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Abstract 

     This paper presents a new simple scheme for theft-protected 
proprietary certificate problem by introducing a mobile phone as an 
additional requirement for the proprietor and this scheme is 
analyzed to be more secured than the one presented by                     
M. Jakobsson, et al. Secondly we present the proprietary certification 
process using Elliptic Curve Discrete Log Problem (ECDLP) instead 
of Discrete Log Problem (DLP) for defining the relation R and we 
conclude that by introducing ECDLP the certification process is 
more efficient than DLP. 

     Keywords: Proprietary certificate, Collateral certificate, verifiable encryption 

1      Introduction 

Digital certificates play a vital role in public key cryptography, and are commonly 
used in electronic commerce applications.  The Certification Authority (CA) will 
issue the certificate to the client after successful completion of the secured 
protocol called “certification process”.  This certificate will be generally installed 
in the user’s browser and will be required if the user want to access a particular 
website.  If the accessing website is a paid one then traditional certificate, 
however, are not secure against certificate lending.  This type of abuse is a 
concern in several types of applications, such as those related to digital rights 
management (DRM). Proprietary certificates were introduced [1] in an attempt to 
discourage sharing of access rights to subscription-based resources.  A proprietary 
certificate is a certificate that contains some information related to another 
certificate called collateral certificate. This collateral certificate may contain the 
proprietors more sensitive information which he/she doesn’t want to reveal to any 
one.  If Alice (proprietor) reveals the proprietary secret key to Bob (not having 
access rights) to access subscription-based resources then the corresponding 
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collateral secret key of Alice will be automatically released to Bob which Alice 
doesn’t like, therefore she discourages  Bob by not giving her proprietary secret 
key.   

While the original construction of proprietary certificates achieves its stated goal, 
but it overlooks the possible scenario in case of theft of the proprietary secret key 
that would lead to immediate loss of the collateral secret key also.  Hence, theft of 
the proprietary key grants the intruder full access rights to all resources associated 
with both the proprietary and corresponding collateral keys. This approach 
punishes not only international sharing, but also accidental sharing.  In [2] an 
additional property called theft protection was given as a solution.  The core of 
their solution is based on the concept of time delay (T) for deriving the secret key 
so that the proprietor can do the necessary steps to change the secret key during 
this stipulated time T.   

On the other hand it is also possible for Alice to give the access rights to Bob 
incidentally for time lesser than T as she knows that the collateral information will 
be revealed after the time T only. In this case the time lock concept may not be the 
proper solution and hence some other solution is required to solve this problem. In 
this paper we proposed a solution for the theft-protected proprietary certificate 
problem by introducing a mobile phone as an additional requirement for the 
proprietor and model the scheme with Verifiable Encryption as building blocks 
for our construction.    

2    Building Blocks 

In this chapter, the existing primitives and notations that have been used for this 
work are outlined. These concepts are used to build the certification process to 
obtain the proprietary certificate from the certification authority. 
 
2.1   Verifiable Encryption 
 
In some cryptographic applications it is crucial to be sure that player behave fairly, 
especially when they use public key encryption.  For example, a voting scheme 
where each player encrypts the name of his favorite candidate can be considered.  
It can be useful to convince anybody that the encrypted name is indeed in the list 
of the candidates with out revealing any information about this name.  
Accordingly, mechanisms are needed to check the correctness of encrypted data, 
without compromising secrecy and such an encryption process is called fair 
encryption or verifiable encryption. A verifiable encryption is a two party protocol 
between a prover P and a verifier V who initially have access to some public key

1pk , some public value p and some binary relation R .  At the end of the protocol, 
the verifier obtains a cipher text under 1pk of some value x and accepts the cipher 
text if the relation R between x and p holds and rejects otherwise.  In other words 
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a verifiable encryption is scheme having public key encryption process and also 
having the proving properties about encrypted data.   
 
 
2.3   Sigma Protocol 
 
In cryptography, a proof of knowledge is an interactive proof in which the prover 
succeeds 'convincing' a verifier that it knows something. For a computer system 
‘something’ is defined in terms of computation. A machine 'knows something', if 
this something can be computed (in polynomial time), for a given set of input to 
the machine. As the program of the prover does not necessarily spit out the 
knowledge itself (as is the case for zero-knowledge proofs [15]) a machine with a 
different program, called the knowledge extractor is introduced to capture this 
idea. A Σ -protocol [13],[14] for a binary relation ** }1,0{}1,0{ ×⊆R is a three 
move ‘honest verifier’, ‘zero-knowledge’, proof of knowledge for R . That is a 
string x is common input to prover P and the verifier V , and demonstrates 
knowledge of a w such that Rwx ∈),( . w a witness for x .   
 
To illustrate this protocol let us consider the following example.  Let p be a prime, 
q a prime divisor of 1−p , and g an element or order q in *

pZ .  Suppose a prove P

has chosen qZk ∈ at random and has published pgh k mod= .  A verifier V who 
gets },,,{ hgqp can check that qp, are prime and that hg, have order q .  Since 
there is only one subgroup of order q in *

pZ , this automatically means that 

>∈< gh , that is there exist k such that pgh k mod= .   
 
The following protocol suggested by Schnorr gives a very efficient way to 
convince V about this: 
1.  P chooses qZr ∈ at random and send pga r mod= to V as a commitment. 
2.  V chooses a challenge c at random in tZ

2
and sends it to P .  Here, t  is fixed 

such that qt <2  
3.  P sends qkcrz mod.+= to V as a response. 
Finally V checks that phag cz mod.= , that qp, are prime and that hg, have 
order q   and accepts if and only if this is true else reject it. 
 
2.4   Verifiable encryption of discrete logarithms 
 
In [9],[10] “Cut and choose” method was proposed.  In this scheme Common 
inputs for A and B are G∈δγ , and A has an additional input δγlog=x .  A split 
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110 ... −+++= txxxx and generate the random numbers )1,...,1,0( −= tiri  and engaged 
in the following protocol for t times. 
1. BA → : )1,...,1,0(),,,( −=== tiLxrE ix

iiii γδψ  
2. AB → :  }1,...1,0{ −∈ tc  
3. BA → : cc xr ,  
4. B  check i) ),,( LxrE ccc =ψ  ii)  cx

c γδ = and iii) 110 .... −= tδδδδ .   
In [11],[ 8] they use “Double discrete log cut and choose” method was proposed.  
In [12] a new encryption scheme with protocols for verifiable encryption and 
decryption of discrete logarithms and representations.  This scheme is secured 
against chosen cipher text attack, it is separable, efficient and has no random 
oracle.  Their proofs of multiplicative relations among committed integers are 
based on the strong RSA assumption.  Encryption is based on the Decisional 
Composite Residuosity (DCR) assumption. Their scheme is as follows: 
 
Encryption Scheme 

'' ,,, qpqp are distinct odd primes with 12 ' += pp and 12 1 += qq where '' & qp are 
both of l bits long.  pqn = , ''' qpn = , *2

2)mod1( nZnn ∈+=ξ .  We know that 

'2 22
*

nnn ZZZZZ ×××≅ and )mod1( 2nxnx +=ξ .  Also the DCR assumption is that it is 

hard to distinguish *
2nZ from ( )nnZ *

2 .  H is a collision resistant, bitl − hash. 
 
Key Generation 
Let )4/,0[,, 2

321 nxxx ∈ , *'
2nZg ∈ , ngg 2' )(= ,  1

1
xgy = , 2

2
xgy =  and 3

3
xgy = ;

),,,;,( 321 yyygHnPK = , ),,( 321 xxxSK = . 
 
Encryption 
Let )2/,2/[ nnm −∈ , label *}1,0{∈L choose )4/,0[ nr ∈ compute rgu = , mrye ξ1= , 

),,(
32ˆ LeuHyyy = , ryv ˆ= .  The cipher text ),,( veu=ψ . 

 
Decryption 
If 2)),,((2 32 vu xLeuHx =+ and mx nue ξ=

−
mod))/((

1
1 22 for )2/,2/[ nnm −∈ output m  

otherwise, reject m . 
This scheme is secure against adaptive chosen ciphertext attack (but “gently 
malleable”), assuming DCR and H is collision resistant. 
 
The Protocol 
Common inputs for A and B : ),,,;,( 321 yyygHnPK = , *~

,~
nZhg ∈ of order 'n , G∈δγ , , 

),,( veu=ψ  and a label L ; let ),,(
32ˆ LeuHyyy = . 
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A has an additional inputs )2/,0[log nm ∈= δγ and )4/,0[ nr ∈ such that rgu = ,
mrye ξ1= , ryv ˆ= . 

1.  A Chooses )4/,0[ ns∈ , computes smhgv
~~~ = , sends v~ to B,  

2.  Then A and B engage in the following protocol. 
2.1 BA →  A generates random ''' ,,, smrs and computes smhgv

~~~ = , '2' rgu = ,
'' 22

1
' mrye ξ= , '2' ˆ ryv = , '' mγδ = , '' ~~~ ' sm hgv = and send )~,,,,( ''''' vveu δ to B 

2.2 AB →      B chooses a random challenge *}1,0{∈c and sends to A 
2.3 BA →   A replies with  

cssscmmmcrrr −=−=−= ''' ,, (Computed in Z ) 
 
2.4 B checks whether the relations rcmrcrc yvvyeeguu 22'22

1
2'22' ˆ,, === ξ , mcγδδ =' ,  

smc hgvv
~~~ ~' = ,  )4/,4/( nnm −∈  

The above protocol is a special honest-verifier zero knowledge protocol for 
proving that a cipher text encrypts a discrete logarithm whose soundness follows 
to form the strong RSA assumption. 

3   Verifiable Encryption Using Elliptic Curve Relations 

In the proprietary certification process, the user (Prover) has to send the fair 
encryption of the collateral secret key 2sk to the certification authority 1CA
(verifier).  For this fair encryption process we have used the Elliptic Curve 
Cryptosystem for defining the relation R . Elliptic Curve Discrete Logarithm uses 
only lesser key size while compared to any other hard Problems. In [7] it has been 
proved the following results  Let p be a prime of the form 2mod1;2 22 ≡+ BBA .  

Choose the sign of A such that ( ) ( ) 8
3

2
1

1
3

1
−−

−⎟
⎠
⎞

⎜
⎝
⎛=−

pA p .  If 1),1gcd( =− BA , then 

the group of  pF rational points of the reduction pE of E at p is a cyclic group of  
order Ap 21−+ , thus A2 is the trace of the Frobenius endomorphism of  

pE .Since we can find a cyclic elliptic curve group or order ρ , we tried to define 
the relation R based on Elliptic Curve Discrete Log Problem (ECDLP).   Let E : 

44812032 −−= xxy  is an Elliptic Curve cyclic group of order ρ , generated by B .  
We define }:),{( AwBEWAwR =×∈= , is the binary relation, where ][ρ=W . 
There are several advantages in using elliptic curves for cryptography. Elliptic 
curve cryptosystems with smaller key sizes appear to be just as secure as 
``classical’’ cryptosystems with much larger key sizes, so elliptic curve 
cryptosystems can be more efficient. Another advantage, is that elliptic curve 
cryptosystems appear to be vastly more secure over ``large finite fields of 
characteristic 2 '' than RSA, which is very important in practical applications. 
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Also, elliptic curves are simply way cooler, so they used to attract venture 
capitalists. Some mobile phones also use elliptic curve cryptography. 

3.1   Notations and variable expressions 
 

][a The set }1,...,1,0{ −a , 
(.)hkH keyed hash function that uses a key hk ,  
11,qp primes, 12 1 += pp , 12 1 += qq , pqn = , 111 qpn =  ,  

]4/[,, 2
321 nxxx ∈ are secret keys, 

*1
2nZg ∈ , ngg 21)(= , 1

1
xgy =  , 2

2
xgy = , , 

, **
22: nn ZZabs → defined as  

][2 nsk ∈  collateral secret key,  is the Label,  
are public keys,  

),,( veu , cipher text,  
),,( HGN augmented public key where PQN =  the product of two safe primes QP, , 

such that 12 1 += PP , 12 1 += QQ , where 111 QPN = ,  
*

21 NN ZY ⊂  is a subgroup of *
NZ ,  

E : 44812032 −−= xxy  is an Elliptic Curve cyclic group of order ρ , generated by
B , 1, NYHG ∈ are the two generators of  1

NY ,  ][ρ=W  
}:),{( AwBEWAwR =×∈= , is the binary relation,  

We require that n<ρ  

3.2   Encryption Scheme 
 
To encrypt the collateral secret key ][2 nsk ∈ with label *}1,0{∈L , the prover choose 
a random ]4/[nr∈ and computes rgu = , 2

1
skr hye =  , ))(( ),,(

32
rLeuHhkyyabsv = .  The 

cipher text is ),,( veu .  
 
To decrypt a cipher text ),,( veu with label L , the verifier first checks that vvabs =)(

and 2)),,((2 32 vu xLeuHx hk =+ .  If this does not hold then outputs “reject” and halt.  Then 
the verifier calculates nt mod2 1−= and computes txuem 2)/(~ 1= .  If 2~ skhm = for some 

][2 nsk ∈ then output 2sk ; otherwise, output “reject”. 
 

3.3   The Protocol 
The common input of the prover and verifier is the public key ),,,,,( 321 hkgnyyy , 
the augmented public key ),,( HGN , a group element EA∈ , a cipher text ),,( veu and 

3
3

xgy =
*2

2)mod1( nZnnh ∈+=
*}1,0{∈L

),,,,,( 321 hkgnyyy
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a Label L .  The prover has additional inputs ABsk =2 and ]4/[nr∈ such that rgu = , 
2

1
skr hye = , ))(( ),,(

32
rLeuHhkyyabsv = . 

 
The prover chooses a random ]4/[ns∈  , ],[1 nnr −∈ , ],[1 NNs −∈ , ],[1 ρρ−∈m  and 
computes sm HGT = , 121 rgu = , 11 22

1
1 mr hye = , BmA 11 = and 111 sm HGT = . The prover 

sends ),,,,,( 11111 TAveuT to the verifier.  
 
The verifier chooses a random challenge c and sends to the prover.  
 
The prover computes crrr −= 1~ , csss −= 1~   2

1~ cskmm −=  and sends )~,~,~( msr to the 
verifier.  
 
The verifier checks whether the relations rc guu

~221 = , mrc hyee
~2~2

1
21 = , 

rLeuHc hkyyvv
~2),,(

32
21 )(= ,     cABmA += ~1  , smc HGTT

~~1 = and 4/~4/ nmn <<− holds.   
 
If any of them does not hold, the verifier stops and output 0.   
 
If )(vabsv =  then verifier outputs 1; otherwise outputs 0. 

3.4   Numerical Toy Example 
 
Let so that ]1482[]4/[,15,77 21 === nnn .  Let 11 =x , 22 =x , 33 =x 2, 1 =g
so that 5714=g , 57141 =y , 47222 =y , 45583 =y , 78=h .Let ,42 =sk  such that AB =4 , 

1,1,1 ),,( === Leu
hkHLr so that 5714=u , 4713=e , 606=v .  The cipher text 

)606,4713,5714(),,( =veu .  
 
In the decryption process the verifier checks whether vvabs == 606)( ,

2),,((2 5567)32 vu xLeuHx hk ==+ .  Then calculates 39=t , and checks 2309~ skhm == and 
outputs the collateral secret key 42 =sk . Let E be an elliptic curve set of order 

7=ρ generated by the point EB∈  then ]7[=W .  Let 7,5 == QP so that 
6,35 1 == NN therefore 

*
35Z {1, 2,3, 4,6,8,9,11,12,13,16,17,18,19, 22, 24, 26, 27, 29,31,32,33,34}= . Let 

*
356 ZY ⊂ be the subgroup and }34,24,19,16,11,1{6 =Y , let 24,19 == HG be the two 

generators of 6Y .  The prover chooses 1=s , 11 =r , 11 =s , 31 =m  and calculates 
1 1 1 1 1T 34,u 4722,e 4414, v 5567, A 3B,T 11= = = = = = and send to the verifier.  

Let the verifier send 1=c to the prover.  The prover computes 1~,0~,0~ −=== msr and 
sends to the verifier. The verifier checks whether the relations rc guu

~221 4722 == , 

11,7 == qp
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mrc hyee
~2~2

1
21 4414 == , rLeuHc hkyyvv

~2),,(
32

21 )(5567 == , BA 31 = , smc HGTT
~~1 11== and 

4/14/ nn <−<−  holds 
 

4      Comparison between ECDLP and DLP 

Given a pair of points ),( mPP find the integer m , is the problem with a very 
different nature from that of point multiplication.  This problem is called Elliptic-
Curve Discrete Logarithm Problem.  It is widely believed that the ECDLP is 
difficult to solve when the point P  has a large prime order.  For a curve defined 
over qF qF it is very easy to devise a large prime r of size slightly less than q such 
that )( qFE contains a subgroup of order r .  Thus, the best known algorithm for 

solving the ECDLP has a time complexity expression )()( qOrO ≈ .  This is 
more or less a result of a brute force search method helped with the birthday 
paradox which is the bases for several famous algorithm devised by Pollard for 
computing discrete logarithm.  Such a result applied to discrete logarithm 
problems in any abelian group of order roughly q .  Therefore, we can say that a 
solution with complexity )( qO for the ECDLP is not a solution at all due to its 
irrelevance to the group structure in question. In the case of Discrete Logarithm 
Problem (DLP) in a finite field, there exist algorithms called index calculus for 
solving the problem.  The time complexity of an index calculus method for 
discrete logarithm in a finite field qF has a sub-exponential expression ( )2

logexp q .  

In specific, if we use an elliptic curve over a finite field qF with 1602≈q , the 

difficulty of the ECDLP will be expressed by a 802 value.  To obtain a similar 
difficulty for the DLP in a finite field, the sub-exponential expression will reduce 
to 10002≈q .Hence if the use the ECDLP relation the key size may be reduced to 

25.6 time that of the key size used for DLP. 

5      Proprietary Certification Process 

Let 1CA , 2CA be the distinct certification authorities issuing the certificates for the 
proprietary and collateral services respectively.  Let 1C , 2C be the proprietary and 
collateral certificates of some user respectively which are publicly available. Let

1pk , 1sk  are the public and secret keys of the user to obtain the proprietary 
certificate 1C from 1CA . Let 2pk , 2sk  are the public and secret keys of the user to 
obtain the collateral certificate 2C  from 2CA . A certification authority 1CA  wishes 
to issue a proprietary certificate 1C   to a certain user.  The user has to provide a 
second certificate 2C  , issued by 2CA  as collateral.  The user sends the secret key 
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2sk of the second certificate 2C encrypted with the public key  1pk  to 1CA . Since 

2sk is encrypted with 1pk to decrypt it requires 1sk which is the secret key of the 
user, no information about 2sk will be revealed to 1CA .  At the same time it is 
necessary for the user to convince the 1CA about the correctness of the encrypted 
data. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The aim is to construct a proprietary certificate system that respects these 
requirements for heterogeneity and flexibility in public key infrastructure.  
Assume that certificate authorities publish directories containing public 
information on the certificates they have issued.  In [1] the desirable properties of 
the system are given, they are Non-transferability, Cryptosystem agility, Locality, 
Efficiency and Security.  The paper [1] showed that how to extend the regular 
certificate to make it proprietary one, namely being linked to the collateral 
certificate.  As it was suggested in [1] verifiable encryption can be used for the 
implementation of proprietary certificates.  Let us assume that the user obtained 
the certificate for his collateral public key 2pk from 2CA . In order to certify the 
public key 1pk , the certification authority 1CA asks the user to present the 
certificate of another key 2pk issued by 2CA  which he uses for some other 
services (to be considered as collateral) and the value )( 21

skVerV pk= which is the 
verifiable encryption of his collateral secret key 2sk under 1pk .   
 

User        CA1 
(Proprietary) 

        CA2 
  (Collateral) 

Wants to certify pk1 

Request the collateral certificate and V 

Send collateral certificate and V 

Verify validity of the collateral certificate by checking the 
signature of CA2 and validity of the fair encryption 

Send certificate of pk1 

Broadcast the updates of the list of valid public keys 

Broadcast the updates 

Fig1: Overview of issuing Proprietary Certificates 
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If 1CA agrees to use this certificate as collateral then verifies validity of the 
collateral certificate by checking the signature of 2CA and validity of the verifiable 
encryption.  The properties of verifiable encryption ensure that 1CA does not learn 
any information about the user’s collateral secret key while being able to verify 
whether this cipher text is valid.  1CA also need to be sure that 2pk  is still a valid 
key.  It is assumed that 2CA broadcasts the updates to the list of valid public keys.  
Thus 1CA needs to check that 2pk is still on that list.  No direct interaction 
between 1CA and 2CA is required.  If the verification is successful, then 1CA
includes V and the encryption of 2pk under 1pk in the certificate in addition to 
standard information such as the user’s identity information and 1pk .  If the user 
shares 1sk with another party, then that party can decrypt V and obtain 2sk .  The 
weakness of the above approach is the accidental exposure of a proprietary secret 
key due to theft or intrusion which would immediately lead to the loss of the 
collateral key.  Therefore, direct use of proprietary certificates would be risky 
since it imposes additional insecurity on the collateral secret key.   

 

6      Making Proprietary Certificate Theft Protected 

In our model, Min Wu’s Authentication Protocol [6] has been modified to get the 
solution for the accidental theft of proprietary secret key. We assume that the 
security proxy (P) in our model is capable of generating a secured number 
generated once (nonce) “challenge” and verify the dynamically generated secret 
random “challenge” concatenated with the originally stored secret key 2sk for 
validating the authentication process.  We illustrate our model using the Figure 2.  
The process has seven steps: (1) The user (U) directs Internet Kiosk’s browser (K) 
to contact the security proxy server (P). (2) U produces the certificate 1C  into K, 
which sends it to P.  (3) P randomly chooses a “challenge” from a dictionary and 
sent to user’s mobile (M) as an SMS message. (4) U got the challenge form her M 
(5) The user directs K’s browser to contact P (6) Now U types the secret key 2sk
concatenated with the challenge into K, which sends it to P. (7) Once 
authenticated, P operates like a traditional web proxy.  
 
In this model, if the user accidentally lost her proprietary secret key and if Charlie 
(not having access rights) got that secret key then after producing the public 
certificate 1C  into K   the system will wait for the new secret key = ( 2sk
||challenge) to enter and at the same time the corresponding challenge will be sent 
to Alice (original user) mobile phone.   From the unusual SMS message form the 
Proxy server Alice might conclude that her secret key has been accidentally lost 
and some one is trying to impersonate her identity and she may take necessary 
steps to change that secret key, moreover Charlie doesn’t gain any access form the 
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M 

R (Remote 
Service) 

U (user) K (Internet Kiosk) 

P (Security Proxy) 

1

3

5

2
7

4 
6

Fig. 2 A new approach to avoid penalizing accidental sharing 

security proxy as he couldn’t know the “challenge”. If Alice incidentally wants to 
give her secret key and mobile phone to Bob, as form the previous case Bob can 
get the corresponding collateral secret key of Alice which Alice doesn’t like, 
therefore she discourages Bob by not giving her proprietary secret key and the 
mobile phone. This scheme has been given in Figure 2.  We claim that this system 
is secured in the sense that we make use of Verifiable Encryption of a Discrete 
Logarithm using Elliptic Curve for our construction of the binary relation R  
 

 
 
 
 
 
 
 
 
 
 
 

 

 

7     Analysis 

We had analyzed the two most likely security threats: (1) K remembers 
connection information for replay attack at a later time; (2) P receives two 
simultaneous connections from different kiosks, each claiming to be the same user.    
We address this through the use of a unique session name (SN) for each user’s 
session, and a nonce (N) that is transmitted to M with the SMS message. N 
prevents forged replies from an attacker who knows SN but does not have 
possession of M.  Security of the system depends on the security of messages sent 
by SMS. The security of this system also depends upon the fact that U is in 
possession of M. We believe that this is a reasonable assumption: when people 
lose their mobile phones, they are typically reported lost and deactivated. Once 
deactivated, M will no longer be able to receive SMS messages destined for U. 
We claim that the proprietary certification process is efficient in the sense that the 
binary relation R is defined as }:),{( AwBEWAwR =×∈= where the Elliptic 
Curve operations had been performed. Though the entire variables involved in the 
above protocol resides on the hard problem of Discrete Logarithm, the most 
crucial one is the  variable w called witness, which resides on the Elliptic Curve 
Discrete Log problem, therefore the size of the key w in this relation R is lesser 
than the Discrete Log. 
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8      Conclusion 

In this paper we had given a solution for the theft-protected proprietary certificate 
problem by introducing a mobile phone as an additional requirement for the 
proprietor.  Moreover to obtain the certificate we introduce the Elliptic Curve 
relation R for the verifiable encryption model.  This will reduce the key size to 

25.6 time that of the key size used for DLP. We believe that by applying these 
design principles, we can build systems that are both secure and usable.  

9      Open Problem 

Any other effective solution for the theft-protected proprietary certificate problem 
can be presented as a further research in this direction. 
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