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Abstract

In this work we are concerned with the determination of
an optimal choice for the multipole coefficients of the modified
fundamental solution. The optimization criterion is the mini-
mzization of the kernel of the modified integral operator for two
dimensional elastic waves. Interesting results are obtained for
the special case of a circular boundaries.
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1 Introduction

The problem of scattering of waves (water, acoustic, elastic and electromag-
netic waves) in a domain containing an inhomogeinety (cavity, inclusion or
others) is very often formulated in terms of a boundary value problem. The
solution to such problem can be sought using different methods (finite differ-
ence, finite element and so on). In the case of infinite domain, the boundary
integral equation method seems to be more appropriate for solving this type
of problems. This method reduces the solving of the problem to an integral
equation on the internal boundary of the domain. However, a problem of
uniqueness of the solution of the boundary integral equation appears. This
anomaly is related to the method of the resolution used rather than to the
physical nature of the problem. Some methods, to overcome this anomally,
were proposed (see [1] for a detailled discussion of the proposed solutions)
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Indeed, when using the method of integral representations, the two prob-
lems; exterior problem (which has a unique solution) and the interior one
(which has no unique solution for a certain specter of values of the frequency
of waves) are represented by two integral equations with adjoint kernels, and
therefore they will have the same number of solutions [2] which presents a con-
tardiction. To recover the uniqueness of the solution of the interior problem,
Jones [3] and Ursell [4] developed a technique in acoustics. In 1986, the second
author [1] has developed this technique (called a modified Green’s function
technique) in the case of elastic waves by adding to the fundamental solution a
set of functions called multipole. Physically talk, this technique is based on the
injection of absorbent points or small circles inside the domain, to transform
the phenomenon of stationary waves (interior problem) to a phenomenon of
diverging progressive waves (exterior problem). This modification involves the
complex coefficients called multipoles coefficients and which should satisfy a
large condition (2.20).

In the case of acoustic waves, a method of determination of an optimal
choice of those coefficients was elaborated by Roach and Kleinman [5]. This
method is based on the minimization of the norm of the modified integral
operator. In [6] Argyropoulos, Kiriaki and Roach determined another opti-
mal choice for these coefficients by minimizing the norm of the kernel of the
modified integral operator for the case of three dimensional elastic waves. The
minimization of the norm of this integral operator or of the norm of its kernel
is related to the convergence of the iterative method used for the resolution of
that modified integral equation, namely the method of successive approxima-
tions. We have established in [7] an optimal choice for the multipole coefficients
in the case of two dimensional elastic waves by minimizing the norm of the
modified integral operator. In present paper, we propose to find another op-
timal choice based this time on the minimization of the norm of the kernel of
the modified integral operator (where the Green’s function is modified with
simple or cross multipole coefficients).

2 Formulation of the problem

Consider a domain D C I R? which is homogeneous, elastic and isotropic,
unbounded externally and bounded internally by 9dD. We denote D_ =
IR?/(DUOD); P,Q points of D; p,q points of dD; and P_,Q_ points of
D_

The boundary problem is thus formulated as follows :
i) The field equation in D :

k12 grad (div u (P)) — ;2 rot (rot w(P))+u(P)=0 PeD (2.1)
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ii) The boundary condition on 9D :

Tu(p) = f(p) ( Neumann condition)  p € 9D

or

u(p) = g (p) ( Dirichlet condition) p € 0D (2.2)

iii) The radiation conditions:

When the domain is unbounded, conditions on the behaviour of the solu-
tion at infinity must be imposed. These conditions ensure uniqueness of the
solution. Physically talk, the solution must represent a phenomenon of diverg-
ing progressive waves. These conditions are called the radiation conditions and
are expressed as follows [16] :

lim « (P)=0 and lim w (P)=0 (2.3)

rp——>+00 rp——+400

lim (r,)? {au’ )k () } ~0
}

u (P)= —I;Qrot (rot u (P)) (2.4)

with k% = /()T‘gi and K? = %, and p is the density. \,u are the Lamé
constants and w? is the frequency of the waves.

T is the traction operator which acts on the function u (p) with respect to
the point on the boundary. To avoid any ambiguity, we write T}, or 7, when the
operator acts on a function of two points. In the case of an isotropic domain,

T takes the form :

Tu(p) = An(p)div u(p) + 2u du (p)

W + p.n (p) X rot u(p) (2.5)

where 71 (p) is the normal in p directed in the exterior of D_.
The boundary problem as defined possesses a unique solution for all values
of the frequency w? [16]

To obtain an integral representation of the solution of our problem, a funda-
mental singular solution is necessary. This solution, known as the Green tensor
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is a singular function of two points, denoted Gy (P, Q) , such that Gy (P, Q)
satisfies the equation (2.1) except when P = @), and the radiation conditions
(2.3). In the case of an isotropic and homogenous domain, this tensor is ex-
pressed as follows [17]:

Go (P.Q) = 4; {\II.I 4 };gmd (grad (¥ — @))} (2.6)

where [ is the unit tensor, ¥ = H} (K.R) and ® = H} (k.R), H] ( .)are the
function of Hankel of zero order and first type and R is the distance between
the two points P and @) .

Having defined the fundamental solution, integral representations to solve
our problem can now be obtained. There are two methods for obtaining inte-
gral representations, the direct method and the indirect method. The direct
method is based on the Green’s formula, where the unknown has a physical
sense which is either displacement or traction. The indirect method is based
on the concept of single layer or double layer potential , in this case the un-
known does not have a clear physical sense. We will begin by the indirect
method. For the Dirichlet problem, the solution is represented by a double
layer potential :

u(P) = /8 T,Go(Poq) W (q) ds, = (DW) (P), PeD  (27)
where W (q) is a density function defined on dD. This representation
satisfies the equation (2.1) and the radiation conditions (2.3). If we apply

the Dirichlet condition (2.2) taking into account the properties of double layer
potential [16], then we obtain the following integral equation :

W)+ [ T,Gola.p) W (9) ds,

= ;W () + (K3W) () = g(»), p€ID (2.8)

where K is the integral operator defined by :

(KoW) () = [ T,Go(p.0).W (q) ds,, € 0D (29)

For the Neumann problem, the solution is represented by a single layer
potential :

w(P) = /aD Go(P,q) W (q).ds, = (SW)(P) PeD  (2.10)
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where W (q) is an unknown density function defined on dD. This repre-
sentation satisfies the equation (2.1) and the radiation conditions (2.3). If we
apply the Neumann condition (2.2) taking into account the properties of single
layer potential [16], we obtain the following integral equation :

—;W (p) + /OD T,Go (p,q) W (q) .ds,

= W (p) + (KoW) (5) = f () pe oD (211)

For the direct method, the application of the Green’s formula to the sought
solution u and to the Green’s tensor GGy in the domain limited internally by
0D and limited externally by a large circle of radius 7, leads to the following
relations:

w(P) = /6 (@) T,Go(q. P) = Tu(q).Go g, )] ds,, PeD  (212)

1
u®) = [ () TG (a.p) ~Tule) Go(.p) ds,, pedD. (213
Where it was taken into account that u and G satisfy the equation (2.1)
and the radiation conditions (2.3).
If we apply the Neumann condition (2.2) on the boundary to the equation

(2.13), we obtain the following integral equation :

—u(p) — /8D u(q) . T,Go (q,p) .dsg

- /BD f(q).Go(g,p).dsg, pe€dD (2.14)

Or in the form :

Su)~ (Kou) (@) =— (S ))p), pedD (215)

The two integral equations (2.11) and (2.15) corresponding respectively
to the integral representations (2.10) and (2.12) for our problem, are adjoint
integral equations. So, by virtue of theorems of Fredholm [2] if one of the
two equations has a unique solution it will be the same for the other. It
follows then that only one of the two needs to be studied. But it is known and
established (see for example [1] ) that these two equations have not unique
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solutions for a specter of discrete values of the frequency w? wich presents a
contardiction. This anomaly observed in the uniqueness of the solution of the
integral equations above is due to the method of resolution selected rather
than the physical nature of the problem.

Many methods have been proposed to overcome this anomaly. one of them
is based on the modification of the function of Green GGy by adding a series of
functions called multipoles. The modified Green’s tensor is given in [1] by :

G (P.Q) = Go (PQ) + s 3 S ST P @ FQ) (2:16)

m=0o0=1/¢=1
(modification with simple multipole coefficients)

Gi(p.0) = Galp ) + 15 3 3 S lal Fi/(P) @ FEI(Q)

m=0o0=1/¢=1

+(=1)7 b, . FoY(P) @ F3=9)6-9(Q)] (2.17)

(modiﬁcation with simple and cross multipole coefficients)

where a?! and b, are respectively, the simple and cross multipole coeffi-
cients,

Fg!(P) = grad (H}, (k.ry) .E5, (60,))

F°*(P) = rot (H,ln (K.ryp) . E7, (0p) §3>

(rp,0,) are the polar coordinates of the point, H! ( .) is the fonction of
Hankel of order m and type 1 and

orm cos(mb,) o=1 . 1 m =0
En(0) = v/Em. { sin(mb,) o =2 with &, = { 2 m>0"

® design the tensorial product and e3 is the unit vector in the direction of
Z.

The modified integral equations corresponding to (2.11) and (2.15) becomes
then respectively :

W)+ (KV) ()= f (), pe oD (2.18)

su(p) = (Ku) (p) = = (S1 f) (), pe€dD (2.19)
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where K is the modified intégral operator defined in the same way as K
but with Gq replaced by Gj.

In order to ensure the uniqueness of the solutions of integral equation (2.18)
and (2.19), a sufficient but not necessary condition has been established in [1].
This condition is related to the multipole coefficients and it is expressed in the
following form :

1

, 1
By, <a;’,3 + 2) . <a;2 + 2) —0 (2.20)

and
ol 12 2 1 — \vd —
‘a —|—§‘ —|—|bm| _Z<O7 VYm=0:00 and U,l 1:2

Since the condition (2.20) is a large condition, we propose to determine an
optimal choice for these coefficients.

3 Main results

3.1 General case

In the following paragraph, we determine the expressions of the multipole
coefficients which minimizes the norm of the kernel of K, i.e., we minimize
the norm of the modified Green’s function Gj.

3.1.1 Theorem

If the kernel of the modified integral operator K7, namely the function of Green
(31 is defined by (2.16) then the quantity

[ NGilep A YAzmaxr, . geoD  (31)

is bounded if the simple multipole coefficients are selected as follows :

n l
ol _<F;,’f’, Fo >

(3.2)

2

ol |12
I3 o)

where ﬁﬁf = Re (Fﬁj)
Proof :
we have :
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G1(P,Q) =Gy (P,Q) + ' e iii ag F7l(P) @ F7H(Q)]

QKQ i SN IE(P) @ F29(Q) + L FS(P) @ F2(Q)] (3.3)

0o=1/¢=1
we set
£1Q) = [Fg2(Q) + a1 Fol(Q)] (3.4)

So the modified Green’s function Gy is written in the form :

[e9)
=
m=0oc

frp:AHGlHLQ(aD) dsp = [ —a Jop G1 (P.q) : Gi(q,P) . dsy .dsg

[Fr(P)® fre@Q)]  (35)

IS
Mm

I
_
~
Il

1

2

SYYYYYS [ R E P, [ s,

m=0 o—1 =1 n—0 v—=1 k=1 7 "»=4
o,l=1:2

Using inner product relations of the functions{F%l} o OB the circle of

radius A, we obtain :

00 2 )
/rp:A HGJEQ(&D) .ds,=2mA. Z Z (|&|2_|_ ]b\2> '/aD’fgll(q)‘ ds,

m=0o0=1

fquQ(Q)f .dsq

+ (e + aP) ./E)D

a=k. H (kr) , b=k. “H_(k7)

kr

with

’ m
=K .H_ (K d=K.—H_ (K
C m( T) ’ KT' m( /r)

SO
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2
| WGl an, sy =2 4. Sy [ fa o) dsor [ st s,
m=0oc=1

-, (e @) (07 d A7) s,
~ (v ffff(Q)).<(—1)" . fE2( )> ds,
(

= | (e T3 @) - (=17 d - S5 (0)) ds,

[ ET@) - (17 e £ ) s,

+/8D(](—) )dsq—i-/ ( L. o ()\2>.dsq

m=0oc=1

—2r Ay Z/ (a la f7Mq) — (~1)7 . d. f,§§0>2(q)\2) s,
+/ <]b F7Mq) = (=1)7 . . [B2(q )\2> ds,  (3.6)

On the other hand, and from the Minkowski inequality, we have :

Jon (Jo 174 @ = (<17 d g2 ) sy

[, (e 2@ an] « [, (oo ) o]

and fop (o frtla) = (<17 e 12 a)[) s,

. H/@D (‘b f;,?(Q)‘Q) .dsq}é + [/M (‘(—1)”. c. fﬁfg)z(Q)‘z) 'dsqrr

SO

=

[e) 2
/r:A 1GI2 oy - dsy <27 A3 S (laf + bf?) ./aD

P m=0oc=1

M) ds,
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2 2 B-0)2( 1\ |?
+ (le|” + |d]”) . / s .ds
(1P +14P). [ |52 ds,

2. (al A+ el | [ s, [ 8@ s

2
Also, the term [, ‘ f,‘;l(q)’ .ds, can be rearranged as follows:

o

= [ (Fr(Q) + gl B @) (F(Q) + arL Fri(@) ds,

s ds, = [ [Fe(@) + 0 Q| s,

FR(Q)-Fre(@) + agl Fe(Q) Fru(@) + gl FR Q)L Fre(@) |
+agl|” F2l(Q) Fr(Q) !

l n 1 l U
H H ".<F"9 2 >+a;’n.<F;,’L , Yo >

Ul
ozl 172 o
_ i < B, F S| +||Fg! o <Foe Fgis
1 2
L0D)  ||FglL, 0D || Fg Ly om)

from this effect, it is clear that the quantity (3.1) will be bounded if the
2

1/:*\09 Fal .
“fmo Fm 2| s equal to zero. So we have : a

m

ol FO'Q Fal>

value |a%! + m = ”

17211, 00 Mmm
This completes the demonstration of the theorem.
In what follows we will show that the optimal choice defined by (3.2),
satisfies the large condition (2.20).
Remind that, in the case of simple multipole coefficients the expression of

the large condition (2.20) is in the form :

aal_|_1‘<
mo2 2

205l +1] <1
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3.1.2 Lemma

If the simple multipole coefficients are defined by (3.2), then the condition
(2.20) is satisfied.
Proof :

‘2 'a%+1}:‘_2<ﬁge7 Fol > |

3
||F7?1[||L2(8D)
< FZ,FZ > - 2 <F2, FI >
= 2
1E5 T 0m)

—=ol ol
— <F, , Fl>| |<F, 6 FI&>

112 112
1 E5H 2,00 1 E5 2,00
we set F9'=u + iwv,so:
<u,u> — <v,v> — 21 <u,v>
2 .05 +1] = ’ ’ ’
<u,u> + <v,v>
) 1
{(<u,u> — <v,v>) +4 <u,v> <u,v>}2
N <u,u> + <v,v>
1
9 272
2 <u, v>
(<u,u> — <v,v>) + 4
—<u,u> <v,v>

_ (3.7)
<u,u> + <v,v>

It is clear, that if we have :

<u,v> — <u,u> <v,v> <0

Then, the quantity (3.7) is strictly less than 1.
But from the Schwartz inequality, we have :

<u,v>2 <X <u,u> <v,v>

= <u,v>> — <u,u> <v,v> =<0

Moreover, if the two functions u = Re F,‘,’ll) = Fo%nd v = Im (F,‘,’ll) are
linearly independent, then the Schwartz inequality becomes strict
For this, we will study the case where [ =1 :
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we have : u =<7 (J (k7). ES (0)) and v=<7 (Y, (k). ES(9))

w=kJ. (kr). E2(0) .7 + %Jm(m). (—1)” EC9 (@) . F

v=kY. (kr).ES(0) . T + %Ym(m). (1) EG(9) . 7

the functions v and v will be linearly independent if and only if :

kJ (kr). E () 4 g, (kr). (=1)7 E$=)(6)
kY, (kr). Eg(0) " my (kr). (-1)7 ES 7 (0)

In other words, u and v will be linearly independent if and only if :

I (k1) T (kT)

Y. (k) 7 Y, (k)
Calculate :

J,/n (kr).Y (kr)— J, (k) .Y;n (kr)y=7
we have : / m
and
Y, (X) = = Y (X) + T Y, (X)

SO :

J k)Y, (kr)— J, (kr).Y, (k)

_ {_ Touia (k1) + 25 7, Gk 7«)} Y, (k)

T (k7). [— Vi (6 7) + 1 ¥, (k 7")]

m
kr
m

kr

= [ T ) Y )+ T g ) Yo )

+ [ T, (k1) .Y, (k) T (k)Y (k r)]

2

- [Jm—kl(kr)-Ym(kr)_‘]m(kr)'ym“(kr)} T T kr

£0

so u and v are linearly independent
then :

<u,v>> — <u,u> <v,v> <0

SO : ‘2.a%+1‘<1
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3.1.3 Theorem

If the kernel of the modified integral operator K, namely the function of Green
(&1 is defined by (2.16) then the quantity

/T » ||G1||i2(8D) . ds, VA>max r, , q€dD

is minimized if the simple multiple coefficients are selected as follows :

aB-0)B-1)  AG-)B-D] [got] _ [F7 B | [¢B-06-D
o i N M M I )

= JAN:A (3.8)

where :

Oafrf = HF;;ZHZ , ﬁal <Fo'l FS,U)(371)>A

Agf = HF’?”‘ZHZD , BUl <F0l Fé@ )(371)>8D
R I SRR e
" 3ol BB ol pol ol
_<ﬁmFm +Oém.F F >8D

Proof:
Step 1 :

The modified Green’s function Gy written in the form (3.5) :

S W IEEYA)

m=0oc=1¢=1
SO :
G0y - dsy= [ [ Gi(Pa) : Cr(a.P) . dsy.ds
/7‘p=A L2>(0D) P rp=A Jon p-ASq
o,l=1:2 .
Using inner product relations of the functions{Fﬁj} o OB the circle of

radius A, we obtain :

o112 o o
||Fm1HA < m<1 ’ fm1>BD >
< 2| AE ER (R R
”G1H22 .dS = o o —0o o op (39)
A VD Vi R R =

T'p_
02|12 (3—0)2 (3—0)2
+||Fm ||A <fm ) fm >8D
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ol ol (8—0)2
calculating the expressions (f2' , fo')sp, < ol f >8D
, <f,§f"” , fﬁ@l>aD and <f7§f )2 fi= J)2>8D, and substituting in (3.9)
we obtain :

2
Jry=a HG1||L2(8D) - dsy

ol —01 ol
+ag. al . AS

(Fnt s F2),

| st (R g
R <1<m1 , ﬁ,gf—o>2>8>ZD

ol =(3—0)2 ol
+a?l. a®-7)2 B~

(=2, Fgh)
o +q(3-0)2 <F( 7)2 F"1>
+5,, - i a"l <F7§1 )2 Fal>

+a(3 )2 01 EZj

oD

oD

—(3—0)2 / 7(3—0)2 3—0)2
+aB79)2 T < m > I >aD

m + ag_g)Q <Fm?>—a)2 7 ﬁvnf—U)Z
—|—(1,£2_U)2. 5&2_0)2 A%—U)Q oD

This is a standard problem of minimization , where the necessary condition
for the existence of a minimum is the vanishing of the gradient.

so, if we cancel the gradient with respect to the coefficients @?! and @'?
we obtain the following relations :

Lol ol Y [(3—0)2 Fal
agl. ( <Ffa%f?1¢?}w ) + ﬁml : ( < L g2 'Ba>18D )

m

(3— 0)2

B < <ﬁ’;‘11 : F$70)2>6D ) + oy < <F(3 R > ) =0

+ az’bl' Bg"bl 4 a(S o)2 A(S 0)2

Or in the following form :
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(a5!. A7) ozt + (Bl Bry) -l = g
(BeL. Bol) . acl + (ag_"p. Afg_"p) ca30)? = gB-0)2

{

According to the Schwartz inequality and the linear independence of the

9y - : 2 . .
functions {Fr‘,’f}g , the latter system admits the following non-zero de-
m = Mo o}
terminant :

AT — Oégnl ) A:'nl ) 057(370')2 (3 o) 60’1 Bo’l /601 . Egl

m m

And therefore, the solutions of the latter system will be given by (3.8).

Step 2 :

We will show that the choice of multipole coefficients as defined in (3.8)
verify the minimum of the quantity (3.1).

For this, we suppose that the quantity (3.1) is a function of variables 27!
yz'll’ :L‘ggfo)Z and y'r(sfa')Q

where:

agj = x;l + 7. y,‘;l and afgj_"ﬂ = x,(i’_”p + 3 yﬁs’ )2

It is clear that the optimal choice defined by (3.8), makes the gradient of
the quantity (3.1) equal to zero. Moreover, our choice will verify the minimum
of the quantity (3.1) if the Hessien of (3.1) is a semi defined positive matrix.
But since the Hessien is a symmetric matrix, then it is sufficient that the main
determinants are strictly positives.

After some manipulation, we obtain :

v

= (16 ag! . A7 a2 AG?) (A7)

2
N

p=

+16 (Re* (63! . By!) + Im* (37! . B3)) >0

Hll /7” —A ||G1||%12(8D) . dsp = (8 agrgL_o')Q . A(3—o’)2) ' [AU] > O

p=

H22 / A ||G1”§12(6D) . dSp — (8 @(370)2 . A(g,o.)Q) . [AU] S O

Tp=
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and

= (8 a7 - A7) . [A7] >0

2
‘H33 [‘/7n 1 ||G1||L2(3D) . dsp]
Hence the optimal choice as defined in (3.8) satisfies the minimum of the
quantity (3.1)
This completes the proof of the theorem.

p=

3.1.4 Theorem

If the kernel of the modified integral operator K, namely the function of Green
(71 is defined by (2.17) then the quantity

/ | ||G1||i2(8D) . ds, VAr-maxr, , q¢q€dD
rp=

is minimized if the simple and cross multipole coefficients are selected as fol-
lows:

(Ej;) M7y |+ Bﬂ) [Mgzl, 2
o~ [N ] = (o) [ |
a,, = A7
(Ba) [Net o ]+ (Bat) [Nt s |
- - (Afrf) Mgll, 1| O‘%) Mgzl, 2}
(=1)7" b, = A (3.10)
where :
ng’ , = (Ag’b, A) . {Bg—a)(S—Z)‘gﬁs—U)(S—Z) . Ag_a)(s_l)-h%}
M 3= (8, 0p) - [AE-005-0 o000 — ff-ons-n ]

m, 1 — m m m

el _( . A) . {B(S—U)(B—l)‘h(S—U)(fﬂ—l) —A(g“’)(?"”.gﬁf}
Nty = ( m, aD) : {5§3_U)(3_l)-h§_a)(3_l) - ag_a)(s—z).gm

bl = = (Tl B0 o Byl B0
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Proof :
Step 1 :
We have :

Gl(PuQ):GO(P’Q)

i o 2 agl . Fo{(P) @ F7I(Q)
ke 222 2 [ + (=) by, FOU(P) @ FE=26-D(Q) 1

;o2 F5l(P) @ F5e(Q)
= 2 2 +agl FZH(P) @ F2I(Q) (3.11)
P m=00=1251 | 4 (—1)7H b, Fo(P) @ FE-00-0(Q)
We pose :

Q) = [Foo(@) + agt FRH(@Q) + (1) b FEE0(Q)]  (3.12)

So the modified Green’s function is written in the form :

M

Gl(PaQ): i

m=

> |FP) @ 152(Q)] (3.13)

o
Q
I
—_
~
—

hence :

| Gl ony dsy= [ [ Gi(Pa) : Cula P) - dsydsy

M~

00 2 00
=222
m=0o0=1/=1n=0v

> FoUP) R (P).ds, . /8 i £7Ua) T (9).ds,

1 k=1 rp=A

o,l=1:2
Using the inner product relations of the functions{F;Zf} e OB the circle
of radius A, we obtain : '
2
/T 4 1G1 2,0y - dsp
o=
g 2 ag g
Hle||A < m1 ) fm1>8D
o 2|+ ER B, (S SR
- Z Z Fo2 ol ! < (3—0)2 01>8D (3.14)
m=0o0=1 + < m m>A <fm v Im [ap
2|2 (3—0)2 (3—0)2
+||Fm ||A <fm ) fm >8D
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. : ol ol ol (8—0)2
calculating the expressions (f2' , f2 >5D, < i NS >aD
, <f755’*‘7)2 , f’g‘1>aD and <f,§13*")2 , f,(f*")2>aD, and substituting in (3.14)

we obtain :
2
/rp=A||G1||L2(8D) . dsy
~ 2 ~
|E), +an B B,y
o T Lol (3—0)2
» (TP (g PR

= 2 ol +agt (Fgh, Fgb) 4 agh. ag). A
m=0oc=1 _ oD N
- (_1)0 agwl bin Bgzl B (_1)0 bim <Fr(,?_g)2 ) F%1>
— (=1)7@T by By + by byy AB2

oD

<ﬁ;};@1 ’ ﬁ$_0)2>ap +a§3—a)2 <E§§1 : F},f’_“)2>
— (=170 (Fg, F3Y)

oD

~ oD
+An - +agt (Fgl, FE=o2) 4 agl. ali-o2 Bgl

— (=1)7aZ} by AS} — (=1) by (FE=02 | F3-)

oD
(D by G 4D, T, B

(3—0)2 Lol (3—0)2 (3—0)2 ol
o (_1)05 (8—0)2 F(3—0)2
ol s AT m rom oD _ .
+ﬁm . + Efnl <Fn($fa)2 7 Ff‘,’f op + aggfa)Z. afnl' B‘;

— (=1)7 a7 by AG— (1), (L B,
= (=1)7a b A7} + by b B

D

i
oD
—(3—0)2 / 17(3—0)2 (3—0)2
+a < m E >8D
—(=1)" by, <F,(n3*")2 , Fol o
. (3—0)2 3-0)2 [(3—0)2
+OJT(€ )2 . + Qy, Fm ) Fm >8D (315)
_I_aggfa)Q' 65270')2' Ang)Q
— (=1)7 a2 p,, B
— (=1)7 b (Fgl, B2
—(=1)7aB~2 b, BI' 4 by, by, A%}
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This is a standard problem of minimization , where the necessary condition
for the existence of a minimum is the vanishing of the gradient.
s0, if we cancel the gradient with respect to the coefficients @7 and a3~

oo %%and
b, we obtain the following relations :

(agh. A7) - agt+ (B0 B a0 —(—1) (agl By + AZBL ) b = g5)

(878 R a + (off . AGR) a2

— (~1)7 (a3 2Bg! + AG 25 by, = gl

o Bjlag! ol o A2 B:zl 3-0)2
—y <+A235$3> Y <+B”1a<30>2 -

AB=2%agl + B, ot
+Bg} By, + Agtal3 o)

m

) b = — (-1)° (hg} + hgg—oﬂ)

According to the Schwartz inequality and the linear independence of the

o,l 1:2 X X

functions {Fﬁf} 0o the latter system admits the following non-zero de-
m = Mo o}

terminant

ATl aggﬂ’ﬁ

ao | oA <Ag}.A§3—">2> <ag;.@gg—o>2>
m _(Bf%l-ﬁ;) BN - A N
+67" B,

And therefore, the solutions of the latter system will be given by (3.10).

Step 2 :

We will show that the choice of multipole coefficients as defined in (3.10)
verify the minimum of the quantity (3.14).

For this, we suppose that the quantity (3.14) is a function of variables 27},

Yol 23702 Y892 and y,,
where :
ap =api+ iyt aly = el g and b, =2t iy,

It is clear that the optimal choice defined by (3.10), makes the gradient of
the quantity (3.14) equal to zero, and in the same way of the demonstration
of theorem 3.1.3, we proof that the main determinants of the Hessien of the
quantity (3.14) are strictly positives

Hence the optimal choice as defined in (3.10) verifies the minimum of the
quantity (3.14)

This completes the proof of the theorem.
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3.2 Case of a circular boundaries

In our article published recently [20], we applied the results found in this paper
for the case of circular boundaries. When the boundary is a circle of radius a,
the simple and cross multipole coefficients are given by the following relatively
simple expressions :

gl = (cmEmA— al .a?) (3.16)

G?T} _ (cm.EmA— at .a?) (3.17)

a? = 21 : (3.18)

a2 = 2 : (3.19)

b =~ : (3.20)

(3.21)

where [see 7] :

i

al, = 2rak? “H;n(k:a) + (ha)? ]Hm(k:a)|2]

2

‘ 2 m

2 2 || 7/
a;, =2mak UHm(Ka) + (Ka)?

(K]

m ’
=2rakK |—H
Cr, ma |:Ka m

(ka).H, (Ka) + ]Z;Hm(ka).H;l(Ka)}

2

a. = 2mak? [J;n(k;a).H;l(ka) + J,,(ka) .Hm(ka)]

(ka)? ™™
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(Kay? Jm(Ka).Hm(Ka)]

a2, = 2raK? lJ;n(Ka).H;n(Ka) +

/

C,, = 2mak K {mJ (ka).H,,(Ka) + me(ka).H;n(Ka)]

Ka ™ ka

d. = 2rakK [mJ;n(Ka) A, (ka) + me(Ka).H;n(Ka)]

ka Ka

J,.(.) is the Bessel’s function of order m and type 1

m

3.2.1 Lemma

If the boundary of the domain 0D is a circle of radius a, then the two ex-
pressions (3.20) and (3.21) found for the cross multipole coefficients b,, are
equal.

Proof.
To simplify the expressions, introduce the following ratings:

'~ H (k ~ g (K
o = H,(ha) | x= ", (ka)

m

- —H (K
L H,, (Ka)

y = H, (Ka) , y
Xy = k? [2uH,, (ka) — \H,,, (ka)|

2
X, = A

e

[kH;n (ka) — =™

a

Yy = pK? 2H,, (Ka) + H,, (Ka)]

_ 2um

[KH;Z (Ka) — Hm(K“)]

a a
: 1 2 Sl 52 o T 1,2
then, the expressions a,,, a;,, ¢,,, G, Qs Cpyy Ay @, oG, and 5, are
written as:
1 2 (/2 2 2 2 (|, /|2 2
a,, =2mak’ ||z | + |z|°| and a;, =2waK® ||y | + |y

¢,, = 2makK [a:l b+ x.y/}

al, = 2rak? [#' 7 + 2.7 and @2, = 2raK” [§7 + 5.7
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G,y = 2makK |77+ 27 |

d . =2rakK {T,gj + 7. ,]

)

al = 2ma [|X1|2 + |X2|2} and o? = 2wa [|Y1|2 + IYQﬂ

B,y = 2ma [X1.V 5 + X,V

where the expressions of z, =, v, vy, X1, Xo, Y; and Y; are the same for

z, z, vy, vy, X1, Xo, Y7 and Y but with the function of Hankel H,, replaced
by the function of Bessel J,,,.

inserting these expressions in (3.20) and (3.21) we obtain :

o 2
A, o =al a2 — |cn|” = 2rakK)? ‘:L‘ Y = :L’.y‘

a2,y — 62, G = — (2ma)* kK3 (2 — 2.7) (y.gj — yl.gj) (3.22)

~

al Cpm —al cm = — (2ma)? Kk (2" — z.y) (3:..5:\, - xl.i"\) (3.23)
Using the Wronskien [9] of the functions of Bessel and Hankel, we obtain :

o AN mm d N 25N M
g-yyg=——s and 2.7 —2.Z=——-
VYT T Kay (ka)?

inserting these expressions in (3.22) and (3.23) we obtain :

~

az, .y, — @2 T = —dimm kK (2'.y — 1.9)

al Cm — G .Co = —4immP kK (2" .y — 2.y).

So the expression (3.22), (3.23) are equal. This complete the Proof.
The main result in the case of the circle, is the obtening of the exact Green’s
function for the Dirichlet problem :

G (P, Q) =G (P, Q)

which makes the norm of the modified integral operator equal to zero :

GY(P,Q) = Go(P,Q) = ||K7| =0.
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This result delete the obligation to verify the large condition (2.20), and
ensures the convergence of the method of successive approximation for all
values of the frequency of the waves.

Also, when the boundary is a slightly distorted circle defined in polar co-
ordinates by :

r=a+ep(@), 0<6<2r

where a is the radius of the circle not distorted and ¢ and g—‘g are two
bounded functions.

Then, the expressions of the multipole coefficients is relative to that found
in the case of circle, and we have :

Gi(p, @) =G (p,) +0(e) = |K[|=0().

4 Conclusion

In this paper, we have presented a new criterion of optimization of the mod-
ified fundamental solution for two dimensional elastic waves. We based on
the work of E.ARGYROPOULOS and K.KIRIAKI [19]. In the first part of
this paper we have presented the formulation of the boundary problem using
the method of integral representations based on the single and double layer
potential technique. The second part of our work consider the general case,
and we have calculated the explicit expressions of the multipole coefficients for
the following cases :

1- Modification of the fundamental solution with simple multipole coeffi-
cients

2- Modification of the fundamental solution with simple and cross multipole
coefficients

In the third Part, we present some applications of these results for the
special case where the boundary is a circle or a slightly distorted circle.

5 Open problems

The modified Green’s function techniques which use the multipole coefficients
has many open problems which deserve to be treated. In this way we can
mentioned the following:

1- verification of the large condition (2.20) for the general case where the
boundary takes any form.

2- Consider the cases of other simple geometric forms, such as square, rectangle,
triangle, ellipse, ...
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3- Treat the same subject by changing the criterion of optimality and consider
for example the minimization of the condition number of the integral operator
associated with our boundary problem, (in the case of three dimensions, see
[12] for acoustic waves and [13] for elastic waves).

4- Establish the numerical applications for the results obtained in this paper
(some numerical applications given in [14] and [15]).
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