Int. J. Open Problems Compt. Math., Vol. 1, No. 3, December 2008

Majorization Problems for Certain Analytic Functions

Yasunori Hashidume and Shigeyoshi Owa
Department of Mathematics, Kinki University, Osaka 577-8502, Japan
e-mail : yasunori_hashidume@yahoo.co.jp, owa@math.kindai.ac.jp

Abstract

A subclass $\mathcal{A}(\alpha, \beta, j)$ of certain analytic functions in the open unit disk \mathbb{U} is introduced. For the class $\mathcal{A}(\alpha, \beta, j)$, a majorization problem for $f(z)$ belonging to $\mathcal{A}(\alpha, \beta, j)$ is considered. Furthermore, we give the open problem for the coefficients $\left|c_{n}\right|$ of $f(z)$ belonging to $\mathcal{A}(\alpha, \beta, 1)$.

Keywords: Analytic function, Caratheodory function, univalent subordination, quasi-subordination, majorization.
2000 Mathematics Subject Classification: Primary 30C45.

1 Introduction

Let $\mathcal{A}(\alpha, \beta, j)$ be the class of functions $h(z)$ of the form

$$
\begin{equation*}
h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \quad\left(c_{n} \in \mathbb{C}\right) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{h(z)+\alpha z^{j} h^{(j)}(z)\right\}>\beta \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

for some $\alpha \in \mathbb{C}, \operatorname{Re}(\alpha) \geqq 0$ and $0 \leqq \beta<1$, where $j \in \mathbb{N}=\{1,2,3, \cdots\}$.
For $j=1$, we can show the example in a function $h(z) \in \mathcal{A}(\alpha, \beta, 1)$ making use of the manner due to Owa, Hayami and Kuroki [7].

Example 1 For $h(z)$ in the class $\mathcal{A}(\alpha, \beta, 1)$, we define the function $F(z)$ by

$$
\begin{equation*}
F(z)=\frac{h(z)+\alpha z h^{\prime}(z)-\beta}{1-\beta} . \tag{1.3}
\end{equation*}
$$

Then, $F(z)$ is the Carathéodory function, since $F(0)=1$ and $\operatorname{Re} F(z)>0$. Hence, we can write

$$
\begin{equation*}
F(z)=\frac{h(z)+\alpha z h^{\prime}(z)-\beta}{1-\beta}=\int_{|x|=1} \frac{1+x z}{1-x z} d \mu(x), \tag{1.4}
\end{equation*}
$$

where $\mu(x)$ is the probability measure on $X=\{x \in \mathbb{C}:|x|=1\}$ (cf. [4]). Since (1.4) is equivalent to

$$
\begin{equation*}
\alpha\left(\frac{1}{\alpha} h(z)+z h^{\prime}(z)\right)=\beta+(1-\beta) \int_{|x|=1}\left(1+\sum_{n=1}^{\infty} 2 x^{n} z^{n}\right) d \mu(x), \tag{1.5}
\end{equation*}
$$

we have that

$$
\begin{equation*}
z^{\frac{1}{\alpha}-1}\left(\frac{1}{\alpha} h(z)+z h^{\prime}(z)\right)=\frac{1}{\alpha} z^{\frac{1}{\alpha}-1}\left\{1+(1-\beta) \int_{|x|=1}\left(\sum_{n=1}^{\infty} 2 x^{n} z^{n}\right) d \mu(x)\right\} . \tag{1.6}
\end{equation*}
$$

Integrating both sides of (1.6), we know that

$$
\begin{align*}
\int_{0}^{z} \zeta^{\frac{1}{\alpha}-1} & \left(\frac{1}{\alpha} h(\zeta)+\zeta h^{\prime}(\zeta)\right) d \zeta \\
& =\frac{1}{\alpha} \int_{|x|=1}\left\{\int_{0}^{z}\left(\zeta^{\frac{1}{\alpha}-1}+2(1-\beta)\left(\sum_{n=1}^{\infty} x^{n} \zeta^{n+\frac{1}{\alpha}-1}\right)\right) d \zeta\right\} d \mu(x) \tag{1.7}
\end{align*}
$$

that is, that

$$
\begin{equation*}
z^{\frac{1}{\alpha}} h(z)=z^{\frac{1}{\alpha}}+2(1-\beta) \int_{|x|=1}\left(\sum_{n=1}^{\infty} \frac{x^{n}}{1+\alpha n} z^{n+\frac{1}{\alpha}}\right) d \mu(x) . \tag{1.8}
\end{equation*}
$$

This implies that $h(z) \in \mathcal{A}(\alpha, \beta, 1)$ if and only if

$$
\begin{equation*}
h(z)=1+\sum_{n=1}^{\infty}\left(\frac{2(1-\beta)}{1+\alpha n} \int_{|x|=1} x^{n} d \mu(x)\right) z^{n} . \tag{1.9}
\end{equation*}
$$

Let $f(z)$ and $g(z)$ be analytic in \mathbb{U}. Then $f(z)$ is said to be subordinate to $g(z)$ if there exists an analytic function $w(z)$ in \mathbb{U} satisfying $w(0)=0$, $|w(z)| \leqq|z|(z \in \mathbb{U})$ and $f(z)=g(w(z))$. We denote this subordination by

$$
\begin{equation*}
f(z) \prec g(z) \quad(z \in \mathbb{U}) \quad(\text { cf. Nehari }[6, \text { p. 226] }) . \tag{1.10}
\end{equation*}
$$

If $g(z)$ is univalent in \mathbb{U}, then this subordination $f(z) \prec g(z)$ is equivalent to $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U}) \quad$ (cf. Duren [2] or Goodman [3]).

Further, $f(z)$ is said to be quasi-subordinate to $g(z)$ if there exists an analytic function $w(z)$ such that $\frac{f(z)}{w(z)}$ is analytic in \mathbb{U},

$$
\begin{equation*}
\frac{f(z)}{w(z)} \prec g(z) \quad(z \in \mathbb{U}), \tag{1.11}
\end{equation*}
$$

and $|w(z)| \leqq 1(z \in \mathbb{U})$. We also denote this quasi-subordination by

$$
\begin{equation*}
f(z) \underset{q}{\prec} g(z) \quad(z \in \mathbb{U}) . \tag{1.12}
\end{equation*}
$$

Note that the quasi-subordination (1.12) is equivalent to

$$
\begin{equation*}
f(z)=w(z) g(\phi(z)) \tag{1.13}
\end{equation*}
$$

where $|w(z)| \leqq 1(z \in \mathbb{U})$ and $|\phi(z)| \leqq|z|(z \in \mathbb{U})$ (see Robertson [8]).
In the quasi-subordination (1.12), if $w(z) \equiv 1$, then (1.12) becomes the subordination (1.10).

For analytic functions $f(z)$ and $g(z)$ in \mathbb{U}, we say that $f(z)$ is majorized by $g(z)$ if there exists an analytic function $w(z)$ in \mathbb{U} satisfying $|w(z)| \leqq 1$ and $f(z)=w(z) g(z)(z \in \mathbb{U})$. We denote this majorization by

$$
\begin{equation*}
f(z) \ll g(z) \quad(z \in \mathbb{U}) \quad(\text { see MacGregor }[5]) \tag{1.14}
\end{equation*}
$$

If we take $\phi(z)=z$ in (1.13), then the quasi-subordination (1.12) becomes the majorization (1.14).

Altintas and Owa [1] have considered some problems for the majorizations of $f(z)$.

2 A majorization problem

To consider our problems, we need the following lemmas.

Lemma 1 If $h(z)$ is in the class $\mathcal{A}(\alpha, \beta, j)$ with $c_{n}=\left|c_{n}\right| e^{i(n \theta+\pi)} \quad(n=$ $1,2,3, \cdots)$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|c_{n}\right|+\operatorname{Re}(\alpha) \sum_{n=j}^{\infty} \frac{n!}{(n-j)!}\left|c_{n}\right| \leqq 1-\beta \tag{2.1}
\end{equation*}
$$

Proof For $h(z) \in \mathcal{A}(\alpha, \beta, j)$, we note that

$$
\begin{equation*}
1+\operatorname{Re}\left\{\sum_{n=1}^{\infty} c_{n} z^{n}+\alpha \sum_{n=j}^{\infty} \frac{n!}{(n-j)!} c_{n} z^{n}\right\}>\beta \quad(z \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

Since $c_{n}=\left|c_{n}\right| e^{i(n \theta+\pi)}$, we consider z such that $z=|z| e^{-i \theta} \quad(z \in \mathbb{U})$. Then we can write

$$
\begin{equation*}
c_{n} z^{n}=\left|c _ { n } \left\|\left.z\right|^{n} e^{i \pi}=-\left|c_{n} \| z\right|^{n} .\right.\right. \tag{2.3}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
1-\operatorname{Re}\left\{\sum_{n=1}^{\infty}\left|c_{n}\right||z|^{n}+\alpha \sum_{n=j}^{\infty} \frac{n!}{(n-j)!}\left|c_{n}\right||z|^{n}\right\}>\beta . \tag{2.4}
\end{equation*}
$$

Letting $|z| \rightarrow 1^{-}$, we see from (2.4) that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|c_{n}\right|+\operatorname{Re}(\alpha) \sum_{n=j}^{\infty} \frac{n!}{(n-j)!}\left|c_{n}\right| \leqq 1-\beta, \tag{2.5}
\end{equation*}
$$

which completes the proof of our lemma.
Taking $j=1$ in Lemma 1 , we have the following result which is the improvement of the lemma by Altintas and Owa [1].

Corollary 1 If $h(z)$ is in the class $\mathcal{A}(\alpha, \beta, 1)$ with $c_{n}=\left|c_{n}\right| e^{i(n \theta+\pi)} \quad(n=$ $1,2,3, \cdots)$, then

$$
\sum_{n=1}^{\infty}(1+n \operatorname{Re}(\alpha))\left|c_{n}\right| \leqq 1-\beta
$$

With the help of Lemma 1, we have

Lemma 2 If $h(z)$ is in the class $\mathcal{A}(\alpha, \beta, j)$ with $c_{n}=\left|c_{n}\right| e^{i(n \theta+\pi)} \quad(n=$ $1,2,3, \cdots)$, then

$$
\begin{equation*}
1-\frac{1-\beta}{1+A_{j} j!\operatorname{Re}(\alpha)}|z| \leqq \operatorname{Re}(h(z)) \leqq|h(z)| \leqq 1+\frac{1-\beta}{1+A_{j} j!\operatorname{Re}(\alpha)}|z| \quad(z \in \mathbb{U}) \tag{2.6}
\end{equation*}
$$

where $A_{j}=\left\{\begin{array}{ll}0 & (n<j) \\ 1 & (n \geqq j)\end{array}\right.$.
Proof Since $h(z) \in \mathcal{A}(\alpha, \beta, j)$, we have

$$
\begin{equation*}
|h(z)| \leqq 1+|z| \sum_{n=1}^{\infty}\left|c_{n}\right| . \tag{2.7}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\frac{n!}{(n-j)!} \geqq j!\quad(n=j, j+1, j+2, \cdots), \tag{2.8}
\end{equation*}
$$

we see that by Lemma 1

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|c_{n}\right|+j!\operatorname{Re}(\alpha) \sum_{n=j}^{\infty}\left|c_{n}\right| \leqq 1-\beta, \tag{2.9}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|c_{n}\right| \leqq \frac{1-\beta}{1+A_{j} j!\operatorname{Re}(\alpha)}, \tag{2.10}
\end{equation*}
$$

where $A_{j}=\left\{\begin{array}{ll}0 & (n<j) \\ 1 & (n \geqq j)\end{array}\right.$.

Therefore, with the help of (2.7) and (2.10), we obtain

$$
\begin{equation*}
|h(z)| \leqq 1+\frac{1-\beta}{1+A_{j} j!\operatorname{Re}(\alpha)}|z| \quad(z \in \mathbb{U}) \tag{2.11}
\end{equation*}
$$

On the other hand, by means of (2.10), we see that

$$
\begin{equation*}
\operatorname{Re}(h(z))=1+\operatorname{Re}\left(\sum_{n=1}^{\infty} c_{n} z^{n}\right) \geqq 1-\left|\sum_{n=1}^{\infty} c_{n} z^{n}\right| \tag{2.12}
\end{equation*}
$$

$$
\begin{aligned}
& \geqq 1-|z| \sum_{n=1}^{\infty}\left|c_{n}\right| \\
& \geqq 1-\frac{1-\beta}{1+A_{j} j!\operatorname{Re}(\alpha)}|z| .
\end{aligned}
$$

Therefore, the proof of the lemma is completed.
If we take $j=1$ in Lemma 2, we have the following corollary which is the improvement of the result due to Altintas and Owa [1].

Corollary 2 If $h(z)$ is in the class $\mathcal{A}(\alpha, \beta, 1)$ with $c_{n}=\left|c_{n}\right| e^{i(n \theta+\pi)} \quad(n=$ $1,2,3, \cdots)$, then

$$
1-\frac{1-\beta}{1+\operatorname{Re}(\alpha)}|z| \leqq \operatorname{Re}(h(z)) \leqq|h(z)| \leqq 1+\frac{1-\beta}{1+\operatorname{Re}(\alpha)}|z| \quad(z \in \mathbb{U})
$$

Now, we derive
Theorem 1 Let $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}\left(a_{1} \neq 0\right)$ be analytic in \mathbb{U}. If $f(z) \ll$ $g(z)$ and $\frac{z g^{\prime}(z)}{g(z)}=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{A}(\alpha, \beta, j)$ with $c_{n}=\left|c_{n}\right| e^{i(n \theta+\pi)} \quad(n=$ $1,2,3, \cdots)$, then

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq\left|g^{\prime}(z)\right| \quad(|z| \leqq r(\alpha, \beta, j)), \tag{2.13}
\end{equation*}
$$

where $r(\alpha, \beta, j)$ is the root of the following equation
$(1-\beta) r^{3}-\left(1+A_{j} j!\operatorname{Re}(\alpha)\right) r^{2}+\left(\beta-2 A_{j} j!\operatorname{Re}(\alpha)-3\right) r+1+A_{j} j!\operatorname{Re}(\alpha)=0$
contained in the interval $(0,1)$.

Proof For $g(z)$ such that $\frac{z g^{\prime}(z)}{g(z)} \in \mathcal{A}(\alpha, \beta, j)$, we have from Lemma 2 that

$$
\begin{equation*}
\left|\frac{z g^{\prime}(z)}{g(z)}\right| \geqq 1-\frac{1-\beta}{1+A_{j} j!\operatorname{Re}(\alpha)} r \quad(|z|=r) \tag{2.15}
\end{equation*}
$$

or

$$
\begin{equation*}
|g(z)| \leqq \frac{\left(1+A_{j} j!\operatorname{Re}(\alpha)\right) r}{1+A_{j} j!\operatorname{Re}(\alpha)-(1-\beta) r}\left|g^{\prime}(z)\right| \quad(|z|=r) \tag{2.16}
\end{equation*}
$$

Since $f(z) \ll g(z)$, there exists an analytic function $w(z)$ such that $f(z)=$ $w(z) g(z)$ and $|w(z)| \leqq 1(z \in \mathbb{U})$. Thus we have

$$
\begin{equation*}
f^{\prime}(z)=w(z) g^{\prime}(z)+w^{\prime}(z) g(z) \tag{2.17}
\end{equation*}
$$

Noting that $w(z)$ satisfies

$$
\begin{equation*}
\left|w^{\prime}(z)\right| \leqq \frac{1-|w(z)|^{2}}{1-|z|^{2}} \quad(z \in U) \quad(c f .[6, p .168]) \tag{2.18}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leqq \frac{H(X)\left|g^{\prime}(z)\right|}{\left(1-r^{2}\right)\left(1+A_{j} j!\operatorname{Re}(\alpha)-(1-\beta) r\right)} \tag{2.19}
\end{equation*}
$$

where $X=|w(z)|$ and $H(X)$ is defined by

$$
\begin{gathered}
H(X)=-\left(1+A_{j} j!\operatorname{Re}(\alpha)\right) r X^{2}+\left(1-r^{2}\right)\left(1+A_{j} j!\operatorname{Re}(\alpha)-(1-\beta) r\right) X \\
+\left(1+A_{j} j!\operatorname{Re}(\alpha)\right) r \quad(0 \leqq X \leqq 1)
\end{gathered}
$$

Then we see that $H(X)$ takes its maximum value at $X=1$ with the condition (2.14). Also, if $0 \leqq a \leqq r(\alpha, \beta, j)$ for $r(\alpha, \beta, j) \quad(0<r(\alpha, \beta, j)<1)$ to be the root of the equation (2.14), then the function

$$
\begin{align*}
\psi(X)= & -\left(1+A_{j} j!\operatorname{Re}(\alpha)\right) a X^{2} \\
& +\left(1-a^{2}\right)\left(1+A_{j} j!\operatorname{Re}(\alpha)-(1-\beta) a\right) X+\left(1+A_{j} j!\operatorname{Re}(\alpha)\right) a \tag{2.20}
\end{align*}
$$

increases in the interval $0 \leqq X \leqq 1$ so that $\psi(X)$ does not exceed

$$
\psi(1)=\left(1-a^{2}\right)\left(1+A_{j} j!\operatorname{Re}(\alpha)-(1-\beta) a\right) .
$$

Therefore, from this fact, the inequality (2.19) gives the inequality (2.13).

Letting $j=1$ in Theorem 1, we obtain the following corollary which is the improvement of the theorem by Altintas and Owa [1].

Corollary 3 Let $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}\left(a_{1} \neq 0\right)$ be analytic in \mathbb{U}. If $f(z) \ll$ $g(z)$ and $\frac{z g^{\prime}(z)}{g(z)}=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{A}(\alpha, \beta, 1)$ with $c_{n}=\left|c_{n}\right| e^{i(n \theta+\pi)} \quad(n=$ $1,2,3, \cdots)$, then

$$
\left|f^{\prime}(z)\right| \leqq\left|g^{\prime}(z)\right| \quad(|z| \leqq r(\alpha, \beta, 1)),
$$

where $r(\alpha, \beta, 1)$ is the root of the equation

$$
(1-\beta) r^{3}-(1+\operatorname{Re}(\alpha)) r^{2}+(\beta-2 \operatorname{Re}(\alpha)-3) r+1+\operatorname{Re}(\alpha)=0
$$

contained in the interval $(0,1)$.

3 Open problem for the coefficients

In Example 1, we give the function $h(z) \in \mathcal{A}(\alpha, \beta, 1)$ as

$$
h(z)=1+\sum_{n=1}^{\infty}\left(\frac{2(1-\beta)}{1+\alpha n} \int_{|x|=1} x^{n} d \mu(x)\right) z^{n} .
$$

Since

$$
h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}
$$

we see that

$$
\begin{equation*}
c_{n}=\frac{2(1-\beta)}{1+\alpha n} \int_{|x|=1} x^{n} d \mu(x) \quad(n=1,2,3, \cdots) . \tag{3.1}
\end{equation*}
$$

Further in Corollary 1, we consider $h(z) \in \mathcal{A}(\alpha, \beta, 1)$ with

$$
\begin{equation*}
c_{n}=\left|c_{n}\right| e^{i(n \theta+\pi)}=-\left|c_{n}\right| e^{i n \theta} \quad(n=1,2,3, \cdots) \tag{3.2}
\end{equation*}
$$

Therefore, we need to find the probability measure $\mu(x)$ which satisfies

$$
-\left|c_{n}\right| e^{i n \theta}=\frac{2(1-\beta)}{1+\alpha n} \int_{|x|=1} x^{n} d \mu(x)
$$

that is,

$$
\begin{equation*}
\int_{|x|=1} x^{n} d \mu(x)=-\frac{(1+\alpha n)\left|c_{n}\right|}{2(1-\beta)} e^{i n \theta} \quad(n=1,2,3, \cdots) . \tag{3.3}
\end{equation*}
$$

In this paper, we don't find such a probability measure $\mu(x)$. How can we find the probability measure $\mu(x)$ which satisfies (3.3) for each $n=1,2,3, \cdots$?

References

[1] O. Altintas and S. Owa: Majorizations and quasi-subordinations for certain analytic functions, Proc. Japan Acad. 68 (1992), 181 - 185.
[2] P. L. Duren: Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1983).
[3] A. W. Goodman: Univalent Functions, Vol.I and Vol.II, Mariner Publishing Company, Tampa, Florida (1983).
[4] D. J. Hallenbeck and T. H. MacGregor: Linear Problems and Convexity Techniques in Geometric Function Theory, Monographs and Studies in Mathematics 22, Pitman, Boston, London, Melbourne (1984).
[5] T. H. MacGregor: Majorization by univalent functions. Duke Math. J. 34 (1967), $95-102$.
[6] Z. Nehari: Conformal Mappings. McGraw-Hill, New York (1952).
[7] S. Owa and T. Hayami, K. Kuroki: Some properties of certain analytic functions. Internat. J. Math. Math. Sci. 2007, Article ID 91592 (2007), 1 - 9 .
[8] M. S. Robertson: Quasi-subordination and coefficients conjectures. Bull. Amer. Math. Soc. 76 (1970), $1-9$.

