
Int. J. Open Problems Compt. Math., Vol. 1, No. 3, December 2008

Ant Algorithm for Grid Scheduling Powered

 by Local Search
Kousalya.K and Balasubramanie.P

Department of Computer Science and Engineering , Kongu Engineering
College, Tamilnadu,India,

E-mail: keerthi.kous@gmail.com, pbalu_20032001@yahoo.co.in

Abstract

 Grid computing is a form of distributed computing that
coordinates and shows computing power, applications, data storage
and network resources across dynamic and geographically dispersed
organizations. Resource management and application scheduling
are the two major problems in grid computing. The resources are
heterogeneous in terms of architecture, power, configuration and
availability. This complicates the task scheduling problem. The
major objective of grid scheduling is to reduce the makespan. Hence
the scheduling must consider some specific characteristics of the job
and decide the metrics to be used accordingly. Ant algorithm, which
is one of the heuristic algorithm suits well for the grid scheduling
environment. This paper proposes an modified ant algorithm for
Grid scheduling problem that is combined with local search. The
proposed ant algorithm takes into consideration the free time of the
resources and the execution time of the jobs to achieve better
resource utilization and better scheduling. In the evaluation study, a
number of intensive experiments are conducted using the standard
bench mark problem. The result shows that the proposed ant
algorithm is capable of producing high quality scheduling of jobs to
grid resources. Thus the algorithm can be used to design efficient
dynamic schedulers for real time grid environments.

 Keywords: computational grid, scheduling algorithm, Heuristic approach, Ant
algorithm, simulation

1 Introduction

The computational scientist has started to adapt to the grid computing techniques
for the past seven years. This has increased the computing power and capability of
inter-organization, national and international grid computing infrastructures such

223 Ant Algorithm for Grid Scheduling Powered by Local Search

as the e-minerals grid in the U.K, the tera grid in the U.S and the Guhas EGEE
[1]. The main aim of grid computing is to integrate clusters into global
infrastructures. The grid users need not be aware of the computational resources
that are used for executing their jobs and storing their data [1].

 Grid computing is emerging as the next generation of parallely distributed
computing platform for solving large scale computational and data intensive
problems in science, engineering and commerce [4]. It enables the sharing,
selection and aggregation of a wide variety of geographically distributed resources
including supercomputers, databases, data sources and specialized devices owned
by different organizations. Authentication and authorization, secure and reliable
file transfer, distributed storage management and resource scheduling across
organizational boundaries are the list of problems need to be solved in grid
computing area. The Grid users need not be aware of the computational resources
that are used for executing their applications and storing their data. The resource
allocation to a large number of jobs is hard and much more difficult than the LAN
computational environments [2]. The load balancing of the available resources in
the computational grid is another important factor. However, different
applications have different characteristics, and their demands on the resources
may differ greatly. Efficient and application adaptive resource management and
scheduling are technical challenges in the Grid.

Grid computing is now being used in many applications that are beyond
distribution and sharing of resources. The distributed resources are useful only if
the Grid resources are scheduled. Using optimal schedulers results in high
performance grid computing, where as poor schedulers produce contrast results.
Now, the grid scheduling is a big topic in grid environment for new algorithm
model. The scheduling in Grid environment has to satisfy a number of constraints
on different problems.

The existing approaches for scheduling in grid applications uses queuing systems
or adhoc schedulers that use specific knowledge of the underlying grid
infrastructure to achieve an efficient resource allocation. However, there
approaches cannot deal with the complexity of the problem due to dynamic nature
of the grid. In fact, job scheduling in computational grids is multi objective in its
general formulation and therefore optimization approaches that could tackle many
conflicting objectives are imperative.

A grid scheduler, often called resource broker, acts as an interface between the
user and distributed resources. It hides the complexities of the computational grid
from the user. The scheduler does not have full control over the grid and it cannot
assume that it has a global view of the grid. The single most challenging issue of
the grid scheduler encounters is the dynamicity of resources. Although a resource
may be participating in a grid, its main purpose is used by local users of the
organization that it belongs to. Therefore, the load on the resource imposes a great
strain on grid scheduling.

Kousalya.K and Balasubramanie.P 224

The grid scheduling consists of three stages [5]. Resource discovery and filtering
in the first phase, the resource selection and scheduling according to the certain
objective is the second phase and the job submission is the third phase. The third
stage includes the file staging and cleanup. High performance computing and high
throughput computing are the two different goals of grid scheduling algorithm.
The main aim of the high performance computing is to minimize the execution
time of the application. To increase the processing capacity of systems over a long
period of time is the aim of the high throughput computing. The proposed
approach is the high throughput computing.

Grid scheduling is a NP-Complete problem. Heuristic optimization techniques are
the best approach to solve NP-complete problem. The four basic heuristic
methods for grid scheduling are namely Genetic Algorithm (GA) [7], Simulated
Annealing (SA) [10], Ant Colony Optimization (ACO) and Tabu search (TS) [6].
The main focus of this paper is to develop a high throughput scheduling algorithm
based on ACO. This technique does the repeat sampling experiments on the
model of the system. It uses the stochastic component in the state sampling and/or
transition rules. The statistical knowledge about the problem and the estimate of
the variables are updated using the above experimental results. The variances in
the estimation of the described variables are reduced using the above knowledge
repeatedly. In ACO algorithms, the ants try to build the feasible solution to apply
the stochastic decision policy repeatedly. This paper implements a modified ant
algorithm which results in minimum makespan and maximum resource utilization
for the grid scheduling problems. The paper is further organized as follows. In
section 2, the related works are discussed. Section 3 contains the problem
description. Section 4 contains the result of the proposed method and the
advantages of the proposed method, while Section 5 concludes with future
direction.

This document can be used as a template for Microsoft Word versions 6.0 or later.
You may open this document then type over sections of the document or cut and
paste to other document and then use adequate styles. The style will adjust your
fonts and line spacing. Please set the template for A4 paper (21 x 29.7 cm). For
emphasizing please use italics and do not use underline or bold. Please do not
change the font sizes or line spacing to squeeze more text into a limited number of
pages.

2 Literature Review

This section reviews a set of heuristic algorithms which has been designed to
schedule the meta-tasks in the computational grids. The collection of independent
tasks with no data dependencies is called as meta-task. Meta-tasks are mapped on
to the available machines statically; each machine in the computational grid
executes a single task at a time. For this mapping, it is assumed that the number of
machines, ‘m’ and the number of tasks‘t’, are known a priori. A large number of

225 Ant Algorithm for Grid Scheduling Powered by Local Search

heuristic algorithms have been designed to schedule tasks to machines on grid
computing systems. The eleven commonly used algorithms are listed as follows.

Opportunistic Load Balancing’ (OLB) is one of the easiest techniques. For each
job, it finds out the next available machine and simply schedules that job to that
machine. The machine selection is in an arbitrary manner. In this algorithm, the
expected execution time is not taken into the account, so it produces the poor
result [5]. But it uses the resources in the balanced way.

The next simplest schedule is User Directed Assignment (UDA). It schedules each
job on the resource, which resource will have the best expected execution time for
that task. The load will not be balanced across all the available resources. If all
jobs will be best expected execution time in one resource than the other resources
(consistent) then all the jobs are allocated to that machine only [5]. The next
effective approach is to assign each job, in arbitrary order, to the resource on
which it is expected to finish earliest. The algorithm calculates the current job’s
completion time against the list of available machines. This approach is Fast
Greedy method. The benefits of OLB and UDA are combined and form the
approach Fast greedy [5].

One of the best and simple heuristics method is called Min-min. In this method,
compute the minimum completion time of each task with respect to all machines.
The task with the overall minimum completion time is selected and assigned to
the corresponding node. The currently assigned job is removed from the
unscheduled task list and the above process is repeated until all the tasks are
scheduled. Here, all jobs have a good chance to select a suitable resource. So this
method automatically minimizes the makespan and balances the load to an extent.
It is more complex than the UDA. But it produces better solution when compared
to UDA [6]. Another heuristics approach is Max-min. Like Min-min, Max-min
also calculates the minimum completion time of each job. It selects a job with the
overall maximum of minimum completion time [6].

The Genetic Algorithm (GA) is one of the best methods to search the large
solution space. This method operates on a population of chromosomes for a given
problem. First it generates the initial population randomly. The initial population
may be generated by any other heuristic algorithm; if the population is generated
by Min-Min then it is called “seeding” the population with Min-Min [11].
Simulation Annealing (SA) is an iterative technique. It finds out only one possible
solution at a time for each Meta task. This method probabilistically allows
solution to obtain a better search of the solution space based on a system
temperature [10]. The Genetic simulated annealing (GSA) is a combination of
genetic algorithm and simulated annealing techniques [12]. Tabu search is also a
solution space search. It keeps track of the regions which have already been
searched. The new search need not repeat a search near this area[6].

A* is a tree search. Initially, the root node has null solutions.. When the tree
grows, the intermediate nodes have a partial solution and the leaf nodes have final

Kousalya.K and Balasubramanie.P 226

solutions. Each and every node has its own cost function. The node with
minimum cost function is replaced by its children. When a new node is added into
the tree, the tree is pruned by deleting the node with the highest cost function. The
above process is repeated until a leaf node is reached [13].

2.1 Comparison of above stated algorithms

The algorithms, OLB, UDA, Max-min, SA, GAS and Tabu, do not produce good
results [6]. The remaining algorithm Min-min and A* produce good results of
makespan. The makespan of the above mentioned algorithm difference is within
10%. GA is little better than Min-min. The A* produces best and worst results as
compared with GA and Min-min in a different situations. Min-min algorithm is
faster than GA and A*. Min-min also has some pitfalls. In the Min-min method,
too many jobs are assigned to a single grid node and this will lead to system
overloading and the response time of the job is not assured. This is the main
disadvantage of Min-min method. Load balancing is not considered in the OLB
method.

In this paper [8], the scheduler is available in all the resources. The scheduler
looks for the best job to be executed in the resource. Here the jobs travel from one
location to another to identify the correct resource which it requires. So the traffic
in the grid system will be automatically increased. In this paper [9]
communication cost is considered to be an important factor.

The grid scheduling problem is a complex one. So, lots of researchers do their
research in this area. The main aim of the researches is to find out the optimal
solution and to improve the overall system performance. Min-Min, Max-min, fast
greedy, tabu search and ant system are some of the heuristic algorithms which
create a static environment. Here, they must know the execution time and the
workload in advance. In this paper [9], grid simulation architecture using ACO is
proposed. The response time and average utilization of resources are used as the
evaluation index. In the paper [14], they could improve the performance like job
finishing ratio using the ACO algorithm.

2.2 Ant Algorithm

Dorigo M. introduced the Ant algorithm in 1996, which is new heuristics,
predictive scheduling algorithm. It is based on the real ants. When an ant looks for
food, ant deposits some amount of pheromone on the path, thus making, it is
followed by a trail of this substance. If an ant tries to move from one place to
another then it encounters a previously laid trail. The ant can detect the
pheromone trail and decide with high probability to follow it. This ant also
reinforces the trail with its own pheromone. When more ants are following the
trail, then the pheromone on shorter path will be increased quickly. The quantity
of pheromone on every path will affect the possibility of other ants to select path.
At last all the ants will choose the shortest path. In paper [9], the experiment

227 Ant Algorithm for Grid Scheduling Powered by Local Search

results show that ant algorithm has produced an optimum solution. The ACO
algorithm has been used to solve many NP problems, such as TSP, assignment
problem, job-shop scheduling and graph coloring successfully. So the ant
algorithm is suitable to be used in Grid computing task scheduling. In the grid
environment, the algorithm can carry out a new task scheduling by experience,
depending on the result in the previous task scheduling. In the grid computing
environment, this type of scheduling is very much helpful. So ant algorithm for
task scheduling in Grid Computing, is proposed in this paper.

2.3 Local Search

The heuristic algorithms can often be improved by combining the local search
techniques to take the solution to its local optimum in the search space [3]. The
local search technique is to define the neighborhood of a solution. In general a
solution will have one or more ‘problem’ resources (those with schedule lengths
equal to the makespan of the whole solution). Try to reduce the ‘problem’
resource makespan as this will immediately reduce the overall makespan of the
solution. The neighborhood is a solution of single transfer of a job from the
problem resource to any other resources. The local search technique analysis, the
neighborhood and the transfer which reduces the maximum schedule length of the
two resources is involved the most. The above process is repeated until no further
improvement is possible

3 Problem Description

In this study, the grid is composed of number of hosts. Each host has several
computational resources. The resources may be homogeneous or heterogeneous.
The grid scheduler finds out the better resource of a particular job and submits
that job to the selected host. The grid scheduler does not have control over the
resources and also on the submitted jobs. Any machine in grid can execute any
job, but the execution time differs. The resources are dynamic in nature. As
compared with the expected execution time, the actual time may be varied at the
time of running the jobs to the allocated resource.

The grid scheduler’s aim is to allocate the jobs to the available nodes. The best
match must be found from the list of available jobs to the list of available
resources. The selection is based on the prediction of the computing power of the
resource. So, lots of problems are needed to be solved in this area. The grid
scheduler must allocate the jobs to the resources efficiently. The efficiency
depends upon two criteria; one is makespan and the other is flow time. These two
criteria are very much important in the grid system. The makespan measures the
throughput of the system and flow time measures its QoS. The following
assumptions are made before discussing the algorithm. The collection of
independent tasks with no data dependencies is called as a meta-task. Each

Kousalya.K and Balasubramanie.P 228

machine executes a single task at a time. The meta-task size is one and the
numbers of machines are ‘m’.

The ant based algorithm is evaluated using the simulated execution times for a
grid environment. Before starting the grid scheduling, the expected execution
time for each task on each machine must be estimated and represented by an ET
matrix. Each row of ET matrix consists of the estimated execution time for a job
on each resource and every column of the ET matrix is the estimated execution
time for a particular resource of list of all jobs in the job pool. ETij is the expected
execution time of task ti and the machine mj. The time to move the executables
and data associates with the task ti includes the expected execution matrix ETij.
For this algorithm, it is assumed that there are no inter-task communications, each
task can execute on each machine, and the estimated expected execution times of
each task on each machine is known.

The ET matrix will have N x M entries, where N is the number of independent
jobs to be scheduled and M is the number of resources which is currently
available. Each job’s workload is measured by million of instructions and the
capacity of each resource is measured by MIPS.

 Definition 3.1 The Ready time (Ready m) indicates the time resource ‘m’ would
have finished the previously assigned jobs. The completion time of ith job on the jth
machine is

Max(CTij) is the makespan of the complete schedule. Makespan is used to
measure the throughput of the grid system. In general the existing heuristic
mapping can be divided into two categories. One is on line mode and the other
one is batch mode. In the on line mode, the scheduler is always in ready mode.
Whenever a new job arrives to the scheduler, it is immediately allocated to one of
the existing resources required by that job. Each job is considered only once for
matching and scheduling.

In the batch mode, the jobs and resources are collected and mapped at
prescheduled time. In this mode, it takes better decision because the scheduler
knows details of the available jobs and resources. The proposed algorithm is also
a heuristic algorithm for batch mode.

The result of the algorithm will have four values (task, machine, starting time,
expected completion time). The number of jobs available for scheduling is always
greater than the available number of machines in the grid. The machine Mj’s free
time will be known using the function free(j).

Definition 3.2 The starting time of job ti on resource Mj is

Then the new value of free(j) is the starting time plus ETij.

 CTij = Readyj+ETij

Bj = free(j) + 1

229 Ant Algorithm for Grid Scheduling Powered by Local Search

=
1-ρ

Fk

∆τij

Pij =

Σ τij . η ij

 τij . η ij

Definition 3.3 A minimization function F and the heuristic information ηi is used
to find out the best resource

Using the definition 3.3 the highest priority machine is found which is free earlier.
Here three to four ants are used. Each ant starts from random resource and task
(they select ETij randomly jth resource and ith job). All the ants maintain a separate
list. Whenever they select next task and resource, they are added into the list. At
each iteration the ants calculate the minimized function ‘Fk (kth ant)’ and the
pheromone level of the elements of the solutions is changed by applying
following updating rule

Definition 3.4 The pheromone level update (τ ij) is

where,

The rule 0 < ρ < 1 models evaporation and ∆τij is an additional pheromone and it
is different for different ACO algorithms. In this algorithm two set of tasks are
maintained. One is set of scheduled tasks and the other is set of arrived and
unscheduled tasks. The algorithm starts automatically, whenever the set of
scheduled jobs become empty.
 According to the paper [5], the first task to be performed and the machine in
which it is performed is chosen randomly. Next, the task to be run and the
machine in which it is to be run is computed by the definition 3.5

Definition 3.5 To select the next, the task to be run and the machine in which it is
to be run is computed by

where

ηij is the attractiveness of the move as computed by some heuristic information
indicating a prior desirability of that move.

τij is the pheromone trail level of the move, indicating how profitable it has been
in the past to make that particular move(it represents therefore a posterior
indication of the desirability of that move).

ηi =
1

free(j)

τ ij = ρ τ ij + ∆τij

F = max(free(j))

Kousalya.K and Balasubramanie.P 230

Pij =

Σ τij η ij (1/ETij)

 τij .η ij(1/ETij)

Pij =
Σ τij . η ij (1/CTij)

 τij . η ij (1/CTij)

Pij is the probability to move from a state i to a state j is depending on the
combination of above two values

The above definition 3.5 has the disadvantage, that all the columns in the
probability matrix have the same probability value. This decides the best resource,
but the task is chosen to be the first non zero value of the column. In paper [5],
they use one ant. To overcome this disadvantage a new algorithm is proposed. In
this method, the probability matrix (Pij) is modified and several ants are used. The
number of ants used is less than or equal to the number of tasks. From all the
possible scheduling lists find the one having minimum makespan and uses the
corresponding scheduling list.

Here two kinds of ET matrices are formed, first one consists of currently
scheduled jobs and the next consists of jobs which have arrived but not scheduled.
The scheduling algorithm is executed periodically. At the time of execution, it
finds out the list of available resources (processors) in the grid environment, form
the ET matrix and start scheduling. When all the scheduled jobs are dispatched to
the corresponding resources, the scheduler starts scheduling over the unscheduled
task matrix ET. This is guaranteed that the machines will be fully loaded at
maximum time.

3.1 Scheduling Algorithm

In paper [15,16],

Definition 3.6 The Pij ‘s value has been modified to include the ETij in the
paper [15,16]

The inclusion of ETij execution time of the ith job by the jth machine(predicted) in
the calculation of probability, that the jth machine will be free, has shown a
positive result in performance improvement. This improvement is in terms of the
decrease in makespan time. The result produced by the algorithm is little better
than the algorithm in the paper [5]. The paper [15,16] used the same formula (8)
but the only difference was, in paper [16], they used the simulation bench mark
problem as the data. Further more, instead of adding ETij, execution time of the
ith job by the jth machine (predicted), in the calculation of probability, adding CTij,
like formula (8) still produces better results.

Definition 3.7 The Pij ‘s value has been modified to include the CTij

where

 CTij = free[j] + ETij

231 Ant Algorithm for Grid Scheduling Powered by Local Search

 T ij . η ij (1/CTij)

The proposed algorithm starts only if the unscheduled tasks (n) set does not
empty. The initialization part of the algorithm is as follows. The algorithm
collects the details about available resources (m) from the Resource Information
center. Next it finds out the value of expected execution matrix ETnxm. The initial
value of pheromone evaporation value ρ is 0.05. The Pheromone deposit is (τ0)
initial value is 0.01. The number of ants(k) used in the proposed algorithm is 2.
The variable free is a one dimensional matrix of size m and the value is zero
because the proposed algorithm assumed that all the resources are available only
for the gird scheduling.

After the initialization, the proposed algorithm runs as follows.

For each Ant do
 Randomly select Taski and resourcej
 Add (Taski , resourcej , free[j], free[j]+ETij) to the output list.
 Remove the Taski from the unscheduled list to scheduled list
 For each Taski in the unscheduled list do
 Calculate the heuristic information (ηij)
 Find out the current pheromone trail value (τij)
 Update the pheromone trail matrix where,
 τij = ρ T ij + ∆τij
 Calculate the Probability matrix where,

Find out the highest value of Pij and add (Taski , resourcej , free[j],

free[j]+ETij) to the output list.
 Remove the Taski from the unscheduled list
 Modify the resource free time
 free[j] = free[j] + ETij
 done
 Find out the best feasible solution by analyzing of all the ants scheduling list
done

The output of the above algorithm 1 is passed to the Algorithm 2. The Algorithm
2 uses the local search technique and reduces the over all makespan further.

 S = current solution
s = NULL
 Repeat until s <> S
 Find out the problem resource’s and problem resource’s problem job

Pij =
Σ T ij . η ij (1/CTij)

Algorithm 2 Algorithmic frame for a local search algorithm

Algorithm 1 Algorithmic frame for a Ant Algorithm

Kousalya.K and Balasubramanie.P 232

 Create neighbor of S (s) to transfer the problem job to some other resource
 If s is better quality than S then
 S = s
End repeat
The output is in S

Table 1. Makespan values for benchmark [4] (in arbitrary time units)
 Max-Min Min-Min AWOEC AE AE+LS AC AC+LS

u-c-hihi 12385672.00 8460675.5
0 26886302.05 13329540.99 9024099.15 11970785.32 8656648.16

u-c-hilo 204054.59
164022.44 198633.09 103470.66 88226.95 107360.95 84491.79

u-c-lohi 392566.69
275837.34 715846.45 362400.30 295571.47 353956.54 281904.20

u-c-lolo 6945.36
5546.26 5563.69 2786.58 3348.26 3698.49 2798.02

u-i-hihi 8018378.10 3513919.2
5 25597881.49 3748883.61 3731727.82 3549854.64 3535831.94

u-i-hilo 151923.83
80755.68 254829.33 37657.48 37488.95 35639.59 35490.82

u-i-lohi 251528.85
120517.17 846602.99 122833.39 122027.96 117714.01 117244.76

u-i-lolo 5177.70
2779.09 8492.14 1251.86 1250.01 1177.98 1172.98

u-s-hihi 9208811.50 5160343.0
0 27063804.32 7941120.75 5331396.36 7678387.39 5306503.15

u-s-hilo 172822.70 104540.73 220030.62 60377.62 52668.41 60107.27 50765.09
u-s-lohi 282085.73 140284.48 768171.59 168550.24 214605.62 209563.92 172168.15

u-s-lolo 6232.24
3867.49 7101.91 1967.03 1742.51 1893.95 1714.36

4 Experimental Results

Here the results are compared with the Max-Min[17], Min-Min, existing Ant
algorithm [5] without execution time and completion time(AWOEC), the ant
algorithm with execution time(AE)[15,16] the ant algorithm with completion
time (AC) the proposed ant algorithm AE with local search (AE+LS) and the ant
algorithm AC with local search. To simulate the various heterogeneous problems,
different types of ET matrix using benchmark simulation model [6] are defined.

The ET matrix considers three factors: task heterogeneity, machine heterogeneity
and consistency. The task heterogeneity depends upon the various execution times
of the jobs. The two possible values are defined high and low. Similarly the

233 Ant Algorithm for Grid Scheduling Powered by Local Search

machine heterogeneity depends on the running time of a particular job across all
the processors and again has two values: high and low. In the real scheduling,
three different ET consistencies are possible. They are consistent, inconsistent,
and semi consistent.

The instances of bench mark problems are classified into twelve different types of
ET matrices. Each consists of 100 instances. The instances depend upon the above
three factors as task heterogeneity, machine heterogeneity and consistency.
Instances are labeled as u_x_yyzz.k where

u - is a uniform distribution, used to generate the matrix.
x – is a type of consistency
 c- consistent
 s-semi consistent
 i-inconsistent

An ET matrix is said to be consistent if a resource Ri execute a task Ti faster than
the resource Rk, and Ri executes all other jobs faster than Rk. An ET matrix is
said to be in-consistent if a resource Ri executes some jobs faster than Rj and
some slower. A semi consistent ETC matrix is an inconsistent matrix which has a
sub matrix of a predefined size.

yy- is used to indicate the heterogeneity of the jobs(hi – high, lo-low)
zz-is used to indicate the heterogeneity of the resources (hi-high, lo-low)

All the instances consist of 512 jobs and 16 machines. For each method the
makespan is computed. It allows a fair comparison of the presented methods.

5 Performance Evaluation

The computation results of makespan obtained from the Max-Min, Min-Min,
AWOEC, AE, AC, AE+LS and AC+LS, is given in table 1. The stacked area
chart of the makespan value is shown in Fig 1.

Figure 1. Graphical representation of makespan values
(arbitrary time units)

Kousalya.K and Balasubramanie.P 234

0%

20%

40%

60%

80%

100%

u-c-
hihi

u-c-
hilo

u-c-
lohi

u-c-
lolo

u-i-
hihi

u-i-
hilo

u-i-
lohi

u-i-
lolo

u-s-
hihi

u-s-
hilo

u-s-
lohi

u-s-
lolo

Instances

Pe
rc

en
ta

ge

Max-Min Min-Min AWOEC AE AE+LS AC AC+LS

The Min-min, Max-min, AWOEC, AE, AE+LS, AC, AC+LS values are stacked
one on the top of the other to sum up to 100%. This above Figure shows the
relative size of each algorithm representing its contribution to the total. Max-Min
and AWOEC’s makespan values are higher than the other algorithms.

Table 1 show that AE, AE+LS, AC, AC+LS produce better results for High Task
Low Machine and Low Task High Machine instances. The proposed algorithms
AE+LS and AC+LS yield better results for seven out of 12 and eight out of 12
considered instances. As compared with AE and AE+LS, the AE+LS reduces the
makespan further. Like this Comparing AC with AC+LS, AC+LS also reduces the
makespan further

Table 2. Percentage of makespan values by AE, AE+LS, AC
and AC+LS in comparison with AWEOC (values in %)

 AE AE+LS AC AC+LS
u-c-hihi -57.55 -6.66 -41.49 -2.32
u-c-hilo 36.92 46.21 34.54 48.49
u-c-lohi -31.38 -7.15 -28.32 -2.20
u-c-lolo 49.76 39.63 33.32 49.55
u-i-hihi -6.69 -6.20 -1.02 -0.62
u-i-hilo 53.37 53.58 55.87 56.05
u-i-lohi -1.92 -1.25 2.33 2.72
u-i-lolo 54.95 55.02 57.61 57.79
u-s-hihi -53.89 -3.31 -48.80 -2.83
u-s-hilo 42.24 49.62 42.50 51.44
u-s-lohi -20.15 -52.98 -49.38 -22.73
u-s-lolo 49.14 54.94 51.03 55.67

235 Ant Algorithm for Grid Scheduling Powered by Local Search

The percentage of the makespan values by the AE, AC, AE+LS and AC+LS
algorithms when compared to Min-Min is listed in the Table 2. Fig. 2 shows that
the AE, AE+LS, AC and AC+LS algorithms do better performance than the Min-
Min algorithm for many of the instances.

Figure 2. Graphical representation of makespan values (%) by AE,
AE+LS, AC and AC+LS in comparison with AWEOC (values in %)

-60

-40

-20

0

20

40

60
u-

c-
hi

hi

u-
c-

hi
lo

u-
c-

lo
hi

u-
c-

lo
lo

u-
i-h

ih
i

u-
i-h

ilo

u-
i-l

oh
i

u-
i-l

ol
o

u-
s-

hi
hi

u-
s-

hi
lo

u-
s-

lo
hi

u-
s-

lo
lo

pe
rc

en
ta

ge
 o

f M
ak

es
pa

n

AE AE+LS AC AC+LS

Fig. 3, Fig. 4, Fig. 5, Fig. 6 shows the comparison of Min-min, Max-min,
AWOEC, AE, AE + LS, AC and AC+LS algorithms in High Task High Machine,
Low Task High Machine, High Task Low Machine, and Low Task Low Machine
respectively. The hardware/software configuration used is irrelevant because the
execution times are given in their time complexity.

Figure 3. Graphical representation of makespan values of
High Task High Machine

0

5000000

10000000

15000000

20000000

25000000

30000000

M
a
k
e
s
p
a
n

u-c-hihi u-i-hihi u-s-hihi

Max-Min Min-Min AWOEC AE AE+LS AC AC+LS

Kousalya.K and Balasubramanie.P 236

As can be seen from Fig. 3, Fig. 4, Fig. 5, Fig. 6 AE, AE+LS, AC and AC+LS
obtain the best makespan values as compared to AWOEC. AE, AE+LS, AC and
AC+LS are appropriate for consistent, inconsistent and semi-consistent matrices.

Figure 4. Graphical representation of makespan values of
High Task Low Machine

0

50000

100000

150000

200000

250000

300000

M
a
k
e
s
p
a
n

u-c-hilo u-i-hilo u-s-hilo

Max-Min Min-Min AWOEC AE AE+LS AC AC+LS

As shown in Fig. 4 and 6, AE, AE+LS, AC and AC+LS show good results of
makespan than the Min-Min method. Therefore the AE, AE+LS, AC and AC+LS
yields better results for High Task Low Machine and Low Task Low Machine.

AC and AC+LS produced the best result for inconsistent matrix. AE yielded
better result for low task high machine. The percentage of makespan value by the
AE, AE+LS, AC, AC+LS algorithms when compared to Min-min decreases for
seven out of twelve considered instances approximately.

Figure 5. Graphical representation of makespan values
of Low Task High Machine

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

M
a
k
e
s
p
a
n

u-c-lohi u-i-lohi u-s-lohi

Max-Min Min-Min AWOEC AE AE+LS AC AC+LS

237 Ant Algorithm for Grid Scheduling Powered by Local Search

From the heuristic techniques seen above, the AC, AC+LS Ant algorithm
performs sixty eight percentage better than the AWOEC ant algorithm 2.5% better
than the algorithm AE, AE+LS in all possible cases on an average. Thus, addition
of Local search to AE and (AE+LS) and AC (AC+LS) have shown a positive
result in performance improvement. This improvement is in terms of decrease in
makespan time.

Figure 6. Graphical representation of makespan values of
Low Task Low Machine

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

M
a
k
e
s
p
a
n

u-c-lolo u-i-lolo u-s-lolo

Max-Min Min-Min AWOEC AE AE+LS AC AC+LS

6 Conclusion and Future Work
Selecting the appropriate resources for the particular task is one of major
challenging work in the computational grid. In this paper, to solve the Grid
scheduling problem using Ant algorithm with Local Search is explained. The grid
provides a real distributed real time system with no global control for schedulers.

The AC+LS and AE+LS methods take decision depending upon the current
environment and are aware of the contexts. The algorithm can adopt the system
environment freely at runtime. It allocates the resource optimally and adaptively
in the scalable, dynamic and distributes-controlled environment. This allocation is
done using the previous information.

In the study, the algorithm is designed and compared to different grid
environments. Using ACO good workload balancing results can be obtained. The
AC+LS and AE+LS algorithms improve the solution produced by AC and AE by
combining them with local search techniques. They consistently find better
schedule for several benchmark problems as compared with other techniques in
the literature.

In the Grid environment the AC+LS and AE+LS ant algorithm will achieve high
throughput as compared with previous ant systems AE[15,16] AWOEC[5] and
AC. In this algorithm, the job completion time is one of the major input

Kousalya.K and Balasubramanie.P 238

parameter. In future, research would consider factors like CPU workload,
Communication delay, QoS and so on.

The next research direction is to create Qos based heuristic algorithm for grid
computing. The research could also focus on automatically changing the amount
of pheromone evaporation and deposit depending upon the performance of the
grid system. The techniques used may have to diverge somewhat from those
described here, but the results presented here suggest that there is considerable
scope for future research in this area.

References

[1] Chapman, C.; Musolesi, M.; Emmerich, W.; Mascolo, C.”Predictive Resource
Scheduling in Computational Grids” in Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International Volume , Issue , 26-30
March 2007 Page(s):1 – 10

 [2] F. Xhafa, J. Carretero, L. Barolli and A. Durresi. Immediate Mode Scheduling
in Grid Systems. International Journal of Web and Grid Services, Vol.3 No.2,
219-236, 2007

 [3] G. Ritchie and J. Levine. A fast, effective local search for scheduling
independent jobs in heterogeneous computing environments. Technical report,
Centre for Intelligent Systems and their Applications, School of Informatics,
University of Edinburgh, 2003.

 [4] Rajkumar Buyya1, Manzur Murshed, David Abramson and Srikumar
Venugopal, “Scheduling parameter sweep applications on global Grids: a
deadline and budget constrained cost-time optimization algorithm “ Journal of
Software—Practice & Experience, Volume 35, No. 5 pp: 491-512,2005 .

 [5] Stefka Fidanova and Mariya Durchova, ”Ant Algorithm for Grid Scheduling
Problem”, Large Scale Computing, Lecture Notes in Computer Science No.
3743, Springer, germany, pp. 405-412, 2006.

 [6] R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J.
Robertson,M. Theys, B. Yao, D. Hensgen and R. Freund, 2001, “A
Comparison of Eleven Static Heuristics for Mapping a Class of Independent
Tasks onto Heterogeneous Distributed Computing Systems”, Journal of
Parallel and Distributed Computing, Vol.61, No.6, pp. 810- 837, 2001.

 [7] Aggarwal, M.; Kent, R.D.; Ngom, A , “ Genetic algorithm based scheduler
for computational grids” International Symposium on High Performance
Computing Systems and Applications, 2005.. Volume15 , No.18 pp: 209 –
215

239 Ant Algorithm for Grid Scheduling Powered by Local Search

 [8] Li Liu, Yi Yang, Lian Li and Wanbin Shi, “Using Ant Optimization for
Super Scheduling in Computational Grid”, In Proceedings of the IEEE Asia-
pasific Conference on Services Computing, 2006

 [9] Zhihong XU, Xiangdan HOU, Jizhou SUN, “ Ant- Algorithm-Based Task
scheduling in Grid Computing”, Montreal, In Proceeding of the IEEE
Conference on Electrical and Computer Engineering, pp. 1107-1110, 2003.

 [10] Fidanova.S, “ Simulated Annealing for Grid Scheduling Problem”,
International IEEE Symposium on Modern Computing, 2006.

 [11] “ Lee Wang; Siegel H.J.; Roychowdhury V. P.; Maciejewski A.A., ”Task
matching and scheduling in heterogeneous computing environments using a
genetic-algorithm-based approach”, Journal of parallel and distributed
computing 47(1)8-2, nov 1997.

 [12] Chen, H. Flann, N.S. Watson, D.W., “Parallel genetic simulated
annealing: a massively parallel SIMD algorithm “IEEE Transactions on
Parallel and Distributed Systems, Vol.9, No.2 pp.126-136,1998

 [13] K. Chow and B. Liu. “ On mapping signal processing algorithms to a
heterogeneous multiprocessor system”. International IEEE Conference of
Acoustics, Speech, and Signal Processing pages 1585–1588, May 1991.

 [14] H. Yan, X. Shen, X. Li and M. Wu, “An Improved Ant Algorithm for Job
Scheduling in Grid Computing”, In Proceedings of the IEEE International
Conference on Machine Learning and Cybernetics, pp. 2957-2961, 2005.

 [15] Kousalya.K and Balasubramanie.P, “Resource Scheduling in Computational
Grid using ANT algorithm”, In Proceedings of the International Conference
on Computer Control and Communications, Pakistan,2007.

 [16] Kousalya.K and Balasubramanie.P, “An Enhanced ant algorithm for grid
scheduling problem”, International Journal of Computer Science and Network
Security,Vol. 8, No.4, pp.262-271, 2008.

Kousalya .K received the B.E. and M.E. degrees in Computer Science and
Engineering from Bharathiar University, Coimabatore, India, in 1993 and 2001,
respectively. She is currently doing her PhD degree in Anna University, Chennai,
India. Currently she is an Assistant Professor in the department of Computer
Science and Engineering, Perundurai, Tamilnadu. Her areas of interest are Grid
Computing, Compiler Design and Theory of Computation. She has published
papers in National, International Conferences and in International Journal.

Dr.P.Balasubramanie has obtained his PhD degree in theoretical computer
science in the year 1996 from Anna University, Chennai. He was awarded junior
research fellow by CSIR in the year 1990. Currently he is a professor in the
Department of Computer Science and Engineering, Kongu Engineering College,
Perundurai, Tamilnadu. He has published more than 50 research articles in
International/National Journals. He has also authored six books. He has guided 3

Kousalya.K and Balasubramanie.P 240

PhD scholars and guiding 15 research scholars. His areas of interest include
theoretical computer science, data mining, image processing and optimization
Techniques.

