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Abstract

Here, we used a rational mapping function with complex constants in order
to study the effect of complex constants. Also, a complex variable method have
been applied to deduce exact expressions for Gaursat functions for the first and
second fundamental problems of an infinite plate weakened by a hole having
arbitrary shape. The edge of the hole is conformally mapped on the domain
outside a unit circle by means of the rational mapping function. Moreover, the
interesting cases when the hole takes different shapes have been considered
besides applying computer work to determine strong and weak points of stress
and strain components.
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Curvilinear hole

1 Introduction

For many years, contact and mixed problems in the theory of elasticity has
been recognized as a rich and challenging subject for study, see Atkin and Fox
(1990). These problems can be established from the initial value problems or
from the boundary value problems, or from the mixed problems, see Colton
and Kress (1983) and Abdou (2003). Also, many different methods are estab-
lished for solving the contact and mixed problems in elastic and thermoelastic
problems, the books edited by Noda et al. (2003), Hetnarski (2004), Parkus
(1976) and Popov (1988) contain many different methods to solve the problems
in the theory of elasticity in one, two and three dimensions.
It is known that, see Muskhelishvili (1953), the first and second funda-

mental problems in the plane theory of elasticity are equivalent to finding two
analytic functions φ1 (z) and ψ 1 (z) of one complex argument z = x + iy.
These functions, Goursat functions, satisfy the boundary conditions,

k φ1 (t)− t φ 01 (t)− ψ 1 (t) = f (t), (1.1)
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where t denotes the affix of a point on the boundary. In terms of z = cω (ζ) ,
c > 0, ω0 (ζ) does not vanish or become infinite for |ζ| > 1, the infinite region
outside a closed contour is conformally mapped outside a unit circle ν.
For k = −1 and f (t) is a given function of stress in (1.1), we have the

boundary condition for the first fundamental problem (or in other words the
stress boundary value problem);

φ1 (t) + t φ 01 (t) + ψ 1 (t) = f1(t), f1(t) = −f(t). (1.2)

While for k = χ = λ+3µ
λ+µ

> 1; λ, µ are the Lame’s constants and f(t) = 2µg(t) is
a given function of displacement, we have the principal formula for the second
fundamental problem (or the displacement boundary value problem);

χ φ1 (t)− t φ 01 (t)− ψ 1 (t) = 2µg(t). (1.3)

The stress problem is ordered the first because any displacement for a body is
resulted after a stress effect on this body.
In the absence of body forces, it is known from Muskhelishvili (1953) that

stress components, in the plane theory of elasticity, take the form

σxx + σyy = 4Re {φ0(z)} ,
σyy − σxx + 2iσxy = 2 [z̄φ

00(z) + ψ0(z)] ,
(1.4)

where the complex functions of potentials φ1 (z) and ψ 1 (z), take the form

φ1 (z) = − X+iY
2π(1+χ)

ln ζ + cΓζ + φ(ζ),

ψ 1 (z) =
χ(X−iY )
2π(1+χ)

ln ζ + cΓ∗ζ + ψ(ζ),
(1.5)

where X,Y are the components of the resultant vector of all external forces
acting on the boundary and Γ, Γ∗ are complex constants. Generally, the two
complex potential functions φ(ζ), ψ(ζ) are single-valued analytic functions
within the region outside the unit circle and φ(∞) = 0, ψ(∞) = 0.
Muskhelishvili (1953) used the transformation

z = c
¡
ζ +mζ−1

¢
, (c > 0, m, real numbers), (1.6)

for solving the problem of stretching of an infinite plate weakened by an el-
liptic hole. Sokolonikoff (1985) used the same rational mapping of Eq.(1.6)
to solve the problem of elliptical ring, where the Laurant’s theorem is used.
This transformation, of (1.6), conformally maps the infinite domain bounded
internally by an ellipse into the domain outside the unit circle |ζ| = 1 in the
ζ−plane. The application of the Hilbert problem is used by Muskhelishvili
(1953) to discuss the case of a stretched infinite plate weakened by a circular
cut.
Kalandiya (1975) used the transformation mapping (1.6) to solve the tor-

sion problem of an elastic beam, in two dimensions, in the theory of elasticity.
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Also the same author used the same rational mapping (1.6) to solve the first
fundamental problem in the theory of elasticity by using Laurant’s method.
England (1980) considered an infinite plate which is weakened by a hypotro-

choid hole, conformally mapped into a unit circle |ζ| = 1 by the transformation
mapping

z = c
¡
ζ +mζ−n

¢
, (c > 0, 0 ≤ m < 1

n
), (1.7)

where z0 (ζ) does not vanish or become infinite outside the unit circle ν and
he solved the boundary value problems of the first fundamental problem. In
the papers, El-Sirafy and Abdou (1984), Abdou and Khar- El din (1994), Ab-
dou and Badr (1999), Abdou and Khamis (2000), Abdou (2002) and Abdou
et al. (2002), many rational mappings are used to solve the first and sec-
ond fundamental problems of an infinite plate with a curvilinear hole, using
Cauchy complex variable method, where the two complex Goursat functions
are obtained. Moreover, in all previous works the coefficients of the rational
mappings were real.
In this paper the complex variable method will be applied to solve the first

and second fundamental problems for the same previous domain of the infinite
plate with a general curvilinear hole C conformally mapped on the domain
outside a unit circle ν by the rational function

z = lζ +mζ−n , (|l| > 0, 0 ≤
¯̄̄m
l

¯̄̄
< 1

n
), (1.8)

where l = l1+il2, |l| > 0, m = m1+ im2, n = 1, 2, ..., p; and
¯̄
m
l

¯̄
is a parameter

restricted such that z0 (ζ) does not vanish or become infinite outside the unit
circle ν. The interesting cases when the shape of the hole with the rotating
axis takes different shapes are included.

2 The rational mapping

Whereas, our present mapping function deals with famous shapes of tunnels,
then it is useful to use it in studying stresses and strains around tunnels. In
underground engineering the tunnel is assumed to be driven in a homogeneous,
isotropic, linear elastic and pre-stressed geometrical situation. Also, the tunnel
is considered to be deep enough such that the stress distribution before exca-
vation is homogeneous. Excavating underground openings in soils and rocks
are done for several purposes and in multi-sizes. At least, excavation of the
opening will cause the soil or rock to deform elastically.
Worth mentioning, that excavation in soil or rock is a complicated, dan-

gerous, and expensive process. The mechanics of this can be very complex.
However, the use of conformal mapping that allows us to study stresses and
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strains around a unit circle makes it useful for engineers and easier for math-
ematicians.

The physical interest of the mapping (1.8) comes from its different shapes
of holes it treats where we find from Fig’s. 1-6 the following notations;

- The number of the holes corners is subjected to n’s values. They are
given by n+ 1.

- The complex constant m works on circling the shape from its situation
in the case of real m and the circling angle is given by θ = tan−1 m2

m1

(m = m1 + im2). Positive values of θ means that the circling will be in-
the positive direction i.e. in the anticlockwise direction and for negative
values the circling will be in the negative direction i.e. in clockwise
direction.

- The complex constant l works on expanding the corners of the hole shape.

Fig. 1
¡
z = lζ +mζ−1

¢

Fig. 2
¡
z = lζ +mζ−2

¢
Fig. 3

¡
lζ +mζ−3

¢
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Fig. 4
¡
z = lζ +mζ−4

¢
Fig. 5

¡
z = lζ +mζ−5

¢

Fig. 6
¡
z = lζ +mζ−6

¢
3 Method of solution

In this section, we will use the transformation mapping (1.8) in the bound-
ary condition (1.1), then we will apply the complex variable method with the
residue theorems to obtain a closed expression for Goursat functions. There-
fore, the expression ω (ζ)Áω0

¡
ζ−1
¢
will be written in the form

ω (ζ)

ω0
¡
ζ−1
¢ = α (ζ) + β (ζ), (3.1)

where

α (ζ) =
h

ζn
, h = ml

|l|2 , (3.2)

and β (ζ) is a regular function for |ζ| > 1.
Using (3.1) in the boundary condition (1.1) and on ζ = σ , for generality,

we get

kφ(σ)− α (σ)φ0(σ)− ψ∗(σ) = f∗ (σ) , (3.3)

where
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ψ∗(σ) = ψ(σ) + β (σ)φ0(σ), (3.4a)

f∗ (σ) = F (σ)− lkΓσ + l̄Γ̄∗

σ
− h(X−iY )

2π(1+χ)

¡
1

σn−1

¢
+N (0)α (σ)

+N (σ)β (σ),
(3.4b)

N (σ) = l̄Γ̄− X − iY

2π (1 + χ)
σ, (3.4c)

and

F (σ) = f (t) . (3.4d)

The function F (σ) with its derivatives must satisfy the Hölder condition.
Multiplying both sides of (3.3) by (1Á2πi) 1Á (σ − ζ) and integrating with
respect to σ on ν, one has

kφ (ζ) +
1

2πi

Z
ν

α (σ)φ0(σ)dσ

σ − ζ
=

l̄Γ̄∗

ζ
+

h

ζn
N (ζ)−A (ζ) , (3.5)

where
A (ζ) = − 1

2πi

∞P
η=0

1

ζη+1

Z
ν

σηF (σ) dσ, |ζ| > 1.

Using (3.2), we have

1

2πi

Z
ν

α (σ)φ0(σ)dσ

σ − ζ
= − h

(n− 1)!

n−1X
j=0

µ
n−1
j

¶
j!φn−j (0)

ζ1+j
, (3.6)

where φn−j (0) is a complex constant to be determined.
Substituting from (3.6) into (3.5), we have

−kφ (ζ) = A (ζ)− l̄Γ̄∗

ζ
− h

(n− 1)!

n−1X
j=0

µ
n−1
j

¶
j!φn−j (0)

ζ1+j
− h

ζn
N (0) . (3.7)

Differentiating (3.7) with respect to ζ, and using the result in (3.6), yields

φn−j (0) = −1
k
An−j (0), j = 0, 2, ..., n− 1 . (3.8)

Also from (3.3), ψ(ζ) can be determined in the form

ψ(ζ) = l̄kΓ̄
ζ
− ω(ζ−1)

ω0(ζ) φ∗ (ζ) +
h̄

(n−1)!

n−1P
j=0

µ
n−1
j

¶
j!φn−j (0) ζ1+j − hN (0)ζn

+B (ζ)−B,
(3.9)
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where

φ∗ (ζ) =
h
φ0(ζ) +N (ζ)

i
, (3.10a)

B (ζ) =
1

2πi

Z
ν

F (σ)

σ − ζ
dσ, (3.10b)

and

B =
1

2πi

Z
ν

F (σ)

σ
dσ. (3.10c)

4 Special cases

1 To employ the conformal mapping on the interior of the unit circle we
replace ζ by 1

ζ
in (1.8) and then the resulting mapping function z =

ω(ζ) = lζ−1+mζn will produce the following forms of Goursat functions;

−kφ (ζ) = A
¡
ζ−1
¢
− l̄Γ̄∗ζ − h

(n− 1)!

n−1X
j=0

µ
n−1
j

¶
j!φn−j (0)ζ1+j − hζnN (0) ,

(4.1)

ψ(ζ) = l̄kΓ̄ζ − ω(ζ−1)
ω0(ζ) φ∗

¡
ζ−1
¢
+ h̄

(n−1)!

n−1P
j=0

µ
n−1
j

¶
j!φn−j (0) ζ−(1+j) − hN (0)ζ−n

+B
¡
ζ−1
¢
−B.

(4.2)

2. In the first special case of Eq’s (4.1), (4.2) which maps the hole into the
interior of a unit circle if we consider the reality of the constants for the
first fundamental problem, we get

φ (ζ) = A
¡
ζ−1
¢
− lΓ̄∗ζ − h

(n− 1)!

n−1X
j=0

µ
n−1
j

¶
j!φn−j (0)ζ1+j − hζnN (0) , (4.3)

ψ(ζ) = −lΓ̄ζ − ω(ζ−1)
ω0(ζ) φ∗

¡
ζ−1
¢
+ h

(n−1)!

n−1P
j=0

µ
n−1
j

¶
j!φn−j (0) ζ−(1+j) − hN (0)ζ−n

+B
¡
ζ−1
¢
−B.

(4.4)
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These two expressions of Goursat functions are equivalent to those derived by
England (1980).

3. Also in the first special case of Eq’s (4.1), (4.2) if we consider the reality
of the constants with letting n = 1, we have

−kφ (ζ) = A
¡
ζ−1
¢
− lΓ̄∗ζ − hφ0 (0)ζ − hζN (0) , (4.5)

ψ(ζ) = klΓ̄ζ −
ω
¡
ζ−1
¢

ω0 (ζ)
φ∗
¡
ζ−1
¢
+ hφ0 (0) ζ−1 − hN (0)ζ−1 +B

¡
ζ−1
¢
−B.

(4.6)
The above two expressions of Goursat functions are equivalent to those derived
by Muskhelishvili (1953).

4. Now in our recent mapping function (1.8) if we consider the reality of
the constants with letting n = 1, we have

−kφ (ζ) = A (ζ)− lΓ̄∗

ζ
− hφ0 (0)

ζ
− h

ζ
N (0) , (4.7)

ψ(ζ) =
lkΓ̄

ζ
−

ω
¡
ζ−1
¢

ω0 (ζ)
φ∗ (ζ) + hφ0 (0) ζ − hN (0)ζ +B (ζ)−B. (4.8)

If we substitute n = 0 in the expressions derived by El-Sirafy and Abdou
(1984), we get exactly the same above expressionsin of Goursat functions be-
cause of using the same method (complex varieable method).

5 Applications

5.1 Curvilinear hole for an infinite plate subjected to a
uniform tensile stress :

For k = −1, Γ = p
4
, Γ∗ = −1

2
P exp (−2iθ) and X = Y = f = 0, we have an

infinite plate stretched at infinity by the application of a uniform tensile stress
of intensity P, making an angle θ with x−axis. The plate is weakened by a
curvilinear hole C which is free from stress.
The functions (3.7), (3.9) take the form

φ (ζ) =
l̄P

2

µ
1

ζ
e2iθ − h

2ζn

¶
, (5.1)
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ψ(ζ) = − l̄P
4ζ
− ω(ζ−1)

ω0(ζ)

∙
φ0(ζ) +

lP

4

¸
− lPh

4
ζn. (5.2)

And for l = i, m = 1 + i, P = 0.25, h = −1 + i, n = 1, stress components are
obtained as

σxx = −
1

8
X+
2 −

1

8

£
X+
3 cos θ −X−

3 sin θ
¤
− 1

16
(sin 2θ − 1)

+
1

8
h¡
X+
2

¢2
+
¡
1 +X−

2

¢2i [X+
3

¡£
sin θ +X−

1

¤
X+
2 +

£
X−
1 − cos θ

¤ £
1 +X−

2

¤¢
+X−

3

¡£
cos θ −X−

1

¤
X+
2 +

£
sin θ +X−

1

¤
[1 +X−

2 ]
¢
]

+
1

16
h¡
2
¡
sin 4θ −X−

2

¢
− 1
¢2
+ 4

¡
X+
2 − cos 4θ

¢2i [¡
3 +X−

2

¢
(2
¡
7 cos 2θ −X−

4 − 1
¢ ¡

X+
2 − cos 4θ

¢

−
¡
2
¡
sin 4θ −X−

2

¢
− 1
¢ ¡
7 sin 2θ +X+

4 + 1
¢
)

+X+
2 (
¡
7 cos 2θ −X−

4 − 1
¢ ¡
2
¡
sin 4θ −X−

2

¢
− 1
¢

+ 2
¡
7 sin 2θ +X+

4 + 1
¢ ¡

X+
2 − cos 4θ

¢
)], (5.3)

σyy = −
1

8
X+
2 +

1

8

£
X+
3 cos θ −X−

3 sin θ
¤
+
1

16
(sin 2θ − 1)

− 1

8
h¡
X+
2

¢2
+
¡
1 +X−

2

¢2i [X+
3

¡£
sin θ +X−

1

¤
X+
2 +

£
X−
1 − cos θ

¤ £
1 +X−

2

¤¢
+X−

3

¡£
cos θ −X−

1

¤
X+
2 +

£
sin θ +X−

1

¤
[1 +X−

2 ]
¢
]

− 1

16
h¡
2
¡
sin 4θ −X−

2

¢
− 1
¢2
+ 4

¡
X+
2 − cos 4θ

¢2i [¡
3 +X−

2

¢
(2
¡
7 cos 2θ −X−

4 − 1
¢ ¡

X+
2 − cos 4θ

¢
−
¡
2
¡
sin 4θ −X−

2

¢
− 1
¢ ¡
7 sin 2θ +X+

4 + 1
¢
)

+X+
2 (
¡
7 cos 2θ −X−

4 − 1
¢ ¡
2
¡
sin 4θ −X−

2

¢
− 1
¢

+ 2
¡
7 sin 2θ +X+

4 + 1
¢ ¡

X+
2 − cos 4θ

¢
)], (5.4)
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σxy = −
1

8

£
X−
3 cos θ +X+

3 sin θ
¤
+
1

16
(cos 2θ + 1)

+
1

8
h¡
X+
2

¢2
+
¡
1 +X−

2

¢2i [X−
3 (
£
sin θ +X−

1

¤
X+
2 +

£
X−
1 − cos θ

¤ £
1 +X−

2

¤
)

−X+
3

¡£
sin θ +X−

1

¤ £
1 +X−

2

¤
−
£
X−
1 − cos θ

¤
X+
2

¢
]

+
1

16
h¡
2
¡
sin 4θ −X−

2

¢
− 1
¢2
+ 4

¡
X+
2 − cos 4θ

¢2i [¡
3 +X−

2

¢
(
¡
7 cos 2θ −X−

4 − 1
¢ ¡
2
¡
sin 4θ −X−

2

¢
− 1
¢

+ 2
¡
7 sin 2θ +X+

4 + 1
¢ ¡

X+
2 − cos 4θ

¢
)

−X+
2 (2

¡
7 cos 2θ −X−

4 − 1
¢ ¡

X+
2 − cos 4θ

¢
−
¡
2
¡
sin 4θ −X−

2

¢
− 1
¢ ¡
7 sin 2θ +X+

4 + 1
¢
)]. (5.5)

where

X±
n = sinnθ ± cosnθ. (5.6)

The above relations are illustrated in Fig’s. 7,8,9,10 and 11, which deter-
mine stress components.

Fig. 7
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Fig.8

Fig. 9

Fig. 10
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Fig. 11

5.2 Uni-Directional tension of an infinite plate with a
rigid curvilinear center :

For k = χ, Γ = p
4
, Γ∗ = −1

2
P exp (−2iθ) and X = Y = 0, f = 2iPε, the two

complex functions (3.7), (3.9) take the form

−χφ (ζ) = l̄P

2

µ
1

ζ
e2iθ − h

2ζn

¶
, (5.7)

ψ(ζ) =
l̄χP

4ζ
− ω(ζ−1)

ω0(ζ)

∙
φ0(ζ) +

lP

4

¸
− lPh

4
ζn + 2iPε. (5.8)

Therefore we have the case of uni-directional tension of an infinite plate
with a rigid curvilinear center.

The constant ε can be determined from the condition that the resultant
moment of the forces acting on the curvilinear center from the surrounding
material must vanish, i.e.

M = Re

½Z ∙
ψ (ζ)− lP

2
e−2iθζ

¸
ω0 (ζ) dζ

¾
= 0. (5.9)

Hence,
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ε =
1

4 (m1 sin (n+ 1) θ −m2 cos (n+ 1) θ)
[

1

2
(z (h,m) cos (n+ 1) θ − z̃ (h,m) sin (n+ 1) θ)

+
1

n

µ
χl1
2
+

l1
χ
+

n z (h,m)

2χ
− l1

¶
cos θ

+
1

n

µ
χl2
2
− l2

χ
+

n z̃ (h,m)

2χ
− l2

¶
sin θ

−
µ
χm1

2
− z (h, l)

2χ
−m1

¶
cos (n+ 2) θ

−
µ
χm2

2
− z̃ (h, l)

2χ
−m2

¶
sin (n+ 2) θ], (5.10)

where

z (h, x) = h1x1 + h2x2 & z̃ (h, x) = h2x1 − h1x2, for any x = x1 + ix2.
(5.11)

Also, for l = i, m = 1 + i, P = 0.25, h = −1 + i, n = 1, χ = 2, stress
components are obtained as

σxx =
1

16
X+
2 −

1

16

£
X−
3 sin θ −X+

3 cos θ
¤
+
1

16
(1 + 2 sin 2θ)

− 1

16
h¡
X+
2

¢2
+
¡
1 +X−

2

¢2i [X+
3

¡£
sin θ +X−

1

¤
X+
2 +

£
X−
1 − cos θ

¤ £
1 +X−

2

¤¢
+X−

3

¡£
sin θ +X−

1

¤ £
1 +X−

2

¤
−
£
X−
1 − cos θ

¤
X+
2

¢
]

+
1

32
h¡
2
¡
sin 4θ −X−

2

¢
− 1
¢2
+ 4

¡
X+
2 − cos 4θ

¢2i [
X−
2 (2

¡
−7 cos 2θ +X−

4 + 1
¢ ¡

X+
2 − cos 4θ

¢
+
¡
2
¡
sin 4θ −X−

2

¢
− 1
¢ ¡
7 sin 2θ +X+

4 + 1
¢
)

+X+
2 (
¡
−7 cos 2θ +X−

4 + 1
¢ ¡
2
¡
sin 4θ −X−

2

¢
− 1
¢

− 2
¡
7 sin 2θ +X+

4 + 1
¢ ¡

X+
2 − cos 4θ

¢
)], (5.12)



Plate With a Curvilinear Hole 279

σyy =
1

16
X+
2 +

1

16

£
X−
3 sin θ −X+

3 cos θ
¤
− 1

16
(1 + 2 sin 2θ)

+
1

16
h¡
X+
2

¢2
+
¡
1 +X−

2

¢2i [X+
3

¡£
sin θ +X−

1

¤
X+
2 +

£
X−
1 − cos θ

¤ £
1 +X−

2

¤¢
+X−

3

¡£
sin θ +X−

1

¤ £
1 +X−

2

¤
−
£
X−
1 − cos θ

¤
X+
2

¢
]

− 1

32
h¡
2
¡
sin 4θ −X−

2

¢
− 1
¢2
+ 4

¡
X+
2 − cos 4θ

¢2i [

X−
2 (2

¡
−7 cos 2θ +X−

4 + 1
¢ ¡

X+
2 − cos 4θ

¢
+
¡
2
¡
sin 4θ −X−

2

¢
− 1
¢ ¡
7 sin 2θ +X+

4 + 1
¢
)

+X+
2 (
¡
−7 cos 2θ +X−

4 + 1
¢ ¡
2
¡
sin 4θ −X−

2

¢
− 1
¢

− 2
¡
7 sin 2θ +X+

4 + 1
¢ ¡

X+
2 − cos 4θ

¢
)], (5.13)

σxy =
1

16

£
X−
3 cos θ +X+

3 sin θ
¤
+
1

16
(1− 2 cos 2θ)

− 1

16
h¡
X+
2

¢2
+
¡
1 +X−

2

¢2i [X−
3

¡£
sin θ +X−

1

¤
X+
2 +

£
X−
1 − cos θ

¤ £
1 +X−

2

¤¢
−X+

3

¡£
sin θ +X−

1

¤ £
1 +X−

2

¤
−
£
X−
1 − cos θ

¤
X+
2

¢
]

+
1

32
h¡
2
¡
sin 4θ −X−

2

¢
− 1
¢2
+ 4

¡
X+
2 − cos 4θ

¢2i [
X−
2 (
¡
−7 cos 2θ +X−

4 + 1
¢ ¡
2
¡
sin 4θ −X−

2

¢
− 1
¢

− 2
¡
7 sin 2θ +X+
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The above relations are illustrated in Fig’s. 12, 13,14,15 and 16, which
determine stress components
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Fig. 12

Fig. 13

Fig. 14
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Fig. 15

Fig. 16

6 Open problems

Singular integral equations arise in many problems of mathematical models
of physical phenomena, specifically in various kinds of mixed boundary value
problems of mathematical physics and engineering problems.
The important theory of these integral equations is contained with some of

its applications in the work of Muskhelishvili (1953) and Abdou (2003)
The solution of a large class of mixed boundary value problems of a great

variety of contact and crack problems in solid mechanics, physics and engineer-
ing can be related to the singular integral equations that has a simple Cauchy-
type singularity, see Abdou (2003).

µ φ (x) +
λ

π

1Z
−1

φ (y) dy

y − x
+ λ

1Z
−1

k (x, y)φ (y) dy = f (x) (6.1)

where φ (x) is the unknown function, the kernel k (x, y) is continuous and
known function, also f (x) is a known function. The coefficient λ is a constant,
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may be complex, and has a physical meaning and the constant µ defines the
kind of the integral equation, when µ = 0 we have the integral equation of the
first kind, while for µ = const 6= 0 we have an integral equation of the second
kind.
The integral equation with a simply Cauchy kernel (6.1) may in principal,

be regularized and hence, it can be solved numerically by conventional methods
see Atkinson (1976), Golberg (1990), Delves and Mohamed (1985) and Abdou
et.al (2003).
In physical problems the unknown function φ (x) may be either a potential

(e.g. temperature, displacement velocity potential, electrostatic field) or flux
type quantity (e.g. heat flux, stress, dislocation, velocity charge density).
The end points ±1 are points of geometric singularity. At these points

φ (x) is bounded if it is a potential and φ (x) has an integrable singularity if it
is a flux- type quantity of the singular integral equation (6.1).
This equation may be arising from the formulation of elasticity problems for

the parallel layers compressed by stamps with arbitrary profile. If the contact
between the parallel layers and the stamps is frictionless the corresponding
constant µ = 0, i.e. there are no interface cracks, or the cracks are finite, and
the related integral equation is of the first kind, while if the contact is perfect
adhesion, i.e. the cracks are infinite between the stamp and the layers, the
related equation is a singular integral equations of the second kind, where the
length of the cracks or size of the stamp are not equals.
If the crack takes a closed form, it leads us to a new type of problems which

is called fundamental problems.

Conclusion:
From the above results and discussions the following may be concluded :

1) In the theory of two dimensional linear elasticity one of the most use-
ful techniques for the solutions of boundary value problem for a region
weakened by a curvilinear hole is to transform the region into a simpler
shape.

2) The mapping function (1.8) maps the curvilinear hole C in z−plane into
the domain outside a unit circle in ζ−plane under the condition ω0 (ζ) 6= 0
or ∞ for |ζ| > 1.

3) The physical interest of the mapping (1.8) comes from its different shapes
of holes it treats and different directions it takes as shown in Fig’s. 1-6.

4) The complex variable method (Cauchy method) is considered as one of
the best methods for solving the integro-differential equations (1.1), and
obtaining the two complex potential functions φ (z) and ψ (z) directly.
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5) Stress is an internal force whereas positive values of it mean that stress
is in the positive direction, i.e. stress acts as a tension force. On the
other side, negative values of stress mean that stress is in the negative
direction, i.e. stress acts as a press force.

6) The most important issue deduced from (Fig’s. 7, 8 and 12, 13) is that
maxσxx = −minσyy and vice versa (minσxx = −maxσyy).

7) By following the intendancy of σxx
σyy

and σyy
σxx

at (Fig’s. 10, 11 and 15, 16),
we find that σxx

σyy
→ 0 at the same points where σyy

σxx
→∞ and vice versa

(σxx
σyy
→∞ at the same points where σyy

σxx
→ 0).

8) When σxx
σyy
→ 0 that means that the perpendicular stress on y−axis is the

maximum value and presents the body interior resistance of treatment
(like rocks for example). Whereas, the perpendicular stress on x−axis is
small according to y−axis. Thereon, it is better to treat the problem at
points determined by angles that gives minimum values of σxx

σyy
.
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