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Abstract

A subclass A(a,[,j) of certain analytic functions in the
open unit disk U is introduced. For the class A(a,(,j), a ma-
jorization problem for f(z) belonging to A(«, 3,j) is considered.
Furthermore, we give the open problem for the coefficients |c,|
of f(z) belonging to A(a,3,1).
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1 Introduction

Let A(a, 3,7) be the class of functions h(z) of the form
hz) =14 cn2" (ca €C) (1.1)
n=1

which are analytic in the open unit disk U= {z € C: |z| < 1} and satisfy

Re{h(2) + az’h9(2)} > 3 (2 €U) (1.2)

for some a € C, Re(a) 2 0 and 0 = 3 < 1, where j e N={1,2,3,--- }.

For j = 1, we can show the example in a function h(z) € A(«, 3, 1) making
use of the manner due to Owa, Hayami and Kuroki [7].

Example 1 For A(z) in the class A(q, 3,1), we define the function F(2)
by
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h(z) + azh/(z) —
1—3 ‘

Then, F(z) is the Carathéodory function, since F'(0) = 1 and ReF(z) > 0.
Hence, we can write

F(z) = (1.3)

h(z) +azh/(z) =B 1+ 2z

F(Z) - 1— 6 N |z|=1 1— 2z

dp(z), (14)

where p(z) is the probability measure on X = {x € C: |z| = 1} (cf. [4]).
Since (1.4) is equivalent to

« (éh(z) + zh’(z)) =p/+(1- /a:| 1 (1 + 223: ) () (1.5)

we have that

1_ 1 ! 1 =— - n.n
zal <ah(z) + zh (z)) = aZa 1 {1 +(1-0) /Im—l (;2x z ) du(aj)}.
(1.6)
Integrating both sides of (1.6), we know that
e (Gao + o) ac
0
(1.7)

TR ) R

that is, that

zoh(z) = zo +2(1 — /| 1 ( ) dp(z). (1.8)

This implies that h(z) € A(«, 5,1) if and only if

=1+ Z < Tom /|z_1 x”du(m)) 2" (1.9)
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Let f(z) and g(z) be analytic in U. Then f(z) is said to be subordinate
to g(z) if there exists an analytic function w(z) in U satisfying w(0) = 0,
lw(z)|] = |z| (2 € U) and f(z) = g(w(z)). We denote this subordination by

f(z) <g(2) (2€U) (ct.Neharil6, p.226]). (1.10)

If g(z) is univalent in U, then this subordination f(z) < g(2) is equivalent to
f(0) = ¢(0) and f(U) C g(U) (cf. Duren[2] or Goodman [3]).
Further, f(z) is said to be quasi-subordinate to g(z) if there exists an

analytic function w(z) such that f((z)) is analytic in U,
w(z
f(2)
1.11
w(2) <g9(2) (z€l), (1.11)

and |w(z)| £ 1 (2 € U). We also denote this quasi-subordination by

f(z)<g(z) (z€l). (1.12)

q

Note that the quasi-subordination (1.12) is equivalent to
f(z) = w(z)g(6(2)), (1.13)

where |w(z)| £ 1 (z € U) and |¢(z)
In the quasi-subordination (1.1
subordination (1.10).

| < |z| (z € U) (see Robertson [8]).
2), if w(z) = 1, then (1.12) becomes the

For analytic functions f(z) and g(z) in U, we say that f(z) is majorized
by g(z) if there exists an analytic function w(z) in U satisfying |w(z)| < 1 and
f(z) =w(2)g(2) (z € U). We denote this majorization by

flz) <g(z) (2€U) (see MacGregor|[5]). (1.14)

If we take ¢(z) = z in (1.13), then the quasi-subordination (1.12) becomes the
majorization (1.14).
Altintas and Owa [1] have considered some problems for the majorizations

of f(z).

2 A majorization problem

To consider our problems, we need the following lemmas.
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Lemma 1 If h(z) is in the class A(a, 3,7) with ¢, = |c,|e?™*™)  (n =
1,2,3,---), then

oo

Z|cn\ + Re(a Z( ']) lea] €1 —5. (2.1)

n=j

Proof  For h(z) € A(a, 3,7), we note that

1+Re{2cnz +az

I CnZ } >p (zel). (2.2)

i(nf+m)

Since ¢, = |cyle , we consider z such that z = |z|e”® (z € U). Then we

can write

A |cn||z|"e”r = —|enll2]" (2.3)

This implies that

1—Re {Z e |2]" —i—ozz |cn||z|"} > 8. (2.4)

Letting |z| — 17, we see from (2.4) that

o

Z|cn\—i—Re Z

n=j

\cn! -5, (2.5)

which completes the proof of our lemma.

Taking 7 = 1 in Lemma 1, we have the following result which is the im-
provement of the lemma by Altintas and Owa [1].

Corollary 1 If h(z) is in the class A(a, 3, 1) with ¢, = |c,|e!™0+™  (n =
1,2,3,---), then

M
;_n
+
S
=
('D
T
3
AN
—_

|
2D

With the help of Lemma 1, we have
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Lemma 2 If h(z) is in the class A(a, 3,7) with ¢, = |c,|e?™*™)  (n =
1,2,3,---), then

1-p 1-p
- < Re(h <|h(z)] 21 U
e S Re () £ MG S el (e D)
(2.6)
_J 0 (n<y)
whereAj—{ 1 (n>7)
Proof  Since h(z) € A(w, 3,7), we have
A(2)] S 14121 ) leal- (2.7)
n=1
Noting that
LIS NS N N (2.8)
~ = J n:]7.]+ 7]+ ) .
(n —7)!
we see that by Lemma 1
Z [ca] + jRe(a Z eul £ 16, (2.9)
which is equivalent to
| = : , 2.10
; n] 1+ A;j'Re(a) (2.10)
where A; = 0 (n< j,)
1 (n2j)
Therefore, with the help of (2.7) and (2.10), we obtain
) <14+—"P 1| (zew) (2.11)
- 1+ A;j'Re(a)
On the other hand, by means of (2.10), we see that
Re(h(z)) =1+ Re (Z cnz”> =>1- (2.12)
n=1 n=1
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9]
21—z )_ el
n=1

1-p
>1- :
- 1+Ajj!Re(a)|Z|

Therefore, the proof of the lemma is completed.
If we take 5 = 1 in Lemma 2, we have the following corollary which is the
improvement of the result due to Altintas and Owa [1].

Corollary 2 If h(z) is in the class A(a, 3,1) with ¢, = |c,|e!™*+™  (n =
1,2,3,---), then

- 1-7
—_ Re (h Sh) ST+ —n—— U).
e SR ) S I S 14 sl e D)
Now, we derive
Theorem 1 Let f(z Zan " (a1 # 0) be analytic in U. If f(z) <

1—|—ch " e Ala,B,5) with ¢, = |c,|e™*™)  (n =

119G (2 = e, 8,9) (2.13)

where r(«, 3, 7) is the root of the following equation

(1—B3)r* — (1 + A4;5'Re(a)) r* + (8 — 24;j!Re(a) — 3)r + 1 + A;j!Re(a) = 0
(2.14)

contained in the interval (0,1).

/
Proof  For g(z) such that zg((;) € A(a, 3, 7),we have from Lemma 2 that
g(z

>1— 1-5
= 1+ A;jRe(a)

r o (lz] =), (2.15)

or
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(1+ A;j'Re(a)) r , B
Rl (2] =), 2.16)

l9(2)] =

Since f(z) < g¢(z), there exists an analytic function w(z) such that f(z) =
w(z)g(z) and |w(z)| £ 1 (2 € U). Thus we have

f'(z) = w(z)g'(2) + w'(2)g(2). (2.17)

Noting that w(z) satisfies

1 — |w(z)?
1= |27

lw'(2)] < (z€U) (cf.[6,p.168)), (2.18)

we see that

H(X)|g'(2)|
(1=72) (1 + A4;j'Re(a) — (1 = B)r)’

[IA

(=)l

(2.19)

where X = |w(z)| and H(X) is defined by

H(X)=—(1+ A;5'Re(a)) rX*+(1—7?) (1 + A;5'Re(a) — (1 — B)r) X

+(1+ AjjRe(a))r (0 X £1).

Then we see that H(X) takes its maximum value at X = 1 with the condition
(2.14). Also, if 0 < a < r(a, 8,5) for r(a,3,j) (0<r(a,8,) < 1) to be the
root of the equation (2.14), then the function

Y(X) = —(1+ Ajj'Re(a)) aX?
(2.20)
+(1 = a®) (1 + Ajj'Re(a) — (1 — B)a) X + (1 + A;j'Re(a)) a

increases in the interval 0 £ X < 1 so that 1(X) does not exceed
Y(1) = (1 = a®)(1 + Aj5'Re(a) — (1 = B)a).

Therefore, from this fact, the inequality (2.19) gives the inequality (2.13).
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Letting 7 = 1 in Theorem 1, we obtain the following corollary which is the
improvement of the theorem by Altintas and Owa [1].

Corollary 3 Let f(z Zan " (a1 # 0) be analytic in U. If f(2) <

g(z) and Zj(S) =1+ chz” € A, 8,1) with ¢, = |c,|e'™*™  (n =

1,2,3,---), then

AN 1g] (2] = (e, 8,1)),

where r(«, 3,1) is the root of the equation
(1—8)r* — (1 4+ Re(a))r* + (8 — 2Re(a) — 3)r + 1+ Re(a) =0

contained in the interval (0,1).

3 Open problem for the coefficients

In Example 1, we give the function h(z) € A(a, 3, 1) as

_1+Z( Tom /x|:1 x"du(x)) 2",

z)=1+ icnz”,
n=1

Since

we see that

Cp = M/':l z"dp(z) (n=1,2,3,---). (3.1)

1+an
Further in Corollary 1, we consider h(z) € A(a, 3,1) with
= |cp e = — |, ™ (n=1,2,3,---). (3.2)

Therefore, we need to find the probability measure p(z) which satisfies

et = 22D [ ),
|z|=1

1+ an
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that is,

/|;c|:1 Ind,u(l’) = - %eme (n =1,2,3,--- ) (3‘3)

In this paper, we don’t find such a probability measure pu(x). How can we
find the probability measure p(z) which satisfies (3.3) for each n =1,2,3,---7
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