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Abstract

For Sturm–Liouville type operators generated by the Sturm–
Liouville differential expression

τ ≡ d

dx
(−p

d

dx
) + q(x)

on [0,∞), the associated boundary value problems are non-
selfadjoint if p or q is a complex-valued or the boundary con-
ditions are non-real. Some important links between the spec-
tral properties of a selfadjoint Sturm–Liouville operator and
the analyticity properties of corresponding Titchmarsh–Weyl
functions m(λ) have been investigated.The purpose of this pa-
per is that to extend some of those results to non-selfadjoint
problems with p ≡ 1 and q a continuous complex valued func-
tion under condition limx→∞=q(x) = L.

Keywords: Sturm–Liouville problem; spectral theory ; Titmarsh–Weyl–
sims theory.

1 Introduction

Consider the ordinary second order differential expression

L[y] = − d

dx
(p
dy

dx
) + qy x ∈ [0,∞)

, where L[y] is regular at 0 and singular at ∞ and p, q are real-valued functions
satisfying the following conditions.
i) p is positive, locally absolutely continuous on [0,∞).
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ii) q is continuous on [0, x] for all x > 0.
Let L[y] be limit point at infinity in the sense of [4], and {φ(x, λ), θ(x, λ)} a
fundamental set of solutions of the equation

L[y] = λy, λ = µ+ iν ∈ C (1)

satisfying {
φ(0, λ) = − sinα, φ′(0, λ) = p(0)−1 cosα
θ(0, λ) = cosα, θ′(0, λ) = p(0)−1 sinα ,

where α ∈ [0, π) and [φ, θ](0) = 1 such that [f, g](x) = p(x)W [f, ḡ]. We define
a selfadjoint operator Tα on the Hilbert space H = L2[0,∞) by Tαf = L[f ]
for all f ∈ Dα, where

Dα = {f ∈ D : f(0) cosα+ f ′(0) sinα = 0} (2)

and D is the domain of the maximal operator associated with L[f ]. Corre-
sponding to Tα there is a Herglots function mα(λ) which is regular on the
half-planes =λ > 0, =λ < 0 and is such that the solution
ψ(x, λ) = θ(x, λ) +mα(λ)φ(x, λ) is square integrable.
Under condition (1 + x)q(x) ∈ L2[0,∞) G.Freiling and V.Yurko [9] obtained
some results about the non-selfadjoint second order differential operators on
half line with a discontinuity in an interior point.They established properties
of the spectrum and investigate the inverse problem of recovering the operator
from spectrum. E.B. Davies [8] has given a method to analyze the spec-
trum of non-selfadjoint differential operators emphasizing the differences from
the selfadjoint theory. A numerical method for determining the Titchmarsh–
Weyl m(λ) function for the singular L[y] equation on [a,∞), where a is finite
in [10] is presented and the computational techniques have been applied to
the problem of finding best constant in the Hardy-Littlewood inequality. in
[11] the authors have extended the pioneering work of Sims on second order
linear differential equations with a complex coefficient, they did generaliza-
tion of features not visible in the special case of Sims’s paper, an m function
constructed and the relationship between its properties and the spectrum of
underlying m-accretive differential operators analysed. it is known that the
spectral properties of Tα are closely correlated with the boundary properties
of the analytic function mα(λ) on the real axis. [1]

2 Preliminary results

Theorem 2.1 (Chaudhuri–Everitt) Let L[f ] be limit point case at in-
finity then:
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i) The complex number λ′ belongs to the resolvent set ρ(Tα) of Tα if and only
if mα(λ) is regular at λ′. The resolvent operator at such points for all f ∈ His
given by

Φ(x, λ′; f) = ψ(x, λ′)
∫ x

0
φ(t, λ′)f(t)dt+ φ(x, λ′)

∫ ∞

x
ψ(t, λ′)f(t)dt

ii) The complex number µ′ belongs to the point spectrum σp(Tα) of Tα if and
only if mα(λ) has a simple pole at µ′; in this case
φ(x, µ′), θ(x, µ′) + rφλ(x, µ

′) ∈ L2[0,∞) and the resolvent operator at such
points is given by

Φ(x, µ′; f) = θ(x, µ′)
∫ x

0
φ(t, µ′)f(t)dt+ rφ(x, µ′)

∫ x

0
φλ(t, µ

′)f(t)dt

+ φ(x, µ′)
∫ ∞

x
{θ(t, µ′) + rφλ(x, µ

′)}f(t)dt

for all f ∈ L2[0,∞) 	 {φ(x, µ′)}, where r is the residue of mα(λ) at µ′ and

φλ(x, µ
′) = ∂φ(x,λ)

∂λ
|λ=µ′ and {φ(x, µ′)} is the eigenspace at µ′

iii) The complex number µ′ belongs to the continuous spectrum σc(Tα) of Tα if
and only if mα(λ) is not regular at µ′ and limν→0 νmα(µ′ + iν) = 0.

We shall extend part i) of this theorem to the non-selfadjoint case, also part ii)
under certain conditions and by giving a counter example we show that part
iii) can not be extended.

3 Main results

We now consider the corresponding non-selfadjoint differential operator Tα

under the condition α ∈ C, p ≡ 1 and q = q1 + iq2 is a continuous function
such that limx→∞ q2(x) = L < ∞ on the interval [0,∞). In this case Tα is
defined by Tαf = τf for all f ∈ Dα, where
τf = −f ′′ + q(x)f and Dα is the set of all functions f in H satisfying the
following conditions
i) f and f ′ are locally absolutely continuous on the interval [0,∞).
ii) f(0) cosα+ f ′(0) sinα = 0.
If =λ = ν 6= L then there always exists an L2-solution ψ(x, λ) of the equation
(1)and a meromorphic function mα(λ) satisfying

ψ(x, λ) = θ(x, λ) +mα(λ)φ(x, λ) , (3)

where λ is a regular point of mα(λ) [2]. Let f and g be two functions for
which the expression

τf = −d
2f

dx2
+ q(x)f (4)
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makes sense. If [f, g](x) = W [f, ḡ](x), and if q(x) is real, then we have

τf ḡ − f τ̄g =
d

dx
(fḡ′ − f ′ḡ)(x) =

d

dx
[f, g](x) , (5)

which is called the Lagrange’s identity. Integrating both sides of (5) on the
finite interval [0, x] we obtain Green’s formula∫ x

0
(τf ḡ − fτg)dx = (fḡ′ − f ′ḡ)|x0 = [f, g]x0

However if the function q in the expression (4)is a complex valued function
then we have

τf ḡ − fτg =
d

dx
(fḡ′ − f ′ḡ)(x) + fḡ(q − q̄) =

d

dx
[f, g] + 2iq2fḡ (6)

Integrating both side of(6)on the finite interval [0, x], imply∫ x

0
(τf ḡ − fτg)dx = [f, g]x0 + 2i

∫ x

0
q2fḡdx

hence
[f, g](x) = 2i

∫ x

0
(ν − q2)fḡdx+ [f, g](0). (7)

Lemma 3.1 Let f ∈ L2[0,∞), and let ν 6= L. Suppose that λ is a regular
value of mα(λ) and define the function Φ(x, λ; f) on [0,∞) by

Φ(x, λ; f) = ψ(x, λ)
∫ x

0
φ(t, λ)f(t)dt+ φ(x, λ)

∫ ∞

x
ψ(t, λ)f(t)dt ,

where φ and ψ are solutions of the equation L[f ] = λf satisfying condition
ii) and (3) respectively for some α ∈ C. Then Φ ∈ L2[0,∞) and there exists
K > 0 such that ‖Φ‖ ≤ K‖f‖ for all f ∈ L2[0,∞).

Proof: First we note that Φ is well defined, since f and ψ are L2[0,∞) and
φ and f are square integrable on [0, x] for all x > 0. Let ν > L. Then there
exists a real number r > 0 so that

ν − q2(x) >
1

2
(ν − L) > 0 (8)

for all x ∈ [r,∞), so proceeding as in [5], §5, there are square integrable
solutions ψ0 and ψ1 and meromorphic functions m0 and m1 satisfying
ψ0(x, λ) = θ̃(x, λ)+m0(λ)φ̃(x, λ) , ψ1(x, λ) = θ̃(x, λ)+m1(λ)φ̃(x, λ), where
ψ0(x, λ) ∈ L2[0,∞) satisfies the boundary condition f(0) cosα + f ′(0) sinα =
0, and ψ1(x, λ) ∈ L2[r,∞). The fundamental set {θ̃, φ̃} is defined in the usual
way in terms of the boundary condition α̃ = 0 at x = r i.e. φ̃(r, λ) =
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0, θ̃(r, λ) = 1 , φ̃′(r, λ) = −1, θ̃′(r, λ) = 0. Hence, since we are in case I,
there are non-zero scalars k1(λ) and k2(λ) depending on λ such that

ψ0(x, λ
′) = k1(λ)φ(x, λ′) , ψ1(x, λ

′) = k2(λ)ψ(x, λ′).

Now define the function fb on the interval [0,∞) by

fb(x) =

{
f(x) if x ≤ b
0 if x > b

for some b > r, and let

Φb = Φ(x, λ; fb) =
1

W [ψ0, ψ1]

{
ψ1(x, λ)

∫ x

0
ψ0(t, λ)fb(t)dt

+ ψ0(x, λ)
∫ b

x
ψ1(t, λ)fb(t)dt

}
(9)

∫ b

0
Φ̄τΦ− ΦτΦ =

∫ b

0
Φ̄b(−Φb

′′ + qΦb)− Φb(−Φ̄b
′′ + q̄Φ̄b)

=
∫ b

0
(ΦbΦ̄b

′ − Φ̄bΦb
′)′ +

∫ b

0
2iq2|Φb|2

= W [Φb, Φ̄b]
b
0 + 2i

∫ b

0
q2|Φb|2. (10)

On the other hand Φb satisfies the non-homogenous differential equation τΦb−
λΦb = f on [0, b] so

∫ b

0
Φ̄bτΦb − ΦbτΦb =

∫ b

0
Φ̄b(λΦb + fb)− Φb(λ̄Φ̄b + f̄b)

=
∫ b

0
2iν|Φb|2 +

∫ b

0
2i=(Φ̄bf) (11)

By (10) and (11) we have

2i
∫ b

0
(ν − q2)|Φb|2 = W [Φb, Φ̄b]

b
0 − 2i

∫ b

0
=(Φ̄bf) (12)

However, from (10) we can write

W [Φb, Φ̄b](b) =
1

|W [ψ0, ψ1](b)|2
W [ψ1, ψ̄1](b)|

∫ b

0
ψ0(t, λ)fb(t)dt|2

W [Φb, Φ̄b](0) =
1

|W [ψ0, ψ1](0)|2
W [ψ0, ψ̄0](0)|

∫ b

0
ψ1(t, λ)fb(t)dt|2
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Also by (7) , W [ψ1, ψ̄1](r) = 2i=m1 and W [ψ0, ψ̄0](r) = 2i=m0,
we have

W [ψ1, ψ̄1](b) = 2i[
∫ b

r
(ν − q2)|ψ1|2dx+ =m1]

W [ψ0, ψ̄0](0) = 2i[
∫ r

0
(ν − q2)|ψ0|2dx−=m0]

Using these results in (12), we obtain
∫ b
0 (ν − q2)|Φb|2 =

1

|W 2[ψ0ψ1]|2
(|

∫ b

0
ψ0(t, λ)fb(t)dt|2[

∫ b

r
(ν − q2)|ψ1|2dt+ =m1]

+|
∫ b

0
ψ1(t, λ)fb(t)dt|2[

∫ r

0
(ν − q2)|ψ0|2dt−=m0]) +

∫ b

0
=(Φbf̄b)

Since from inequality (5) of [5] we have
∫ b
r (ν − q2)|ψ1|2 < −=m1

and
∫ r
0 (ν − q2)|ψ0|2 < =m0 thus by the Cauchy-Schwartz inequality

∫ b

0
(ν − q2)|Φb|2 ≤

∫ b

0
=(Φbf̄) ≤

∫ b

0
|Φbf̄ | ≤ (

∫ b

0
|Φb|2

∫ b

0
|f |2)

1
2 (13)

i.e. ∫ b

0
(ν − q2)|Φb|2 ≤ (

∫ b

0
|Φb|2

∫ b

0
|f |2)

1
2

or ∫ b

r
(ν − q2)|Φb|2 ≤ (

∫ b

0
|Φb|2

∫ b

0
|f |2)

1
2 −

∫ r

0
(ν − q2)|Φb|2

By the continuity of q(x) on [0, r], there exists a positive constant K ′ such that
|ν − q2| < K ′. Hence, using also (8) we have

1

2
(ν − L)

∫ b

r
|Φb|2 ≤ (

∫ b

0
|Φb|2

∫ b

0
|f |2)

1
2 +K ′(

∫ r

0
|Φb|2

∫ b

0
|Φb|2)

1
2

On the other hand since ν > L, we can write

1

2
(ν − L)

∫ r

0
|Φb|2 ≤

1

2
(ν − L)(

∫ r

0
|Φb|2)

1
2 (

∫ b

0
|Φb|2)

1
2

Hence, we may add the last two inequalities to obtain

(
∫ b

0
|Φb|2)

1
2 ≤ 2

ν − L
(
∫ b

0
|f |2)

1
2 + (

2K ′

ν − L
+ 1)(

∫ r

0
|Φb|2)

1
2

But from (9), there exists a constant K ′′ such that

(
∫ r

0
|Φb|2)

1
2 ≤ K ′′(

∫ r

0
|f |2)

1
2 ≤ K ′′(

∫ b

0
|f |2)

1
2
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since the functions ψ0(x, λ), ψ1(x, λ) and f(x) are in L2[0,∞), so using the
above inequality in the previous one gives

(
∫ b

0
|Φb|2)

1
2 ≤ K(

∫ b

0
|f |2)

1
2 , (14)

where K = (K′K′′+1)
ν−L

+K ′′ is not dependent on f. On the other hand

W [ψ1, ψ0](x) = k1(λ)k2(λ)W [ψ, φ](x) = k1(λ)k2(λ)

so we have

Φb =
1

k1(λ)k2(λ)
[k2(λ)ψ(x, λ)

∫ x

0
k1(λ)φ(t, λ)fb(t)dt+

k1(λ)φ(x, λ)
∫ b

x
k2(λ)ψ(t, λ)fb(t)dt]

or

Φb = Φ(x, λ; fb) = ψ(x, λ)
∫ x

0
φ(t, λ)fb(t)dt+ φ(x, λ)

∫ b

x
ψ(t, λ)fb(t)dt

Now let b → ∞. Then Φb → Φ and by Fatou’s theorem we conclude from
(142.12) that

∫∞
0 |Φ|2 ≤ K2

∫∞
0 |f |2 and ‖Φ‖ ≤ K‖f‖ as required. If

ν < L the proof is similar to the case ν > L.

Theorem 3.2 Consider the differential equation τf = λf generated by the
non-selfadjoint differential expression τ on [0,∞) and let λ′ be a complex pa-
rameter such that =λ′ 6= L. Then λ′ is in the resolvent set ρ(Tα) of Tα if and
only if the corresponding m-function, mα(λ), is regular at λ′ and the resolvent
operator Rλ′(Tα) is given by

Φ(x, λ′; f) = Rλ′(Tα)(f)(x) =
∫ ∞

0
G(x, t, λ′)f(t)dt , (15)

where

G(x, t, λ′) =

{
ψ(x, λ′)φ(t, λ′) if 0 ≤ t < x <∞
ψ(t, λ′)φ(x, λ′) if 0 ≤ x < t <∞

for all f ∈ L2[0,∞)

Proof: Suppose that λ′ = µ′ + iν ′ is a fixed point in ρ(Tα), where ν ′ > L.
Then there exists an L2-solution of the equation

τf = λ′f (16)

and the correspondingm-functionmα(λ) in the limit point case is meromorphic
in the region ν ′ > L by the theorem in [2]. If mα(λ) is regular at λ′ then
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the solution ψ(x, λ′) is square integrable, whereas if mα(λ) has a singularity (a
pole) at λ′ we can show the solution φ(x, λ′) is square integrable as follows.First
suppose α 6= 0 and let Θ and χ be two linearly independent solutions of (16)
satisfying

Θ(0, λ) = −1, Θ′(0, λ) = 0

χ(0, λ) = 0, χ′(0, λ) = 1

Then there exists a meromorphic function M(λ) such that

Ψ(x, λ′) = Θ(x, λ′) +M(λ′)χ(x, λ′)

is an L2-solution whenever λ′ is a point of regularity of M(λ). Also there is a
constant k(λ) such that for all λ, which are points of regularity of mα(λ) and
M(λ), with =λ > L,

Θ(x, λ) +M(λ)χ(x, λ) = k(λ)[θ(x, λ) +mα(λ)φ(x, λ)] (17)

because changing boundary conditions does not affect the existence of square
integrable solutions. Applying (17) and its derivative at x = 0 we obtain

Θ(0, λ) +M(λ)χ(0, λ) = k(λ)(θ(0, λ) +mα(λ)φ(0, λ))

Θ′(0, λ) +M(λ)χ′(0, λ) = k(λ)(θ′(0, λ) +mα(λ)φ′(0, λ))

which gives
−1 = k(λ)(mα(λ) sinα+ cosα)

M(λ) = k(λ)(−mα(λ) cosα+ sinα)

and hence the m-function satisfies

mα(λ) =
− sinα+M(λ) cosα

cosα+M(λ) sinα

It follows that mα(λ) has a pole at λ = λ′ iff cosα +M(λ) sinα has a zero at
λ = λ′ but when cosα+M(λ′) sinα = 0 we have

cosα(Θ(0, λ′) +M(λ′)χ(0, λ′)) + sinα(Θ′(0, λ′) +M(λ′)χ′(0, λ′) = 0

so the L2-solution Ψ(x, λ′) satisfies the boundary condition α at x = 0, and
hence φ(x, λ′) is a scalar multiple of Ψ(x, λ′). Therefore φ(x, λ′) ∈ L2[0,∞), so
that λ′ is an eigenvalue and λ′ ∈ σ(Tα) whenever mα(λ) has a pole at λ = λ′.
If α = 0 the argument is similar; however, it is now necessary to choose the
basis {Θ, χ} so that

χ(0, λ) cos 0 + χ′(0, λ) sin 0 6= 0
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i.e. so that χ(x, λ) does not satisfy the boundary condition α = 0 at x = 0.
Now suppose that mα(λ) is regular at λ′, where ν ′ > L. Since mα(λ) is mero-
morphic [2], λ′ is not a pole of mα(λ) and we will show that λ′ ∈ ρ(Tα).
To achieve this we first note that Φ is a bounded operator defined on H by
Lemma 2.1, so that Φ(x, λ; f) ∈ L2[0,∞) wherever f ∈ L2[0,∞). To complete
the proof that Φ(x, λ′; f) ∈ Dα the domain of Tα we can show that Φ satisfies
the boundary condition

Φ(0, λ′; f) cosα+ Φ′(0, λ′; f) sinα = 0 (18)

For since

Φ(0, λ′; f) = φ(0, λ′)
∫ ∞

0
ψ(t, λ′)f(t)dt = sinα

∫ ∞

0
ψ(t, λ′)f(t)dt

Φ′(0, λ′; f) = φ′(0, λ′)
∫ ∞

0
ψ(t, λ′)f(t)dt = − cosα

∫ ∞

0
ψ(t, λ′)f(t)dt

(18) follows immediately.
We also prove that Φ(x, λ′; · ) is the inverse operator for the operator Tα−λ′I.
Obviously we have

Φ(x, λ′; (Tα − λ′I)f) = Φ(x, λ′; (−f ′′ + qf − λ′f)) =

ψ(x, λ′)
∫ x

0
φ(t, λ′)(−f ′′+ qf − λ′f)dt+ φ(x, λ′)

∫ ∞

x
ψ(t, λ′)(−f ′′+ qf − λ′f)dt

Integrating by parts twice we obtain

Φ(x, λ′; (−f ′′ + qf − λ′f)) = ψ(x, λ′)
∫ x

0
(−φ′′ + qφ− λ′φ)f+

φ(x, λ′)
∫ ∞

x
(−ψ′′ + qψ − λ′ψ)f + ψ(x, λ′)[(−f ′φ+ fφ′)]x0+

φ(x, λ′)[(−f ′ψ + fψ′)]∞x

The last two terms are zero so

Φ(x, λ′; (Tα − λ′)f) = ψ(x, λ′)(f(x)φ′(x)− f ′(x)φ(x)

+ f(0)φ′(0)− f ′(0)φ(0)) + φ(x, λ′)

× (W∞[f, ψ]− f(x)ψ′(x) + f ′(x)ψ(x))

Since f ∈ Dα then W0[f, φ] = 0, so that

Φ(x, λ′; (Tα − λ′I)f) = f(x)Wx[ψ, φ] + φ(x, λ′)W∞[f, ψ] = f(x)



On the Spectrum of Non-selfadjoint 249

since we are in the limit point case and Dα = {f ∈ D : W∞[fψ] = 0} ( [5]
p.267). On the other hand

(Tα − λ′)Φ = −Φ′′(x, λ′; f) + (q − λ′)Φ(x, λ′; f)

= −ψ′′(x, λ′)
∫ x

0
φ(t, λ′)f(t)dt− φ′′(x, λ′)

∫ ∞

x
ψ(t, λ′)f(t)dt

+ f(x)Wx[φ, ψ] + (q − λ′)Φ(x, λ′; f)

= f(x) + [−ψ′′(x, λ′) + (q − λ′)ψ(x, λ′)]
∫ x

0
φ(t, λ′)f(t)dt

+ [−φ′′(x, λ′) + (q − λ′)φ(x, λ′)]
∫ ∞

x
ψ(t, λ′)f(t)dt

= f(x)

for all f ∈ L2[0,∞). Hence we can write for each λ with the property =λ > L

(Tα − λ)−1 = Φ( ·, λ; · )

The operator Φ( ·, λ; · ) therefore has all of the properties that make it
identically equal to the resolvent operator Rλ(Tα) for each λ with =λ > L,
and we conclude that λ′ ∈ ρ(Tα).
If =λ′ < L proof is the same as when =λ′ > L. The special case of =λ′ = L is
considered in the next theorem.

Theorem 3.3 Let ν ′ = L and λ′ ∈ ρ(Tα). Then mα(λ) is regular at λ′.

Proof: Let ν ′ = L and λ′ ∈ ρ(Tα), Since ρ(Tα) is an open set in the complex
plane, there is a disk Dδ(λ

′) around λ′ such that Dδ(λ
′) ⊆ ρ(Tα). Therefore,

noting that there is no loss of generality if we take L 6= 1, by [3] Corollary
4.6.1 we have

mα(λ)−mα(i) = (λ− i)
∫ ∞

0
ψ(x, λ)ψ(x, i)dx (19)

for λ ∈ Dδ,=λ 6= L. From the properties of Φ as a function we see that

(τ − λ)(i− λ)Φ(x, λ;ψ(t, i)) = (i− λ)ψ(x, i)

and since

(τ − λ)ψ(x, i) = (i− λ)ψ(x, i)

it follows that (i− λ)Φ(x, λ;ψ(t, i)) and ψ(x, i) are solutions of the
non-homogeneous equation (τ − λ)f = (i − λ)ψ(x, i), so their difference is a
solution of the homogeneous equation τf = λf. Hence

(i− λ)Φ(x, λ;ψ(t, i))− ψ(x, i) = c1φ(x, λ) + c2ψ(x, λ) , (20)
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where c1 and c2 are constants, which can be determined, since if we set x = 0
in (12) and its derivative, and use (11), we obtain c1 = 0 and c2 = −1. We
have therefore

ψ(x, λ) = ψ(x, i) + (λ− i)Φ(x, λ;ψ(t, i))

Also we can use Theorem 3.1 and write Φ(x, λ;ψ(t, i)) = Rλ(Tα)ψ(t, i)(x) for
λ ∈ Dδ, =λ 6= L Then substituting for ψ(x, λ) in (7) gives

mα(λ) = mα(i) + (λ− i)
∫ ∞

0
ψ(x, i)2dx+ (λ− i)2(Rλ(Tα)ψ(t, i)(x), ψ̄(x, i))

But this equation implies, since the function λ 7−→ (g,Rλ(Tα)f) is an analytic
function from ρ(Tα) to C for given fixed functions f and g in H [6] p.101.,
that mα(λ) is analytic in the neighborhood Dδ of λ′, so that by analytic con-
tinuation mα is regular on the resolvent set at λ′. We believe that the converse
of Theorem 3.2 is also true, but have not been able to prove this. However,
the following result provides a partial converse. Then with slightly modifica-
tion of the above proofs all the above results are valid under the new conditions.

Example 3.4 Consider the simplest case of a boundary value problem

−y′′ + q(x)y = λy

y(0) cosα+ y′(0) sinα = 0 ,

where q(x) = 0, ∀x ∈ [0,∞), and a fundamental set of solutions {φ, θ} satis-
fying the boundary conditions

φ(0, λ) = sinα, φ′(0, λ) = − cosα

θ(0, λ) = cosα, θ′(0, λ) = sinα ,

where α ∈ C. Then

θ(x, λ) = cosα cos(x
√
λ) + λ−

1
2 sinα sin(x

√
λ)

φ(x, λ) = sinα cos(x
√
λ) +−λ−

1
2 cosα sin(x

√
λ)

and we obtain the m-function mα(λ) explicitly as

mα(λ) =
sinα− i

√
λ cosα

cosα+ i
√
λ sinα

,

where =
√
λ > 0. We now show that m is regular on the whole complex plane

except on the set {λ : =λ = 0, <λ > 0} and at poles of the m-function, which
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satisfy the equation i cotα =
√
λ. To show that this is true, note that m0(λ) =

−i
√
λ is the m-function for the selfadjoint problem with q(x) = 0, α = 0, and

is analytic on

S = C\{λ : =λ = 0,<λ ≥ 0}

It then follows from the expression for mα(λ) that for α ∈ C\{0}, mα(λ) is
regular on S, apart from isolated poles at the zeros of cosα + i

√
λ sinα. Let

α = α1 + iα2. Using complex trigonometry we have

λ = − cot2 α =
sin 2α1 − i sinh 2α2

2| sinα|2
,

where α2 6= 0 and the condition =
√
λ > 0 is equivalent to

nπ < α1 < (n+
1

2
)π, n ∈ Z.

Taking α1 = 0, α2 = 1 then m-function is

m(λ) =
i sinh 1− i

√
λ cosh 1

cosh 1−
√
λ sinh 1

or

m(λ) = i
1−

√
λ coth 1

coth 1−
√
λ

Note that the only pole of m(λ) is at λ = λ0 = coth2 1, so that m(λ) is regular
on S. To investigate whether Theorem 1.1(i) remains true in general in the
non-selfadjoint case, we consider the behavior of νm(µ′ + iν) as ν → 0 for
µ′ = λ0. We have:

lim
ν→0

νm(µ′ + iν) = lim
ν→0

ν[1−
√
λ0 + iν coth 1]

coth 1−
√
λ0 + iν

Using l’Hôpital rule we have

lim
ν→0

νm(µ′ + iν) = lim
ν→0

2i(1− coth2 1− iν coth 1) coth 1

= 2i(1− coth2 1) coth 1 6= 0

Since there is no L2[0,∞) solution of the equation −y′′ = λy for any λ ≥ 0, S
lies in the essential spectrum and λ0 is not an eigenvalue. Hence λ0 is a point
of the continuous spectrum, but Theorem 2.1(i) is not satisfied for µ′ = λ0.
This shows that Theorem 2.1(i) is not generally true in the non-selfadjoint
case.
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