Int. J. Open Problems Compt. Math., Vol. 1, No. 3, December 2008

On the Spectrum of Non-selfadjoint Differential Operators

M. Saboormaleki
School of Mathematical Sciences, and
Center of Excellence in Analysis on Algebraic Structures (CEAAS)
Ferdowsi University of Mashhad, Iran.

Abstract

For Sturm-Liouville type operators generated by the SturmLiouville differential expression $$
\tau \equiv \frac{d}{d x}\left(-p \frac{d}{d x}\right)+q(x)
$$ on $[0, \infty)$, the associated boundary value problems are nonselfadjoint if p or q is a complex-valued or the boundary conditions are non-real. Some important links between the spectral properties of a selfadjoint Sturm-Liouville operator and the analyticity properties of corresponding Titchmarsh-Weyl functions $m(\lambda)$ have been investigated. The purpose of this paper is that to extend some of those results to non-selfadjoint problems with $p \equiv 1$ and q a continuous complex valued function under condition $\lim _{x \rightarrow \infty} \Im q(x)=L$.

Keywords: Sturm-Liouville problem; spectral theory ; Titmarsh-Weylsims theory.

1 Introduction

Consider the ordinary second order differential expression

$$
L[y]=-\frac{d}{d x}\left(p \frac{d y}{d x}\right)+q y \quad x \in[0, \infty)
$$

, where $L[y]$ is regular at 0 and singular at ∞ and p, q are real-valued functions satisfying the following conditions.
i) p is positive, locally absolutely continuous on $[0, \infty)$.
ii) q is continuous on $[0, x]$ for all $x>0$.

Let $L[y]$ be limit point at infinity in the sense of [4], and $\{\phi(x, \lambda), \theta(x, \lambda)\}$ a fundamental set of solutions of the equation

$$
\begin{equation*}
L[y]=\lambda y, \quad \lambda=\mu+i \nu \in \mathbf{C} \tag{1}
\end{equation*}
$$

satisfying

$$
\begin{cases}\phi(0, \lambda)=-\sin \alpha, & \phi^{\prime}(0, \lambda)=p(0)^{-1} \cos \alpha \\ \theta(0, \lambda)=\cos \alpha, & \theta^{\prime}(0, \lambda)=p(0)^{-1} \sin \alpha\end{cases}
$$

where $\alpha \in[0, \pi)$ and $[\phi, \theta](0)=1$ such that $[f, g](x)=p(x) W[f, \bar{g}]$. We define a selfadjoint operator T_{α} on the Hilbert space $\mathcal{H}=L^{2}[0, \infty)$ by $T_{\alpha} f=L[f]$ for all $f \in \mathcal{D}_{\alpha}$, where

$$
\begin{equation*}
\mathcal{D}_{\alpha}=\left\{f \in \mathcal{D}: f(0) \cos \alpha+f^{\prime}(0) \sin \alpha=0\right\} \tag{2}
\end{equation*}
$$

and \mathcal{D} is the domain of the maximal operator associated with $L[f]$. Corresponding to T_{α} there is a Herglots function $m_{\alpha}(\lambda)$ which is regular on the half-planes $\Im \lambda>0, \Im \lambda<0$ and is such that the solution $\psi(x, \lambda)=\theta(x, \lambda)+m_{\alpha}(\lambda) \phi(x, \lambda)$ is square integrable.
Under condition $(1+x) q(x) \in L^{2}[0, \infty)$ G.Freiling and V.Yurko [9] obtained some results about the non-selfadjoint second order differential operators on half line with a discontinuity in an interior point.They established properties of the spectrum and investigate the inverse problem of recovering the operator from spectrum. E.B. Davies [8] has given a method to analyze the spectrum of non-selfadjoint differential operators emphasizing the differences from the selfadjoint theory. A numerical method for determining the TitchmarshWeyl $m(\lambda)$ function for the singular $L[y]$ equation on $[a, \infty)$, where a is finite in [10] is presented and the computational techniques have been applied to the problem of finding best constant in the Hardy-Littlewood inequality. in [11] the authors have extended the pioneering work of Sims on second order linear differential equations with a complex coefficient, they did generalization of features not visible in the special case of Sims's paper, an m function constructed and the relationship between its properties and the spectrum of underlying m-accretive differential operators analysed. it is known that the spectral properties of T_{α} are closely correlated with the boundary properties of the analytic function $m_{\alpha}(\lambda)$ on the real axis. [1]

2 Preliminary results

Theorem 2.1 (Chaudhuri-Everitt) Let $L[f]$ be limit point case at infinity then:
i) The complex number λ^{\prime} belongs to the resolvent set $\rho\left(T_{\alpha}\right)$ of T_{α} if and only if $m_{\alpha}(\lambda)$ is regular at λ^{\prime}. The resolvent operator at such points for all $f \in \mathcal{H}$ is given by

$$
\Phi\left(x, \lambda^{\prime} ; f\right)=\psi\left(x, \lambda^{\prime}\right) \int_{0}^{x} \phi\left(t, \lambda^{\prime}\right) f(t) d t+\phi\left(x, \lambda^{\prime}\right) \int_{x}^{\infty} \psi\left(t, \lambda^{\prime}\right) f(t) d t
$$

ii) The complex number μ^{\prime} belongs to the point spectrum $\sigma_{p}\left(T_{\alpha}\right)$ of T_{α} if and only if $m_{\alpha}(\lambda)$ has a simple pole at μ^{\prime}; in this case
$\phi\left(x, \mu^{\prime}\right), \theta\left(x, \mu^{\prime}\right)+r \phi_{\lambda}\left(x, \mu^{\prime}\right) \in L^{2}[0, \infty)$ and the resolvent operator at such points is given by

$$
\begin{aligned}
\Phi\left(x, \mu^{\prime} ; f\right) & =\theta\left(x, \mu^{\prime}\right) \int_{0}^{x} \phi\left(t, \mu^{\prime}\right) f(t) d t+r \phi\left(x, \mu^{\prime}\right) \int_{0}^{x} \phi_{\lambda}\left(t, \mu^{\prime}\right) f(t) d t \\
& +\phi\left(x, \mu^{\prime}\right) \int_{x}^{\infty}\left\{\theta\left(t, \mu^{\prime}\right)+r \phi_{\lambda}\left(x, \mu^{\prime}\right)\right\} f(t) d t
\end{aligned}
$$

for all $f \in L^{2}[0, \infty) \ominus\left\{\phi\left(x, \mu^{\prime}\right)\right\}$, where r is the residue of $m_{\alpha}(\lambda)$ at μ^{\prime} and $\phi_{\lambda}\left(x, \mu^{\prime}\right)=\left.\frac{\partial \phi(x, \lambda)}{\partial \lambda}\right|_{\lambda=\mu^{\prime}}$ and $\left\{\phi\left(x, \mu^{\prime}\right)\right\}$ is the eigenspace at μ^{\prime}
iii) The complex number μ^{\prime} belongs to the continuous spectrum $\sigma_{c}\left(T_{\alpha}\right)$ of T_{α} if and only if $m_{\alpha}(\lambda)$ is not regular at μ^{\prime} and $\lim _{\nu \rightarrow 0} \nu m_{\alpha}\left(\mu^{\prime}+i \nu\right)=0$.

We shall extend part i) of this theorem to the non-selfadjoint case, also part ii) under certain conditions and by giving a counter example we show that part iii) can not be extended.

3 Main results

We now consider the corresponding non-selfadjoint differential operator T_{α} under the condition $\alpha \in C, \quad p \equiv 1$ and $q=q_{1}+i q_{2}$ is a continuous function such that $\lim _{x \rightarrow \infty} q_{2}(x)=L<\infty$ on the interval $[0, \infty)$. In this case T_{α} is defined by $T_{\alpha} f=\tau f$ for all $f \in \mathcal{D}_{\alpha}$, where
$\tau f=-f^{\prime \prime}+q(x) f$ and \mathcal{D}_{α} is the set of all functions f in \mathcal{H} satisfying the following conditions
i) f and f^{\prime} are locally absolutely continuous on the interval $[0, \infty)$.
ii) $f(0) \cos \alpha+f^{\prime}(0) \sin \alpha=0$.

If $\Im \lambda=\nu \neq L$ then there always exists an L^{2}-solution $\psi(x, \lambda)$ of the equation (1)and a meromorphic function $m_{\alpha}(\lambda)$ satisfying

$$
\begin{equation*}
\psi(x, \lambda)=\theta(x, \lambda)+m_{\alpha}(\lambda) \phi(x, \lambda) \tag{3}
\end{equation*}
$$

where λ is a regular point of $m_{\alpha}(\lambda)$ [2]. Let f and g be two functions for which the expression

$$
\begin{equation*}
\tau f=-\frac{d^{2} f}{d x^{2}}+q(x) f \tag{4}
\end{equation*}
$$

makes sense. If $[f, g](x)=W[f, \bar{g}](x)$, and if $q(x)$ is real, then we have

$$
\begin{equation*}
\tau f \bar{g}-f \bar{\tau} g=\frac{d}{d x}\left(f \bar{g}^{\prime}-f^{\prime} \bar{g}\right)(x)=\frac{d}{d x}[f, g](x) \tag{5}
\end{equation*}
$$

which is called the Lagrange's identity. Integrating both sides of (5) on the finite interval $[0, x]$ we obtain Green's formula

$$
\int_{0}^{x}(\tau f \bar{g}-f \overline{\tau g}) d x=\left.\left(f \overline{g^{\prime}}-f^{\prime} \bar{g}\right)\right|_{0} ^{x}=[f, g]_{0}^{x}
$$

However if the function q in the expression (4)is a complex valued function then we have

$$
\begin{equation*}
\tau f \bar{g}-f \overline{\tau g}=\frac{d}{d x}\left(f \bar{g}^{\prime}-f^{\prime} \bar{g}\right)(x)+f \bar{g}(q-\bar{q})=\frac{d}{d x}[f, g]+2 i q_{2} f \bar{g} \tag{6}
\end{equation*}
$$

Integrating both side of(6)on the finite interval $[0, x]$, imply

$$
\int_{0}^{x}(\tau f \bar{g}-f \overline{\tau g}) d x=[f, g]_{0}^{x}+2 i \int_{0}^{x} q_{2} f \bar{g} d x
$$

hence

$$
\begin{equation*}
[f, g](x)=2 i \int_{0}^{x}\left(\nu-q_{2}\right) f \bar{g} d x+[f, g](0) \tag{7}
\end{equation*}
$$

Lemma 3.1 Let $f \in L^{2}[0, \infty)$, and let $\nu \neq L$. Suppose that λ is a regular value of $m_{\alpha}(\lambda)$ and define the function $\Phi(x, \lambda ; f)$ on $[0, \infty)$ by

$$
\Phi(x, \lambda ; f)=\psi(x, \lambda) \int_{0}^{x} \phi(t, \lambda) f(t) d t+\phi(x, \lambda) \int_{x}^{\infty} \psi(t, \lambda) f(t) d t
$$

where ϕ and ψ are solutions of the equation $L[f]=\lambda f$ satisfying condition ii) and (3) respectively for some $\alpha \in C$. Then $\Phi \in L^{2}[0, \infty)$ and there exists $K>0$ such that $\|\Phi\| \leq K\|f\|$ for all $f \in L^{2}[0, \infty)$.

Proof: First we note that Φ is well defined, since f and ψ are $L^{2}[0, \infty)$ and ϕ and f are square integrable on $[0, x]$ for all $x>0$. Let $\nu>L$. Then there exists a real number $r>0$ so that

$$
\begin{equation*}
\nu-q_{2}(x)>\frac{1}{2}(\nu-L)>0 \tag{8}
\end{equation*}
$$

for all $x \in[r, \infty)$, so proceeding as in [5], §5, there are square integrable solutions ψ_{0} and ψ_{1} and meromorphic functions $m_{\tilde{\theta}}$ and m_{1} satisfying
$\psi_{0}(x, \lambda)=\tilde{\theta}(x, \lambda)+m_{0}(\lambda) \tilde{\phi}(x, \lambda) \quad, \quad \psi_{1}(x, \lambda)=\tilde{\theta}(x, \lambda)+m_{1}(\lambda) \tilde{\phi}(x, \lambda)$, where $\psi_{0}(x, \lambda) \in L^{2}[0, \infty)$ satisfies the boundary condition $\underset{\sim}{f}(0) \cos \alpha+f^{\prime}(0) \sin \alpha=$ 0 , and $\psi_{1}(x, \lambda) \in L^{2}[r, \infty)$. The fundamental set $\{\tilde{\theta}, \tilde{\phi}\}$ is defined in the usual way in terms of the boundary condition $\tilde{\alpha}=0$ at $x=r$ i.e. $\tilde{\phi}(r, \lambda)=$
$0, \tilde{\theta}(r, \lambda)=1 \quad, \quad \tilde{\phi^{\prime}}(r, \lambda)=-1, \tilde{\theta}^{\prime}(r, \lambda)=0$. Hence, since we are in case I, there are non-zero scalars $k_{1}(\lambda)$ and $k_{2}(\lambda)$ depending on λ such that

$$
\psi_{0}\left(x, \lambda^{\prime}\right)=k_{1}(\lambda) \phi\left(x, \lambda^{\prime}\right) \quad, \quad \psi_{1}\left(x, \lambda^{\prime}\right)=k_{2}(\lambda) \psi\left(x, \lambda^{\prime}\right) .
$$

Now define the function f_{b} on the interval $[0, \infty)$ by

$$
f_{b}(x)= \begin{cases}f(x) & \text { if } x \leq b \\ 0 & \text { if } x>b\end{cases}
$$

for some $b>r$, and let

$$
\begin{align*}
\Phi_{b}=\Phi\left(x, \lambda ; f_{b}\right) & =\frac{1}{W\left[\psi_{0}, \psi_{1}\right]}\left\{\psi_{1}(x, \lambda) \int_{0}^{x} \psi_{0}(t, \lambda) f_{b}(t) d t\right. \\
& \left.+\psi_{0}(x, \lambda) \int_{x}^{b} \psi_{1}(t, \lambda) f_{b}(t) d t\right\} \tag{9}\\
\int_{0}^{b} \bar{\Phi} \tau \Phi-\Phi \overline{\tau \bar{\Phi}} & =\int_{0}^{b} \bar{\Phi}_{b}\left(-\Phi_{b}^{\prime \prime}+q \Phi_{b}\right)-\Phi_{b}\left(-\bar{\Phi}_{b}{ }^{\prime \prime}+\bar{q} \bar{\Phi}_{b}\right) \\
& =\int_{0}^{b}\left(\Phi_{b} \bar{\Phi}_{b}^{\prime}-\bar{\Phi}_{b} \Phi^{\prime}\right)^{\prime}+\int_{0}^{b} 2 i q_{2}\left|\Phi_{b}\right|^{2} \\
& =W\left[\Phi_{b}, \bar{\Phi}_{b}\right]_{0}^{b}+2 i \int_{0}^{b} q_{2}\left|\Phi_{b}\right|^{2} . \tag{10}
\end{align*}
$$

On the other hand Φ_{b} satisfies the non-homogenous differential equation $\tau \Phi_{b}-$ $\lambda \Phi_{b}=f$ on $[0, b]$ so

$$
\begin{align*}
\int_{0}^{b} \overline{\Phi_{b} \tau \Phi_{b}-\Phi_{b} \bar{\tau} \Phi_{b}} & =\int_{0}^{b} \bar{\Phi}_{b}\left(\lambda \Phi_{b}+f_{b}\right)-\Phi_{b}\left(\bar{\lambda} \bar{\Phi}_{b}+\bar{f}_{b}\right) \\
& =\int_{0}^{b} 2 i \nu\left|\Phi_{b}\right|^{2}+\int_{0}^{b} 2 i \Im\left(\bar{\Phi}_{b} f\right) \tag{11}
\end{align*}
$$

By (10) and (11) we have

$$
\begin{equation*}
2 i \int_{0}^{b}\left(\nu-q_{2}\right)\left|\Phi_{b}\right|^{2}=W\left[\Phi_{b}, \bar{\Phi}_{b}\right]_{0}^{b}-2 i \int_{0}^{b} \Im\left(\bar{\Phi}_{b} f\right) \tag{12}
\end{equation*}
$$

However, from (10) we can write

$$
\begin{aligned}
W\left[\Phi_{b}, \bar{\Phi}_{b}\right](b) & =\frac{1}{\left|W\left[\psi_{0}, \psi_{1}\right](b)\right|^{2}} W\left[\psi_{1}, \bar{\psi}_{1}\right](b)\left|\int_{0}^{b} \psi_{0}(t, \lambda) f_{b}(t) d t\right|^{2} \\
W\left[\Phi_{b}, \bar{\Phi}_{b}\right](0) & =\frac{1}{\left|W\left[\psi_{0}, \psi_{1}\right](0)\right|^{2}} W\left[\psi_{0}, \bar{\psi}_{0}\right](0)\left|\int_{0}^{b} \psi_{1}(t, \lambda) f_{b}(t) d t\right|^{2}
\end{aligned}
$$

Also by $(7), W\left[\psi_{1}, \bar{\psi}_{1}\right](r)=2 i \Im m_{1}$ and $W\left[\psi_{0}, \bar{\psi}_{0}\right](r)=2 i \Im m_{0}$, we have

$$
\begin{aligned}
& W\left[\psi_{1}, \bar{\psi}_{1}\right](b)=2 i\left[\int_{r}^{b}\left(\nu-q_{2}\right)\left|\psi_{1}\right|^{2} d x+\Im m_{1}\right] \\
& W\left[\psi_{0}, \bar{\psi}_{0}\right](0)=2 i\left[\int_{0}^{r}\left(\nu-q_{2}\right)\left|\psi_{0}\right|^{2} d x-\Im m_{0}\right]
\end{aligned}
$$

Using these results in (12), we obtain $\int_{0}^{b}\left(\nu-q_{2}\right)\left|\Phi_{b}\right|^{2}=$

$$
\begin{aligned}
& \frac{1}{\left|W^{2}\left[\psi_{0} \psi_{1}\right]\right|^{2}}\left(\left|\int_{0}^{b} \psi_{0}(t, \lambda) f_{b}(t) d t\right|^{2}\left[\int_{r}^{b}\left(\nu-q_{2}\right)\left|\psi_{1}\right|^{2} d t+\Im m_{1}\right]\right. \\
+ & \left.\left|\int_{0}^{b} \psi_{1}(t, \lambda) f_{b}(t) d t\right|^{2}\left[\int_{0}^{r}\left(\nu-q_{2}\right)\left|\psi_{0}\right|^{2} d t-\Im m_{0}\right]\right)+\int_{0}^{b} \Im\left(\Phi_{b} \bar{f}_{b}\right)
\end{aligned}
$$

Since from inequality (5) of [5] we have $\int_{r}^{b}\left(\nu-q_{2}\right)\left|\psi_{1}\right|^{2}<-\Im m_{1}$ and $\int_{0}^{r}\left(\nu-q_{2}\right)\left|\psi_{0}\right|^{2}<\Im m_{0}$ thus by the Cauchy-Schwartz inequality

$$
\begin{equation*}
\int_{0}^{b}\left(\nu-q_{2}\right)\left|\Phi_{b}\right|^{2} \leq \int_{0}^{b} \Im\left(\Phi_{b} \bar{f}\right) \leq \int_{0}^{b}\left|\Phi_{b} \bar{f}\right| \leq\left(\int_{0}^{b}\left|\Phi_{b}\right|^{2} \int_{0}^{b}|f|^{2}\right)^{\frac{1}{2}} \tag{13}
\end{equation*}
$$

i.e.

$$
\int_{0}^{b}\left(\nu-q_{2}\right)\left|\Phi_{b}\right|^{2} \leq\left(\int_{0}^{b}\left|\Phi_{b}\right|^{2} \int_{0}^{b}|f|^{2}\right)^{\frac{1}{2}}
$$

or

$$
\int_{r}^{b}\left(\nu-q_{2}\right)\left|\Phi_{b}\right|^{2} \leq\left(\int_{0}^{b}\left|\Phi_{b}\right|^{2} \int_{0}^{b}|f|^{2}\right)^{\frac{1}{2}}-\int_{0}^{r}\left(\nu-q_{2}\right)\left|\Phi_{b}\right|^{2}
$$

By the continuity of $q(x)$ on $[0, r]$, there exists a positive constant K^{\prime} such that $\left|\nu-q_{2}\right|<K^{\prime}$. Hence, using also (8) we have

$$
\frac{1}{2}(\nu-L) \int_{r}^{b}\left|\Phi_{b}\right|^{2} \leq\left(\int_{0}^{b}\left|\Phi_{b}\right|^{2} \int_{0}^{b}|f|^{2}\right)^{\frac{1}{2}}+K^{\prime}\left(\int_{0}^{r}\left|\Phi_{b}\right|^{2} \int_{0}^{b}\left|\Phi_{b}\right|^{2}\right)^{\frac{1}{2}}
$$

On the other hand since $\nu>L$, we can write

$$
\frac{1}{2}(\nu-L) \int_{0}^{r}\left|\Phi_{b}\right|^{2} \leq \frac{1}{2}(\nu-L)\left(\int_{0}^{r}\left|\Phi_{b}\right|^{2}\right)^{\frac{1}{2}}\left(\int_{0}^{b}\left|\Phi_{b}\right|^{2}\right)^{\frac{1}{2}}
$$

Hence, we may add the last two inequalities to obtain

$$
\left(\int_{0}^{b}\left|\Phi_{b}\right|^{2}\right)^{\frac{1}{2}} \leq \frac{2}{\nu-L}\left(\int_{0}^{b}|f|^{2}\right)^{\frac{1}{2}}+\left(\frac{2 K^{\prime}}{\nu-L}+1\right)\left(\int_{0}^{r}\left|\Phi_{b}\right|^{2}\right)^{\frac{1}{2}}
$$

But from (9), there exists a constant $K^{\prime \prime}$ such that

$$
\left(\int_{0}^{r}\left|\Phi_{b}\right|^{2}\right)^{\frac{1}{2}} \leq K^{\prime \prime}\left(\int_{0}^{r}|f|^{2}\right)^{\frac{1}{2}} \leq K^{\prime \prime}\left(\int_{0}^{b}|f|^{2}\right)^{\frac{1}{2}}
$$

since the functions $\psi_{0}(x, \lambda), \psi_{1}(x, \lambda)$ and $f(x)$ are in $L^{2}[0, \infty)$, so using the above inequality in the previous one gives

$$
\begin{equation*}
\left(\int_{0}^{b}\left|\Phi_{b}\right|^{2}\right)^{\frac{1}{2}} \leq K\left(\int_{0}^{b}|f|^{2}\right)^{\frac{1}{2}}, \tag{14}
\end{equation*}
$$

where $K=\frac{\left(K^{\prime} K^{\prime \prime}+1\right)}{\nu-L}+K^{\prime \prime}$ is not dependent on f. On the other hand

$$
W\left[\psi_{1}, \psi_{0}\right](x)=k_{1}(\lambda) k_{2}(\lambda) W[\psi, \phi](x)=k_{1}(\lambda) k_{2}(\lambda)
$$

so we have

$$
\begin{gathered}
\Phi_{b}=\frac{1}{k_{1}(\lambda) k_{2}(\lambda)}\left[k_{2}(\lambda) \psi(x, \lambda) \int_{0}^{x} k_{1}(\lambda) \phi(t, \lambda) f_{b}(t) d t+\right. \\
\left.k_{1}(\lambda) \phi(x, \lambda) \int_{x}^{b} k_{2}(\lambda) \psi(t, \lambda) f_{b}(t) d t\right]
\end{gathered}
$$

or

$$
\Phi_{b}=\Phi\left(x, \lambda ; f_{b}\right)=\psi(x, \lambda) \int_{0}^{x} \phi(t, \lambda) f_{b}(t) d t+\phi(x, \lambda) \int_{x}^{b} \psi(t, \lambda) f_{b}(t) d t
$$

Now let $b \rightarrow \infty$. Then $\Phi_{b} \rightarrow \Phi$ and by Fatou's theorem we conclude from (142.12) that $\int_{0}^{\infty}|\Phi|^{2} \leq K^{2} \int_{0}^{\infty}|f|^{2} \quad$ and $\quad\|\Phi\| \leq K\|f\| \quad$ as required. If $\nu<L$ the proof is similar to the case $\nu>L$.

Theorem 3.2 Consider the differential equation $\tau f=\lambda f$ generated by the non-selfadjoint differential expression τ on $[0, \infty)$ and let λ^{\prime} be a complex parameter such that $\Im \lambda^{\prime} \neq L$. Then λ^{\prime} is in the resolvent set $\rho\left(T_{\alpha}\right)$ of T_{α} if and only if the corresponding m-function, $m_{\alpha}(\lambda)$, is regular at λ^{\prime} and the resolvent operator $R_{\lambda^{\prime}}\left(T_{\alpha}\right)$ is given by

$$
\begin{equation*}
\Phi\left(x, \lambda^{\prime} ; f\right)=R_{\lambda^{\prime}}\left(T_{\alpha}\right)(f)(x)=\int_{0}^{\infty} G\left(x, t, \lambda^{\prime}\right) f(t) d t \tag{15}
\end{equation*}
$$

where

$$
G\left(x, t, \lambda^{\prime}\right)= \begin{cases}\psi\left(x, \lambda^{\prime}\right) \phi\left(t, \lambda^{\prime}\right) & \text { if } 0 \leq t<x<\infty \\ \psi\left(t, \lambda^{\prime}\right) \phi\left(x, \lambda^{\prime}\right) & \text { if } 0 \leq x<t<\infty\end{cases}
$$

for all $f \in L^{2}[0, \infty)$
Proof: \quad Suppose that $\lambda^{\prime}=\mu^{\prime}+i \nu^{\prime}$ is a fixed point in $\rho\left(T_{\alpha}\right)$, where $\nu^{\prime}>L$. Then there exists an L^{2}-solution of the equation

$$
\begin{equation*}
\tau f=\lambda^{\prime} f \tag{16}
\end{equation*}
$$

and the corresponding m-function $m_{\alpha}(\lambda)$ in the limit point case is meromorphic in the region $\nu^{\prime}>L$ by the theorem in [2]. If $m_{\alpha}(\lambda)$ is regular at λ^{\prime} then
the solution $\psi\left(x, \lambda^{\prime}\right)$ is square integrable, whereas if $m_{\alpha}(\lambda)$ has a singularity (a pole) at λ^{\prime} we can show the solution $\phi\left(x, \lambda^{\prime}\right)$ is square integrable as follows.First suppose $\alpha \neq 0$ and let Θ and χ be two linearly independent solutions of (16) satisfying

$$
\begin{gathered}
\Theta(0, \lambda)=-1, \quad \Theta^{\prime}(0, \lambda)=0 \\
\chi(0, \lambda)=0, \quad \chi^{\prime}(0, \lambda)=1
\end{gathered}
$$

Then there exists a meromorphic function $M(\lambda)$ such that

$$
\Psi\left(x, \lambda^{\prime}\right)=\Theta\left(x, \lambda^{\prime}\right)+M\left(\lambda^{\prime}\right) \chi\left(x, \lambda^{\prime}\right)
$$

is an L^{2}-solution whenever λ^{\prime} is a point of regularity of $M(\lambda)$. Also there is a constant $k(\lambda)$ such that for all λ, which are points of regularity of $m_{\alpha}(\lambda)$ and $M(\lambda)$, with $\Im \lambda>L$,

$$
\begin{equation*}
\Theta(x, \lambda)+M(\lambda) \chi(x, \lambda)=k(\lambda)\left[\theta(x, \lambda)+m_{\alpha}(\lambda) \phi(x, \lambda)\right] \tag{17}
\end{equation*}
$$

because changing boundary conditions does not affect the existence of square integrable solutions. Applying (17) and its derivative at $x=0$ we obtain

$$
\begin{aligned}
\Theta(0, \lambda)+M(\lambda) \chi(0, \lambda) & =k(\lambda)\left(\theta(0, \lambda)+m_{\alpha}(\lambda) \phi(0, \lambda)\right) \\
\Theta^{\prime}(0, \lambda)+M(\lambda) \chi^{\prime}(0, \lambda) & =k(\lambda)\left(\theta^{\prime}(0, \lambda)+m_{\alpha}(\lambda) \phi^{\prime}(0, \lambda)\right)
\end{aligned}
$$

which gives

$$
\begin{aligned}
-1 & =k(\lambda)\left(m_{\alpha}(\lambda) \sin \alpha+\cos \alpha\right) \\
M(\lambda) & =k(\lambda)\left(-m_{\alpha}(\lambda) \cos \alpha+\sin \alpha\right)
\end{aligned}
$$

and hence the m-function satisfies

$$
m_{\alpha}(\lambda)=\frac{-\sin \alpha+M(\lambda) \cos \alpha}{\cos \alpha+M(\lambda) \sin \alpha}
$$

It follows that $m_{\alpha}(\lambda)$ has a pole at $\lambda=\lambda^{\prime}$ iff $\cos \alpha+M(\lambda) \sin \alpha$ has a zero at $\lambda=\lambda^{\prime}$ but when $\cos \alpha+M\left(\lambda^{\prime}\right) \sin \alpha=0$ we have

$$
\cos \alpha\left(\Theta\left(0, \lambda^{\prime}\right)+M\left(\lambda^{\prime}\right) \chi\left(0, \lambda^{\prime}\right)\right)+\sin \alpha\left(\Theta^{\prime}\left(0, \lambda^{\prime}\right)+M\left(\lambda^{\prime}\right) \chi^{\prime}\left(0, \lambda^{\prime}\right)=0\right.
$$

so the L^{2}-solution $\Psi\left(x, \lambda^{\prime}\right)$ satisfies the boundary condition α at $x=0$, and hence $\phi\left(x, \lambda^{\prime}\right)$ is a scalar multiple of $\Psi\left(x, \lambda^{\prime}\right)$. Therefore $\phi\left(x, \lambda^{\prime}\right) \in L^{2}[0, \infty)$, so that λ^{\prime} is an eigenvalue and $\lambda^{\prime} \in \sigma\left(T_{\alpha}\right)$ whenever $m_{\alpha}(\lambda)$ has a pole at $\lambda=\lambda^{\prime}$. If $\alpha=0$ the argument is similar; however, it is now necessary to choose the basis $\{\Theta, \chi\}$ so that

$$
\chi(0, \lambda) \cos 0+\chi^{\prime}(0, \lambda) \sin 0 \neq 0
$$

i.e. so that $\chi(x, \lambda)$ does not satisfy the boundary condition $\alpha=0$ at $x=0$.

Now suppose that $m_{\alpha}(\lambda)$ is regular at λ^{\prime}, where $\nu^{\prime}>L$. Since $m_{\alpha}(\lambda)$ is meromorphic [2], λ^{\prime} is not a pole of $m_{\alpha}(\lambda)$ and we will show that $\lambda^{\prime} \in \rho\left(T_{\alpha}\right)$. To achieve this we first note that Φ is a bounded operator defined on \mathcal{H} by Lemma 2.1, so that $\Phi(x, \lambda ; f) \in L^{2}[0, \infty)$ wherever $f \in L^{2}[0, \infty)$. To complete the proof that $\Phi\left(x, \lambda^{\prime} ; f\right) \in \mathcal{D}_{\alpha}$ the domain of T_{α} we can show that Φ satisfies the boundary condition

$$
\begin{equation*}
\Phi\left(0, \lambda^{\prime} ; f\right) \cos \alpha+\Phi^{\prime}\left(0, \lambda^{\prime} ; f\right) \sin \alpha=0 \tag{18}
\end{equation*}
$$

For since

$$
\begin{gathered}
\Phi\left(0, \lambda^{\prime} ; f\right)=\phi\left(0, \lambda^{\prime}\right) \int_{0}^{\infty} \psi\left(t, \lambda^{\prime}\right) f(t) d t=\sin \alpha \int_{0}^{\infty} \psi\left(t, \lambda^{\prime}\right) f(t) d t \\
\Phi^{\prime}\left(0, \lambda^{\prime} ; f\right)=\phi^{\prime}\left(0, \lambda^{\prime}\right) \int_{0}^{\infty} \psi\left(t, \lambda^{\prime}\right) f(t) d t=-\cos \alpha \int_{0}^{\infty} \psi\left(t, \lambda^{\prime}\right) f(t) d t
\end{gathered}
$$

(18) follows immediately.

We also prove that $\Phi\left(x, \lambda^{\prime} ; \cdot\right)$ is the inverse operator for the operator $T_{\alpha}-\lambda^{\prime} I$. Obviously we have

$$
\begin{gathered}
\Phi\left(x, \lambda^{\prime} ;\left(T_{\alpha}-\lambda^{\prime} I\right) f\right)=\Phi\left(x, \lambda^{\prime} ;\left(-f^{\prime \prime}+q f-\lambda^{\prime} f\right)\right)= \\
\psi\left(x, \lambda^{\prime}\right) \int_{0}^{x} \phi\left(t, \lambda^{\prime}\right)\left(-f^{\prime \prime}+q f-\lambda^{\prime} f\right) d t+\phi\left(x, \lambda^{\prime}\right) \int_{x}^{\infty} \psi\left(t, \lambda^{\prime}\right)\left(-f^{\prime \prime}+q f-\lambda^{\prime} f\right) d t
\end{gathered}
$$

Integrating by parts twice we obtain

$$
\begin{gathered}
\Phi\left(x, \lambda^{\prime} ;\left(-f^{\prime \prime}+q f-\lambda^{\prime} f\right)\right)=\psi\left(x, \lambda^{\prime}\right) \int_{0}^{x}\left(-\phi^{\prime \prime}+q \phi-\lambda^{\prime} \phi\right) f+ \\
\phi\left(x, \lambda^{\prime}\right) \int_{x}^{\infty}\left(-\psi^{\prime \prime}+q \psi-\lambda^{\prime} \psi\right) f+\psi\left(x, \lambda^{\prime}\right)\left[\left(-f^{\prime} \phi+f \phi^{\prime}\right)\right]_{0}^{x}+ \\
\phi\left(x, \lambda^{\prime}\right)\left[\left(-f^{\prime} \psi+f \psi^{\prime}\right)\right]_{x}^{\infty}
\end{gathered}
$$

The last two terms are zero so

$$
\begin{aligned}
\Phi\left(x, \lambda^{\prime} ;\left(T_{\alpha}-\lambda^{\prime}\right) f\right) & =\psi\left(x, \lambda^{\prime}\right)\left(f(x) \phi^{\prime}(x)-f^{\prime}(x) \phi(x)\right. \\
& \left.+f(0) \phi^{\prime}(0)-f^{\prime}(0) \phi(0)\right)+\phi\left(x, \lambda^{\prime}\right) \\
& \times\left(W_{\infty}[f, \psi]-f(x) \psi^{\prime}(x)+f^{\prime}(x) \psi(x)\right)
\end{aligned}
$$

Since $f \in \mathcal{D}_{\alpha}$ then $W_{0}[f, \phi]=0$, so that

$$
\Phi\left(x, \lambda^{\prime} ;\left(T_{\alpha}-\lambda^{\prime} I\right) f\right)=f(x) W_{x}[\psi, \phi]+\phi\left(x, \lambda^{\prime}\right) W_{\infty}[f, \psi]=f(x)
$$

since we are in the limit point case and $\mathcal{D}_{\alpha}=\left\{f \in \mathcal{D}: W_{\infty}[f \psi]=0\right\}([5]$ p.267). On the other hand

$$
\begin{aligned}
\left(T_{\alpha}-\lambda^{\prime}\right) \Phi & =-\Phi^{\prime \prime}\left(x, \lambda^{\prime} ; f\right)+\left(q-\lambda^{\prime}\right) \Phi\left(x, \lambda^{\prime} ; f\right) \\
& =-\psi^{\prime \prime}\left(x, \lambda^{\prime}\right) \int_{0}^{x} \phi\left(t, \lambda^{\prime}\right) f(t) d t-\phi^{\prime \prime}\left(x, \lambda^{\prime}\right) \int_{x}^{\infty} \psi\left(t, \lambda^{\prime}\right) f(t) d t \\
& +f(x) W_{x}[\phi, \psi]+\left(q-\lambda^{\prime}\right) \Phi\left(x, \lambda^{\prime} ; f\right) \\
& =f(x)+\left[-\psi^{\prime \prime}\left(x, \lambda^{\prime}\right)+\left(q-\lambda^{\prime}\right) \psi\left(x, \lambda^{\prime}\right)\right] \int_{0}^{x} \phi\left(t, \lambda^{\prime}\right) f(t) d t \\
& +\left[-\phi^{\prime \prime}\left(x, \lambda^{\prime}\right)+\left(q-\lambda^{\prime}\right) \phi\left(x, \lambda^{\prime}\right)\right] \int_{x}^{\infty} \psi\left(t, \lambda^{\prime}\right) f(t) d t \\
& =f(x)
\end{aligned}
$$

for all $f \in L^{2}[0, \infty)$. Hence we can write for each λ with the property $\Im \lambda>L$

$$
\left(T_{\alpha}-\lambda\right)^{-1}=\Phi(\cdot, \lambda ; \cdot)
$$

The operator $\Phi(\cdot, \lambda ; \cdot)$ therefore has all of the properties that make it identically equal to the resolvent operator $R_{\lambda}\left(T_{\alpha}\right)$ for each λ with $\Im \lambda>L$, and we conclude that $\lambda^{\prime} \in \rho\left(T_{\alpha}\right)$.
If $\Im \lambda^{\prime}<L$ proof is the same as when $\Im \lambda^{\prime}>L$. The special case of $\Im \lambda^{\prime}=L$ is considered in the next theorem.

Theorem 3.3 Let $\nu^{\prime}=L$ and $\lambda^{\prime} \in \rho\left(T_{\alpha}\right)$. Then $m_{\alpha}(\lambda)$ is regular at λ^{\prime}.
Proof: Let $\nu^{\prime}=L$ and $\lambda^{\prime} \in \rho\left(T_{\alpha}\right)$, Since $\rho\left(T_{\alpha}\right)$ is an open set in the complex plane, there is a disk $D_{\delta}\left(\lambda^{\prime}\right)$ around λ^{\prime} such that $D_{\delta}\left(\lambda^{\prime}\right) \subseteq \rho\left(T_{\alpha}\right)$. Therefore, noting that there is no loss of generality if we take $L \neq 1$, by [3] Corollary 4.6.1 we have

$$
\begin{equation*}
m_{\alpha}(\lambda)-m_{\alpha}(i)=(\lambda-i) \int_{0}^{\infty} \psi(x, \lambda) \psi(x, i) d x \tag{19}
\end{equation*}
$$

for $\lambda \in \mathcal{D}_{\delta}, \Im \lambda \neq L$. From the properties of Φ as a function we see that

$$
(\tau-\lambda)(i-\lambda) \Phi(x, \lambda ; \psi(t, i))=(i-\lambda) \psi(x, i)
$$

and since

$$
(\tau-\lambda) \psi(x, i)=(i-\lambda) \psi(x, i)
$$

it follows that $(i-\lambda) \Phi(x, \lambda ; \psi(t, i))$ and $\psi(x, i)$ are solutions of the non-homogeneous equation $(\tau-\lambda) f=(i-\lambda) \psi(x, i)$, so their difference is a solution of the homogeneous equation $\tau f=\lambda f$. Hence

$$
\begin{equation*}
(i-\lambda) \Phi(x, \lambda ; \psi(t, i))-\psi(x, i)=c_{1} \phi(x, \lambda)+c_{2} \psi(x, \lambda) \tag{20}
\end{equation*}
$$

where c_{1} and c_{2} are constants, which can be determined, since if we set $x=0$ in (12) and its derivative, and use (11), we obtain $c_{1}=0$ and $c_{2}=-1$. We have therefore

$$
\psi(x, \lambda)=\psi(x, i)+(\lambda-i) \Phi(x, \lambda ; \psi(t, i))
$$

Also we can use Theorem 3.1 and write $\Phi(x, \lambda ; \psi(t, i))=R_{\lambda}\left(T_{\alpha}\right) \psi(t, i)(x)$ for $\lambda \in \mathcal{D}_{\delta}, \Im \lambda \neq L$ Then substituting for $\psi(x, \lambda)$ in (7) gives

$$
m_{\alpha}(\lambda)=m_{\alpha}(i)+(\lambda-i) \int_{0}^{\infty} \psi(x, i)^{2} d x+(\lambda-i)^{2}\left(R_{\lambda}\left(T_{\alpha}\right) \psi(t, i)(x), \bar{\psi}(x, i)\right)
$$

But this equation implies, since the function $\lambda \longmapsto\left(g, R_{\lambda}\left(T_{\alpha}\right) f\right)$ is an analytic function from $\rho\left(T_{\alpha}\right)$ to C for given fixed functions f and g in \mathcal{H} [6] p.101., that $m_{\alpha}(\lambda)$ is analytic in the neighborhood D_{δ} of λ^{\prime}, so that by analytic continuation m_{α} is regular on the resolvent set at λ^{\prime}. We believe that the converse of Theorem 3.2 is also true, but have not been able to prove this. However, the following result provides a partial converse. Then with slightly modification of the above proofs all the above results are valid under the new conditions.

Example 3.4 Consider the simplest case of a boundary value problem

$$
\begin{gathered}
-y^{\prime \prime}+q(x) y=\lambda y \\
y(0) \cos \alpha+y^{\prime}(0) \sin \alpha=0,
\end{gathered}
$$

where $q(x)=0, \forall x \in[0, \infty)$, and a fundamental set of solutions $\{\phi, \theta\}$ satisfying the boundary conditions

$$
\begin{gathered}
\phi(0, \lambda)=\sin \alpha, \quad \phi^{\prime}(0, \lambda)=-\cos \alpha \\
\theta(0, \lambda)=\cos \alpha, \quad \theta^{\prime}(0, \lambda)=\sin \alpha,
\end{gathered}
$$

where $\alpha \in C$. Then

$$
\begin{gathered}
\theta(x, \lambda)=\cos \alpha \cos (x \sqrt{\lambda})+\lambda^{-\frac{1}{2}} \sin \alpha \sin (x \sqrt{\lambda}) \\
\phi(x, \lambda)=\sin \alpha \cos (x \sqrt{\lambda})+-\lambda^{-\frac{1}{2}} \cos \alpha \sin (x \sqrt{\lambda})
\end{gathered}
$$

and we obtain the m-function $m_{\alpha}(\lambda)$ explicitly as

$$
m_{\alpha}(\lambda)=\frac{\sin \alpha-i \sqrt{\lambda} \cos \alpha}{\cos \alpha+i \sqrt{\lambda} \sin \alpha}
$$

where $\Im \sqrt{\lambda}>0$. We now show that m is regular on the whole complex plane except on the set $\{\lambda: \Im \lambda=0, \Re \lambda>0\}$ and at poles of the m-function, which
satisfy the equation $i \cot \alpha=\sqrt{\lambda}$. To show that this is true, note that $m_{0}(\lambda)=$ $-i \sqrt{\lambda}$ is the m-function for the selfadjoint problem with $q(x)=0, \alpha=0$, and is analytic on

$$
S=C \backslash\{\lambda: \Im \lambda=0, \Re \lambda \geq 0\}
$$

It then follows from the expression for $m_{\alpha}(\lambda)$ that for $\alpha \in C \backslash\{0\}, m_{\alpha}(\lambda)$ is regular on S, apart from isolated poles at the zeros of $\cos \alpha+i \sqrt{\lambda} \sin \alpha$. Let $\alpha=\alpha_{1}+i \alpha_{2}$. Using complex trigonometry we have

$$
\lambda=-\cot ^{2} \alpha=\frac{\sin 2 \alpha_{1}-i \sinh 2 \alpha_{2}}{2|\sin \alpha|^{2}},
$$

where $\alpha_{2} \neq 0$ and the condition $\Im \sqrt{\lambda}>0$ is equivalent to

$$
n \pi<\alpha_{1}<\left(n+\frac{1}{2}\right) \pi, n \in Z .
$$

Taking $\alpha_{1}=0, \alpha_{2}=1$ then m-function is

$$
m(\lambda)=\frac{i \sinh 1-i \sqrt{\lambda} \cosh 1}{\cosh 1-\sqrt{\lambda} \sinh 1}
$$

or

$$
m(\lambda)=i \frac{1-\sqrt{\lambda} \operatorname{coth} 1}{\operatorname{coth} 1-\sqrt{\lambda}}
$$

Note that the only pole of $m(\lambda)$ is at $\lambda=\lambda_{0}=\operatorname{coth}^{2} 1$, so that $m(\lambda)$ is regular on S. To investigate whether Theorem 1.1(i) remains true in general in the non-selfadjoint case, we consider the behavior of $\nu m\left(\mu^{\prime}+i \nu\right)$ as $\nu \rightarrow 0$ for $\mu^{\prime}=\lambda_{0}$. We have:

$$
\lim _{\nu \rightarrow 0} \nu m\left(\mu^{\prime}+i \nu\right)=\lim _{\nu \rightarrow 0} \frac{\nu\left[1-\sqrt{\lambda_{0}+i \nu} \operatorname{coth} 1\right]}{\operatorname{coth} 1-\sqrt{\lambda_{0}+i \nu}}
$$

Using l'Hôpital rule we have

$$
\begin{aligned}
\lim _{\nu \rightarrow 0} \nu m\left(\mu^{\prime}+i \nu\right) & =\lim _{\nu \rightarrow 0} 2 i\left(1-\operatorname{coth}^{2} 1-i \nu \operatorname{coth} 1\right) \operatorname{coth} 1 \\
& =2 i\left(1-\operatorname{coth}^{2} 1\right) \operatorname{coth} 1 \neq 0
\end{aligned}
$$

Since there is no $L^{2}[0, \infty)$ solution of the equation $-y^{\prime \prime}=\lambda y$ for any $\lambda \geq 0, S$ lies in the essential spectrum and λ_{0} is not an eigenvalue. Hence λ_{0} is a point of the continuous spectrum, but Theorem 2.1(i) is not satisfied for $\mu^{\prime}=\lambda_{0}$. This shows that Theorem 2.1(i) is not generally true in the non-selfadjoint case.

References

[1] J. Chaudhuri and W. N. Everitt, "On the spectrum of ordinary second order differential operators", Proc. Roy. Soc. Edinburgh., Sec. A 68 (1968), 95-119.
[2] J. B. McLeod, "Square integrable solutions of a second order differential equation with complex coefficients", Quart. J. Math. Oxford (2), 13 (1962), 129-33.
[3] M. Saboormaleki, "Spectral Analysis of Non-selfadjoint Differential Operators", Ph D Thesis, Sheffield Hallam University, Sheffield UK (1998).
[4] H. Weyl, "Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen", Math. Ann. 68 (1910), 220-269.
[5] A. R. Sims, "Secondary conditions for linear differential operators of the second order", J. Math. Mechanics, vol. 6, No. 2 (1957).
[6] J. Weidmann, "Linear Operators in Hilbert Spaces", Graduate Texts in Mathematics No. 68, Springer, (1980).
[7] B.M. Brown; V.G. Kirby and J.D. Pryce "A numerical method for the determination of the Titchmarch-Weyl m-coefficient", Proc. R. Soc. Lond. A 435 (1991), 535-549.
[8] E.B. Davies "Non-selfadjoint Differential Operators", Bull. London Math. Soc. 34 (2002), 513-532.
[9] G. Freiling and V. Yurko "inverse spectral problems for singular nonselfadjoint differential operators with discontinuities in an interior point.", Inverse problems 18 (2002),no. 3, 757-773.
[10] B.M. Brown, V.G. Kirby and D. Pryce "A numerical method for the determination of the Titchmarsh-Weyl m-coefficient", Proc. R. Lond. A (1991) 435, 535-549.
[11] B.M. Brown, D.K.R.Mc Cormack, W.D. Evans and M. Plum "On the spectrum of second-orderdifferential operators with complex coefficients", Proc. R. Soc. Lond. A (1999) 455, 12345-1257.
[12] M. S. P. Eastham, and H. Kalf, "Schrodinger-type Operators with Continuous Spectrum", Research Notes in Math. Vol.65, Pitman Advanced Publishing Program (1982).

