the function w(z) by

zf ′(z)

f(z)
=

α(1− w(z))

α− w(z)
(w(z) 6= α),

then we see that w(z) is analytic in U, w(0) = 0 and |w(z)| < 1 (z ∈ U)
with Mathematica 5.2. This implies that

zf ′(z)

f(z)
≺ α(1− z)

α− z
(z ∈ U).

For 1 < α 5 2, we consider

f(z) =
α + 1

2(2α− 1)

(
1− (1− z)

2(2α−1)
α+1

)
(z ∈ U).

Then we have that

zf ′(z)

f(z)
=

2(2α− 1)z(1− z)
3(α−1)

α+1

(α + 1)
(
1− (1− z)

2(2α−1)
α+1

)
and

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
α + 1− 2(2α− 1)z

(α + 1)(1− z)

)
<

5α− 1

2(α + 1)
(z ∈ U).

Thus, the function f(z) satisfies the condition in Theorem 1. Define the
function w(z) by

zf ′(z)

f(z)
=

α(1− w(z))

α− w(z)
(w(z) 6= α).

Then w(z) is analytic in U, w(0) = 0 and |w(z)| < 1 (z ∈ U) with Mathe-
matica 5.2. Therefour, we have that

zf ′(z)

f(z)
≺ α(1− z)

α− z
(z ∈ U).

In particular, if we take α = 2 in this example, then f(z) becomes

f(z) = z − 1

2
z2 ∈ S∗,

where S∗ denotes the class of all starlike function in U.

Theorem 2 If f(z) ∈ A satisfies
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Re

(
1 +

zf ′′(z)

f ′(z)

)
> − α + 1

2α(α− 1)
(z ∈ U) (2.1)

for some α (α 5 −1), or

Re

(
1 +

zf ′′(z)

f ′(z)

)
>

3α + 1

2α(α + 1)
(z ∈ U) (2.2)

for some α (α > 1), then

f(z)

zf ′(z)
≺ α(1− z)

α− z
(z ∈ U)

and

f(z) ∈ S∗
(

α + 1

2α

)
.

This implies that

∫ z

0

f(t)

t
dt ∈ K

(
α + 1

2α

)
.

Proof. Let us define the function w(z) by

f(z)

zf ′(z)
=

α(1− w(z))

α− w(z)
(w(z) 6= α). (2.3)

Then, we have that w(z) is analytic in U and w(0) = 0. We want to prove
that |w(z)| < 1 in U. Differentiating (2.3) in both side logarithmically and
simplifying, we obtain

1 +
zf ′′(z)

f ′(z)
=

α− w(z)

α(1− w(z))
+

zw′(z)

1− w(z)
− zw′(z)

α− w(z)
,

and, hence

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
α− w(z)

α(1− w(z))
+

zw′(z)

1− w(z)
− zw′(z)

α− w(z)

)
> − α + 1

2α(α− 1)
(z ∈ U)

for α 5 −1, or

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
α− w(z)

α(1− w(z))
+

zw′(z)

1− w(z)
− zw′(z)

α− w(z)

)
>

3α + 1

2α(α + 1)
(z ∈ U)
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for α > 1. If there exists a point z0 ∈ U such that

max
|z|5|z0|

|w(z)| = |w(z0)| = 1,

then Lemma 1 gives us that w(z0) = eiθ and z0w
′(z0) = kw(z0), k = 1.

Thus we have

1 +
z0f

′′(z0)

f ′(z0)
=

α− w(z0)

α(1− w(z0))
+

z0w
′(z0)

1− w(z0)
− z0w

′(z0)

α− w(z0)

=
1

α
+

α− 1

α(1− eiθ)
+

k

1− eiθ
− kα

α− eiθ
.

Therefore, we have

Re

(
1 +

z0f
′′(z0)

f ′(z0)

)
=

1

2
+

1

2α
− k(α2 − 1)

2(1 + α2 − 2α cos θ)
.

This implies that, for α 5 −1,

Re

(
1 +

z0f
′′(z0)

f ′(z0)

)
5

1

2
+

1

2α
− k(α + 1)

2(α− 1)

5
1

2
+

1

2α
− α + 1

2(α− 1)

= − α + 1

2α(α− 1)
.

and, for α > 1,

Re

(
1 +

z0f
′′(z0)

f ′(z0)

)
5

1

2
+

1

2α
− k(α− 1)

2(α + 1)

5
1

2
+

1

2α
− α− 1

2(α + 1)

=
3α + 1

2α(α + 1)
.

This contradicts the condition in the theorem. Therefore, there is no z0 ∈ U
such that |w(z0)| = 1. This means that |w(z)| < 1 for all z ∈ U, this is, that

f(z)

zf ′(z)
≺ α(1− z)

α− z
(z ∈ U).

Furthermore, since
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w(z) =

α

(
1− zf ′(z)

f(z)

)
1− α

zf ′(z)

f(z)

(z ∈ U)

and |w(z)| < 1 (z ∈ U), we conclude that

f(z) ∈ S∗
(

α + 1

2α

)
.

Noting that f(z) ∈ S∗(α) if and only if

∫ z

0

f(t)

t
dt ∈ K(α), we complete the

proof of the theorem.

For Theorem 2, we give the following example.

Example 2 For α > 1, we take

f(z) =
α(α + 1)

−α2 + 2α + 1

(
1− (1− z)

−α2+2α+1
α(α+1)

)
(z ∈ U).

Then, f(z) satisfies

zf ′(z)

f(z)
=

(−α2 + 2α + 1)z

α(α + 1)(1− z)
2α2−α−1

α(α+1)

(
1− (1− z)

−α2+2α+1
α(α+1)

)
and

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
α(α + 1) + (α2 − 2α− 1)z

α(α + 1)(1− z)

)
>

3α + 1

2α(α + 1)
(z ∈ U).

Therefore, f(z) satisfies the condition of Theorem 2. Let us define the
function w(z) by

f(z)

zf ′(z)
=

α(1− w(z))

α− w(z)
(w(z) 6= α).

Then w(z) is analytic in U, w(0) = 0 and |w(z)| < 1 z ∈ U with Mathe-
matica 5.2. It follows that

f(z)

zf ′(z)
≺ α(1− z)

α− z
(z ∈ U).
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Furthermore, for α 5 −1, we consider the following function

f(z) = −α(α− 1)

α2 + 1

(
1− (1− z)−

α2+1
α(α−1)

)
.

Note that

zf ′(z)

f(z)
=

−(α2 + 1)z

α(α− 1)(1− z)
2α2−α+1
α(α−1)

(
1− (1− z)−

α2+1
α(α−1)

)
and

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
α(α− 1) + (α2 + 1)z

α(α− 1)(1− z)

)
>

α + 1

2α(α− 1)
(z ∈ U).

This implies that f(z) satisfies the condition of Theorem 2. Definning the
function w(z) by

f(z)

zf ′(z)
=

α(1− w(z))

α− w(z)
(w(z) 6= α),

we see that w(z) is analytic in U, w(0) = 0 and |w(z)| < 1 (z ∈ U) with
Mathematica 5.2. Thus we have that

f(z)

zf ′(z)
≺ α(1− z)

α− z
(z ∈ U).

Making α = −1 for f(z), we have

f(z) =
z

1− z
∈ K.

3 Open Question

As we say in Example 1, we need to use Mathematica 5.2 to check that
|w(z)| < 1 (z ∈ U) for

zf ′(z)

f(z)
=

α(1− w(z))

α− w(z)
(w(z) 6= α).

Because, it is not so easy to calculate the fact that |w(z)| < 1 (z ∈ U) in this
case. If α = 2 in Example 1, then we see that |w(z)| = |z| < 1.
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Also, in Example 2, we use Mathematica 5.2 to see that |w(z)| < 1 (z ∈ U).
If α = −1 in Example 2, then we know that |w(z)| = |z| < 1. Thus we have
to leave our open questions to prove |w(z)| < 1 (z ∈ U) without Mathematica
5.2. Can we prove that |w(z)| < 1 for all z ∈ U without Mathematica 5.2 in
Example 1 and Example 2?
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