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Abstract

In this paper, we are interested to determine the terms of
optimal choice of multipole coefficients and to obtain an esti-
mation of the norm of the modified Green’s function in elas-
ticity for the case of circular boundaries.
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1 Introduction

The problem of scattering of waves (water, acoustic, elastic and electromag-
netic waves) in a domain containing an inhomogeinety (cavity, inclusion or
others) is very often formulated in terms of a boundary value problem. The
solution to such a problem can be sought using different methods (finite differ-
ence, finite element and so on). In the case of infinite domain, the boundary
integral equation method seems to be more appropriate for solving this type
of problem. This method reduces the solving of the problem to an integral
equation on the internal boundary of the domain. However, a problem of
uniqueness of the solution of the boundary integral equation appears. This
anomaly is related to the method of the resolution used rather than to the
physical nature of the problem. Some methods, to overcome this anomally,
were proposed (see [1] for a detailled discussion of the proposed solutions)

Indeed, when using the method of integral representations, the two prob-
lems; exterior problem (which has a unique solution) and the interior one
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(which has no unique solution for a certain specter of values of the frequency
of waves) are represented by two integral equations with adjoint kernels, and
therefore they will have the same number of solutions [2] which presents a
contardiction. To recover the uniqueness of the solution of the interior prob-
lem, Jones [3] and Ursell [4] developed a technique in acoustics. In 1986,
Bencheikh [1] has developed this technique (called a modified Green’s function
technique) in the case of elastic waves, by adding to the fundamental solution
a set of functions called multipole, physically talk, this technique is based on
injection of points or small circles, absorbent inside the domain, to transform
the phenomenon of stationary waves (interior problem) to a phenomenon of
diverging progressive waves (exterior problem). This modification involves the
complex coefficients called multipoles coefficients and which should satisfy a
large condition (1.7).

In the case of acoustic waves, a method of determination of an optimal
choice of those coefficients was elaborated by Roach and Kleinman [5]. This
method is based on the minimization of the norm of the modified integral
operator. In [6] Argyropoulos, Kiriaki and Roach determined another opti-
mal choice for these coefficients by minimizing the norm of the kernel of the
modified integral operator for the case of three dimensional elastic waves. The
minimization of the norm of this integral operator or of the norm of its kernel
is related to the convergence of the iterative method used for the resolution of
that modified integral equation, namely the method of successive approxima-
tions. We have established in [7] and [8] an optimal choice of the multipole
coefficients in the case of two dimensional elastic waves, by using two different
optimality criteria, the first one is the minimization of the norm of the integral
operator and the second is the minimization of its kernel.

The aim of this paper is to test the results found in [8] for simple geometric
forms, circles or a slightly distorted circles. Because in the general case, it is
difficult to get the explicit calculation of multipole coefficients and the norm
of the Green’s function. But, it is possible in the case of circular boundaries,
as we will see later in this paper.

2 Preliminary notes

2.1 Formulation of the problem

Consider a domain D ⊂ IR2 which is homogeneous, elastic and isotropic,
unbounded externally and bounded internally by ∂D, and seek a function
U ∈ L2(D) satisfying :

i) The equation in D
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1

k2
grad(divU(p))− 1

K2
rot(rotU(p)) + U(p) = 0, p ∈ D (1.1)

ii) The boundary conditions on ∂D
TU(p) = f(p)(Neumann condition) or U(p) = g(p) (Dirichlet condition),

for p ∈ ∂D
iii) The radiation conditions (1)

with k2 = ρ ω2

λ+2µ
, K2 = ρ ω2

µ
and ρ is the density. λ, µ are the Lamé

constants and ω2 is the frequency of the waves. T is the traction operator
which acts on the function u (p) in the point p, and f , g are two given functions.

This last boundary problem is represented by the following modified inte-
gral equation:

1

2
U(p)− (K∗

1U)(p) = −(S1f)(p) p ∈ ∂D (1.2)

With K1 is the modified integral operator defined by:

(K1U)(p) =
∫

∂D
TpG1(p, q).U(q).dsq p ∈ ∂D (1.3)

and S1 is the single layer potential defined by:

(S1U)(P ) =
∫

∂D
G1(P, q).U(q).dsq P ∈ D (1.4)

where G1(p, q) is the modified Green’s function defined by:

G1(p, q) = G0(p, q)+
i

4µK2

∞∑
m=0

2∑
σ=1

2∑
`=1

[
aσ`

m .F σ`
m (p)⊗ F σ`

m (q)
+(−1)σ+`.bm.F σ`

m (p)⊗ F (3−σ)(3−`)
m (q)

] (1.5)

where
F σ1

m (p) = grad(H1
m(k.rp).E

σ
m(θp))

(1.6)

F σ2
m (p) = rot(H1

m(K.rp).E
σ
m(θp)).e3

and G0(p, q) is the initial Green’s function.
(rp, θp) are the polar coordinates of the point p, H1

m(.) is the Hankel’s
function of order m and type 1,

Eσ
m(θ) =

√
εm.

{
cos(mθp) σ = 1
sin(mθp) σ = 2

with εm = { 1 m = 0
2 m > 0

, ⊗ design

the tensorial product and e3 is the unit vector in the direction of z.
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aσ`
m and bm are successively, the simple and cross multipole coefficients

(complex coefficients)which must satisfy the following largest condition [1]:

bm(aσ1
m +

1

2
) + bm(aσ2

m +
1

2
) = 0 (∀m = 0 : ∞, ∀σ, ` = 1 : 2) (1.7)

and

|aσ`
m +

1

2
|2 + |bm|2 −

1

4
< 0

2.2 General case

Taking as optimal criterion, a minimization of the norm of the kernel of
the integral modified operator K1, (i.e., a minimization of the norm of the
modified Green’s function G1). This criterion is motivated by the fact that
we want to ensure the convergence of the successive approximations method
which will be used for the resolution of the modified integral equation. The
expressions of optimal choice of simple and cross multipole coefficients for a
domain D of any boundary are given by Theorem 2.1 (for more details see
[8],[9] and [10]).

Theorem 2.1 If the kernel of the modified integral operator K1, namely
the function of Green G1 is defined by (1.5) then the quantity∫

rp=A
‖G1‖2

L2(∂D . dsp ∀ A ≥ max(rq), q ∈ ∂D (2.1)

is minimized if the simple and cross multipole coefficients are selected as
follows :

aσl
m =

(
B

σ`

m

) [
Mσ`

m, 1

]
+
(
β

σ`

m

) [
Mσ`

m, 2

]
−
(
A(3−σ)(3−`)

m

) [
Nσ`

m, 1

]
−
(
α(3−σ)(3−`)

m

) [
Nσ`

m, 2

]
4σ

m, ∂D

and

(−1)σ+l .bm =

(
Bσ`

m

) [
Nσ`

m, 1

]
+
(
βσ`

m

) [
Nσ`

m, 2

]
−
(
Aσ`

m

) [
Mσ`

m, 1

]
−
(
ασ`

m

) [
Mσ`

m, 2

]
4σ

m, ∂D

(2.2)

with:

Mσ`
m, 1 =

(
4σ

m, A

)
.
[
B(3−σ)(3−`)

m .g(3−σ)(3−`)
m − A(3−σ)(3−`)

m .hσ`
m

]
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Mσ`
m, 2 =

(
4σ

m, ∂D

)
.
[
β(3−σ)(3−`)

m .g(3−σ)(3−`)
m − α(3−σ)(3−`)

m .hσ`
m

]

Nσ`
m, 1 =

(
4σ

m, A

)
.
[
B(3−σ)(3−`)

m .h(3−σ)(3−`)
m − A(3−σ)(3−`)

m .gσ`
m

]

Nσ`
m, 2 =

(
4σ

m, ∂D

)
.
[
β(3−σ)(3−`)

m .h(3−σ)(3−`)
m − α(3−σ)(3−`)

m .gσ`
m

]

gσ`
m = −〈βσ`

m .F̂ (3−σ)(3−`)
m + ασ`

m . F̂ σ`
m , F σ`

m 〉∂D

hσ`
m = −

〈
β

σ`

m . F̂ (3−σ)(3−`)
m + ασ`

m . F̂ σ`
m , F (3−σ)(3−`)

m

〉
∂D

ασ`
m =

∥∥∥F σ`
m

∥∥∥2

A
, βσ`

m =
〈
F σ`

m , F (3−σ)(3−`)
m

〉
A

Aσ`
m =

∥∥∥F σ`
m

∥∥∥2

∂D
, Bσ`

m =
〈
F σ`

m , F (3−σ)(3−`)
m

〉
∂D

4σ
m, A =

(
ασ1

m . Aσ1
m . α(3−σ)2

m . A(3−σ)2
m − βσ1

m . Bσ1
m . β

σ1

m . B
σ1
m

)
A

4σ
m, ∂D =

(
ασ1

m . Aσ1
m . α(3−σ)2

m . A(3−σ)2
m − βσ1

m . Bσ1
m . β

σ1

m . B
σ1
m

)
∂D

where 〈, 〉∂D is the inner product calculated on the boundary ∂D, and 〈, 〉A
is the inner product calculated on a large circle of radius A which contains the
boundary ∂D

Proof.
Step 1: We have :

G1(p, q) = G0(p, q) +
i

4µK2

∞∑
m=0

2∑
σ=1

2∑
`=1

[
aσ`

m .F σ`
m (p)⊗ F σ`

m (q)
+(−1)σ+`.bm.F σ`

m (p)⊗ F (3−σ)(3−`)
m (q)

]

=
i

4µK2

∞∑
m=0

2∑
σ=1

2∑
`=1

[
F σ`

m (P )⊗ F̂ σ`
m (Q) + aσ`

m .F σ`
m (P )⊗ F σ`

m (Q)

+ (−1)σ+l .bm.F σ`
m (P )⊗ F (3−σ)(3−`)

m (Q)
] (2.3)

We put:

fσ`
m (Q) =

[
F̂ σ`

m (Q) + aσ`
m .F σ`

m (Q) + (−1)σ+l .bm.F (3−σ)(3−`)
m (Q)

]
(2.4)
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So the modified Green’s function is written in the form :

G1(P, Q) =
∞∑

m=0

2∑
σ=1

2∑
`=1

[F σ`
m (P )⊗ fσ`

m (Q)] (2.5)

hence :∫
rp=A

‖G1‖2
L2(∂D . dsp =

∫
rp=A

∫
∂D

G1(P, q) : G1(q, P ) . dsp.dsq

∞∑
m=0

2∑
σ=1

2∑
`=1

∞∑
n=0

2∑
ν=1

2∑
k=1

∫
rp=A

F σ`
m (P ).F

νk
n (P ).dsp .

∫
∂D

fσ`
m (q).f

νk

n (q).dsq

Using the relations of the inner products of the functions
{
F σ`

m

}σ,l=1:2

m=0:∞
on

the circle of radius A [7] and [11], we obtain :∫
rp=A

‖G1‖2
L2(∂D . dsp

=
∞∑

m=0

2∑
σ=1

[
‖F σ1

m ‖2
A .〈fσ1

m , fσ1
m 〉∂D + 〈F σ1

m , F σ2
m 〉A .〈fσ1

m , f (3−σ)2
m 〉∂D

+ 〈F σ2
m , F σ1

m 〉A .〈f (3−σ)2
m , fσ1

m 〉∂D + ‖F σ2
m ‖2

A .〈f (3−σ)2
m , f (3−σ)2

m 〉∂D
] (2.6)

calculating the expressions 〈fσ1
m , fσ1

m 〉∂D,
〈
fσ1

m , f (3−σ)2
m

〉
∂D

,
〈
f (3−σ)2

m , fσ1
m

〉
∂D

and 〈f (3−σ)2
m , f (3−σ)2

m 〉∂D, and substituting in (2.6)
we get: ∫

rp=A
‖G1‖2

L2(∂D . dsp

=
∞∑

m=0

2∑
σ=1

ασ1
m .


‖F̂ σ1

m ‖2
∂D

+ aσ1
m 〈F̂ σ1

m , F σ1
m 〉∂D − (−1)σbm〈F̂ σ1

m , F (3−σ)2
m 〉∂D

+ aσ1
m

〈
F σ1

m , F̂ σ1
m

〉
∂D

+ aσ1
m . aσ1

m . Aσ1
m − (−1)σ aσ1

m bm Bσ1
m

− (−1)σ bm

〈
F (3−σ)2

m , F̂ σ1
m

〉
∂D
− (−1)σ aσ1

m bm B
σ1
m + bm bm A(3−σ)2

m



+βσ1
m .


〈
F̂ σ1

m , F̂ (3−σ)2
m

〉
∂D

+ a(3−σ)2
m

〈
F̂ σ1

m , F (3−σ)2
m

〉
∂D
− (−1)σ bm

〈
F̂ σ1

m , F σ1
m

〉
∂D

+ aσ1
m

〈
F σ1

m , F̂ (3−σ)2
m

〉
∂D

+ aσ1
m . a(3−σ)2

m . Bσ1
m − (−1)σ aσ1

m bm Aσ1
m

− (−1)σ bm

〈
F (3−σ)2

m , F̂ (3−σ)2
m

〉
∂D
− (−1)σ a(3−σ)2

m bm A(3−σ)2
m + bm bm B

σ1

m



+β
σ1

m .


〈
F̂ (3−σ)2

m , F̂ σ1
m

〉
∂D

+ a(3−σ)2
m

〈
F (3−σ)2

m , F̂ σ1
m

〉
∂D
− (−1)σ bm

〈
F̂ (3−σ)2

m , F (3−σ)2
m

〉
∂D

+ aσ1
m

〈
F̂ (3−σ)2

m , F σ1
m

〉
∂D

+ a(3−σ)2
m . aσ1

m . B
σ1
m − (−1)σ a(3−σ)2

m bm A(3−σ)2
m

− (−1)σ bm

〈
F σ1

m , F̂ σ1
m

〉
∂D
− (−1)σ aσ1

m bm Aσ1
m + bm bm Bσ1

m


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+α(3−σ)2
m .



∥∥∥F̂ (3−σ)2
m

∥∥∥2

∂D

+ a(3−σ)2
m

〈
F̂ (3−σ)2

m , F (3−σ)2
m

〉
∂D

− (−1)σ bm

〈
F̂ (3−σ)2

m , F σ1
m

〉
∂D

+ a(3−σ)2
m

〈
F (3−σ)2

m , F̂ (3−σ)2
m

〉
∂D

+a(3−σ)2
m . a(3−σ)2

m . A(3−σ)2
m − (−1)σ a(3−σ)2

m bm B
σ1
m

− (−1)σ bm

〈
F σ1

m , F̂ (3−σ)2
m

〉
∂D
− (−1)σ a(3−σ)2

m bm Bσ1
m + bm bm Aσ1

m

 (2.7)

This is a standard problem of minimization in which the necessary condition
for the existence of the minimum is the cancelation of the gradient.

So, if we cancel the gradient with respect to the coefficients aσ1
m , a(3−σ)2

m

and bm we obtain the following relations :

(
ασ1

m . Aσ1
m

)
. aσ1

m +
(
β

σ1

m . B
σ1
m

)
. a(3−σ)2

m − (−1)σ
(
ασ1

m B
σ1
m + Aσ1

m β
σ1

m

)
bm = gσ1

m

(βσ1
m . Bσ1

m ) . aσ1
m +

(
α(3−σ)2

m . A(3−σ)2
m

)
. a(3−σ)2

m

− (−1)σ
(
α(3−σ)2

m Bσ1
m + A(3−σ)2

m βσ1
m

)
bm = g(3−σ)2

m

− (−1)σ

(
Bσ1

m ασ1
m

+Aσ1
m βσ1

m

)
. aσ1

m − (−1)σ

(
A(3−σ)2

m β
σ1

m

+B
σ1
m α(3−σ)2

m

)
. a(3−σ)2

m

+

(
A(3−σ)2

m ασ1
m + B

σ1
m βσ1

m

+Bσ1
m β

σ1

m + Aσ1
m α(3−σ)2

m

)
bm = − (−1)σ

(
hσ1

m + h(3−σ)2
m

)
According to the Schwartz inequality and the linear independence of the

functions
{
F σ`

m

}σ,l = 1 : 2

m = 0 : ∞
, the latter system admits the following non-zero de-

terminant

4σ
m =


Aσ1

m . α(3−σ)2
m

+ασ1
m . A(3−σ)2

m

−

 Bσ1
m . β

σ`

m

+βσ1
m B

σ`

m



 .

(
Aσ1

m . A(3−σ)2
m

− |Bσ1
m |

2

)
.

(
ασ1

m . α(3−σ)2
m

− |βσ1
m |

2

)

Therefore, the solutions of the above system will be given by (2.2).

Step 2 : Now, we will show that the choice of multipole coefficients as
defined in (2.2) verify the minimum of the quantity (2.1). For this, we suppose
that the quantity (2.1) is a function of six variables xσ1

m , yσ1
m , xm , x(3−σ)2

m ,
y(3−σ)2

m and ym where :

aσ1
m = xσ1

m + i yσ1
m , a(3−σ)2

m = x(3−σ)2
m + i y(3−σ)2

m
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and

bm = xm + i ym.

It is clear that the optimal choice defined by (2.2) annul the gradient of
the quantity (2.1). Moreover, if the Hessien of (2.1) is a semi-defined positive
matrix, then our choice will verify the minimum of the quantity (2.1). But,
since the Hessien is a symmetric matrix, then it is sufficient that the main
determinants were strictly positives.

After the long calculations, we obtain:

|H[
∫

rp=A
‖G1‖2

L2(∂D) . dsp]| =
(
16 ασ1

m . Aσ1
m . α(3−σ)2

m . A(3−σ)2
m

)
. [4σ

m]

+16(Re4(βσ1
m . Bσ1

m ) + Im4(βσ1
m . Bσ1

m )) > 0

|H11

[∫
rp=A

‖G1‖2
L2(∂D) . dsp

]
| =

(
8 α(3−σ)2

m . A(3−σ)2
m

)
. [4σ

m] > 0

|H22

[∫
rp=A

‖G1‖2
L2(∂D) . dsp

]
| =

(
8 α(3−σ)2

m . A(3−σ)2
m

)
. [4σ

m] > 0

and

|H33

[∫
rp=A

‖G1‖2
L2(∂D) . dsp

]
| =

(
8 ασ1

m . Aσ1
m

)
. [4σ

m] > 0.

Hence the optimal choice as defined in (2.2) really verifies the minimum of
the quantity (2.1) and this completes the proof. ut

Next, we shall test the expressions (2.2) for relatively simple geometric
forms (the boundary is a circle or a slightly distorted circle).

3 Mains results

3.1 Case of the circle

Consider in the following a domain D with circular boundary of radius a, and
calculate the simple and cross multipole coefficients aσ`

mand bm, and the value
of the Green’s function.
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Theorem 3.1 (Calculation of the simple and cross multipole coef-
ficients aσ`

m and bm)
If the boundary of the domain D is a circle of radius a, then the multipole

coefficients will be given by the following relatively simple expressions :

a11
m =

(cm.ĉm − â1
m.a2

m)

∆m, a

(3.1)

a21
m =

(cm.ĉm − â1
m.a2

m)

∆m, a

(3.2)

a22
m =

(cm.d̂m − a1
m.â2

m)

∆m, a

(3.3)

a12
m =

(
cm.d̂m − a1

m.â2
m

)
∆m, a

(3.4)

bm =

(
a2

m.d̂m − â2
m.cm

)
∆m

=
(ĉm.a1

m − cm.â1
m)

∆m, a

(3.5)

where (see [7]):

a1
m =

〈
F σ1

m , F σ1
m

〉
a

= 2πak2

[∣∣∣H ′

m(ka)
∣∣∣2 +

m2

(ka)2
|Hm(ka)|2

]
,

a2
m =

〈
F σ2

m , F σ2
m

〉
a

= 2πaK2

[∣∣∣H ′

m(Ka)
∣∣∣2 +

m2

(Ka)2
|Hm(Ka)|2

]
,

cm = (−1)σ+1
〈
F σ1

m , F (3−σ)2
m

〉
a

= 2πakK

[
m
Ka

H
′
m(ka).Hm(Ka)

+ m
ka

Hm(ka).H
′

m(Ka)

]
,

â1
m =

〈
F̂ σ1

m , F σ1
m

〉
a

= 2πak2

[
J

′

m(ka).H
′

m(ka) +
m2

(ka)2
Jm(ka).Hm(ka)

]
,

â2
m =

〈
F̂ σ2

m , F σ2
m

〉
a

= 2πaK2

[
J

′

m(Ka).H
′

m(Ka) +
m2

(Ka)2
Jm(Ka).Hm(Ka)

]
,

ĉm = (−1)σ+1
〈
F̂ σ1

m , F (3−σ)2
m

〉
a

= 2πakK

[
m
Ka

J
′
m(ka).Hm(Ka)

+ m
ka

Jm(ka).H
′

m(Ka)

]
,
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d̂m = (−1)2−σ
〈
F̂ σ2

m , F (3−σ)1
m

〉
a

= 2πakK

[
m
ka

J
′
m(Ka).Hm(ka)

+ m
Ka

Jm(Ka).H
′

m(Ka)

]

and Jm(.) is the Bessel’s function of order m and type 1.

Proof.

To calculate the simple and cross miltipole coefficients aσ`
m and bm, we

should first calculate gσ1
m , g(3−σ)2

m , hσ1
m , and h(3−σ)2

m

We have :

gσ`
m = − β

σ`

m

〈
F̂ (3−σ)(3−`)

m , F σ`
m

〉
a
− ασ`

m

〈
F̂ σ`

m , F σ`
m

〉
a

= −
〈

F (3−σ)(3−`)
m , F σ`

m

〉
a

〈
F̂ (3−σ)(3−`)

m , F σ`
m

〉
a
−
∥∥∥F σ`

m

∥∥∥2

a

〈
F̂ σ`

m , F σ`
m

〉
a

so :

gσ1
m = − (− (−1)σ cm ) .

(
− (−1)σ d̂m

)
−
(
a1

m

)
.
(
â1

m

)
and

g(3−σ)2
m = − (− (−1)σ cm) . (− (−1)σ ĉm)−

(
a2

m

)
.
(
â2

m

)
On the other hand :

hσ`
m = − β

σ`

m

〈
F̂ (3−σ)(3−`)

m , F (3−σ)(3−`)
m

〉
a
− ασ`

m

〈
F̂ σ`

m , F (3−σ)(3−`)
m

〉
a

= −
〈

F (3−σ)(3−`)
m , F σ`

m

〉
a

〈
F̂ (3−σ)(3−`)

m , F (3−σ)(3−`)
m

〉
a
−
∥∥∥F σ`

m

∥∥∥2

a

〈
F̂ σ`

m , F (3−σ)(3−`)
m

〉
a

So,

hσ1
m = − (− (−1)σ cm ) .

(
â2

m

)
−
(
a1

m

)
. (− (−1)σ ĉm)

and

h(3−σ)2
m = − (− (−1)σ cm) .

(
â1

m

)
−
(
a2

m

)
.
(
− (−1)σ d̂m

)
.

Then, the expressions of the coefficients aσ`
m and bm will be given by (3.1)

–(3.5).
Note that a11

m = a21
m and a12

m = a22
m . Also, we can show (see [7]) that the

two expressions found for bm which appear different, are equal. ut
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Lemma 3.2 (Calculation of the modified Green’s function)
If the boundary of the domain D is a circle of radius a, then ‖K1‖ = 0

Proof.
We have :

G1(p, q) = G0(p, q)+
i

4µK2

∞∑
m=0

2∑
σ=1

2∑
`=1

[
aσ`

m .F σ`
m (p)⊗ F σ`

m (q)
+(−1)σ+`.bm.F σ`

m (p)⊗ F (3−σ)(3−`)
m (q)

].

By replacing the expressions of multipole coefficients obtained above, we ob-
tain:

G1(p, q) = G0(p, q)+
i

4µK2

∞∑
m=0



(cm .̂cm−â1
m.a2

m)
∆m, a

.F 11
m (p)⊗ F 11

m (q)

+
(a2

m.d̂m−â2
m.cm)

∆m
F 11

m (p)⊗ F 22
m (q)

+
(cm.d̂m−a1

m .̂a2
m)

∆m, a
.F 12

m (p)⊗ F 12
m (q)

−(a2
m.d̂m−â2

m.cm)
∆m

F 12
m (p)⊗ F 21

m (q)

+
(cm .̂cm−â1

m.a2
m)

∆m, a
.F 21

m (p)⊗ F 21
m (q)

−(a2
m.d̂m−â2

m.cm)
∆m

F 21
m (p)⊗ F 12

m (q)

+
(cm.d̂m−a1

m .̂a2
m)

∆m, a
.F 22

m (p)⊗ F 22
m (q)

+
(a2

m.d̂m−â2
m.cm)

∆m
F 22

m (p)⊗ F 11
m (q)



. (3.6)

But according to the development of the modified Green’s function G1established
in [7], the expression of the modified Green’s function (3.6) implies that the
norm of the modified integral operator K1 is equal to zero, which completes
the proof of Lemma 1. ut

In this case, we say that if the border of our domain is a circle of radius a,
then the optimal choice of the simple and cross multipole coefficients defined
in (3.1) – (3.5), lead us to the exact Green’s function for the Dirichlet problem.
In other words, we have:

GD
1 (P, Q) = GD

ex (P, Q)

This result, avoid us the obligation to verify the large condition (1.7),
because:

GD
1 (P, Q) = GD

ex(P, Q) =⇒ ‖KD
1 ‖ = 0.
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Thus, in this case we don’t need to verify the large condition (1.7) from
the moment that we have no integral equation for solving. In other words, the
solution of our boundary problem is obtained directly, as follows :

1- Dirichlet boundary condition U(p) = g(p) :
- integral equation on ∂D :

W (p) = 2g(p), p ∈ ∂D

- Representation in D :

U(P ) = D1 [W (P )] = 2 D1 [g(P )] , P ∈ D

or :
- integral equation on ∂D :

W (p) = 2 D1n [g(p)] , p ∈ ∂D

- Representation in D :

U(P ) = D1 [g(P )]− S1 [W (P )] = D1 [g(P )]− 2 S1 [D1n [g(P )]] , P ∈ D

2- Neumann boundary condition TU(p) = f(p) :
- integral equation on ∂D :

W (p) = − 2 S1 [f(p)] , p ∈ ∂D

- Representation in D :

U(P ) = D1 [W (P )] − S1 [f(P )] = − 2 D1 [S1 [f(P )]]− S1 [f(P )] , P ∈ D

or :
- integral equation on ∂D :

W (p) = − 2 f(p), p ∈ ∂D

- Representation in D :

U(P ) = S1 [W (P )] = − 2 S1 [f(P )] , P ∈ D

with D1 is the double layer potential defined by :

(D1W )(P ) =
∫

∂D
TqG1(P, q).W (q).dsq, P ∈ D

and
D1n [g(P )] = T [D1 [g(P )]] , P ∈ D



172 Belkacem Sahli and Lahcene Bencheikh

3.2 Case of the slightly distorted circle

After having treated the case of a circular border, we propose to consider the
case of a boundary in the shape of a slightly distorted circle. The Paramet-
ric equation of this slightly distorted circle is defined in polar coordinates as
follows:

r = a + εϕ (θ) , 0 ≤ θ ≤ 2π (3.7)

where a is the radius of the circle not distorted and ϕ and ∂ϕ
∂θ

are two
bounded functions . we note by pε, qε the points of ∂D and which are defined
by :

Opε = (a + εϕ (θp)) r̂p , Oqε = (a + εϕ (θq)) r̂q (3.8)

where
r̂ = (cos (θ) , sin (θ)) (3.9)

The points of the circle of radius a are defined by :

Op0 = a r̂p , Oq0 = ar̂q (3.10)

It is easy to see that :

|pεqε| = |p0q0|+ O (ε) (3.11).

Moreover, since ϕ is continuously derivable then we can show that

|ϕ (θp)− ϕ (θq)|
|p0q0|

is bounded. Therefore,

1

|pεqε|
=

1

|p0q0|
+ O (ε) (3.12)

on the slightly distorted circle ∂D we can easily show that :

n̂ =
r̂ − ε∂ϕ

∂θ
θ̂√

1 + ε2
(

∂ϕ
∂θ

)2
= r̂ + O (ε) (3.13)

and that the element ds written in the form :

ds = r

√√√√1 + ε2

(
∂ϕ

∂θ

)2

dθ = a dθ + O (ε) (3.14)
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Lemma 3.3 If the border ∂D is defined by (3.7) then we have,

F σ`
m (pε) = F σ`

m (p0) + O (ε) (3.15)

Aσ`
m =

∥∥∥F σ`
m

∥∥∥2

∂D
=
∥∥∥F σ`

m

∥∥∥2

a
+ O (ε) = Aσ`

m (0) + O (ε) (3.16)

Bσ`
m =

〈
F σ`

m , F (3−σ)(3−`)
m

〉
∂D

=
〈
F σ`

m , F (3−σ)(3−`)
m

〉
a
+O (ε) = Bσ`

m (0)+O (ε) (3.17)

4σ
m, ∂D =

(
ασ1

m . Aσ1
m . α(3−σ)2

m . A(3−σ)2
m

−βσ1
m . Bσ1

m . β
σ1

m . B
σ1

m

)
∂D

= 4σ
m, a + O (ε) (3.18)

gσ`
m = −

〈
β

σ`

m . F̂ (3−σ)(3−`)
m + ασ`

m . F̂ σ`
m , F σ`

m

〉
∂D

= gσ`
m (0) + O (ε) (3.19)

hσ`
m = −

〈
β

σ`

m . F̂ (3−σ)(3−`)
m + ασ`

m . F̂ σ`
m , F (3−σ)(3−`)

m

〉
∂D

= hσ`
m (0)+O (ε) (3.20)

Proof.
From the definition of F σ`

m (1.6) and taking into account the fact that the
hankel’s function H1

m (x) is analytical with only one pole in x = 0
then we have :

H1
m (a + ε) = H1

m (a) + O (ε) (3.21)

Then followed (3.15). In the same way and using (3.14) and parametric
repesentation of ∂D defined by (3.7), we obtain (3.16)

using (3.15) and (3.16) we obtain directly (3.17), (3.18), (3.19) and (3.20)
ut

Theorem 3.4 (Calculation of the simple and cross multipole coef-
ficients aσ`

m and bm)
If the boundary of the domain D is a slightly distorted circle, then the

multipole coefficients will be given by the following relatively simple expressions:

a11
m = a11

m (0) + O (ε) (3.22)

a21
m = a21

m (0) + O (ε) (3.23)

a22
m = a22

m (0) + O (ε) (3.24)



174 Belkacem Sahli and Lahcene Bencheikh

a12
m = a12

m (0) + O (ε) (3.25)

bm = bm (0) + O (ε) (3.26)

where a11
m (0), a21

m (0), a22
m (0), a12

m (0) and bm(0) are the multipole coefficients cal-
culated in the case of circle (3.1) to (3.5)

Proof.
To calculate the simple and cross miltipole coefficients aσ`

m and bm for the
case of the slightly distorted circle, we should first calculate gσ1

m , g(3−σ)2
m , hσ1

m ,
and h(3−σ)2

m

We have :

gσ`
m = − β

σ`

m

〈
F̂ (3−σ)(3−`)

m , F σ`
m

〉
∂D
− ασ`

m

〈
F̂ σ`

m , F σ`
m

〉
∂D

= −
〈

F (3−σ)(3−`)
m , F σ`

m

〉
∂D

〈
F̂ (3−σ)(3−`)

m , F σ`
m

〉
∂D
−
∥∥∥F σ`

m

∥∥∥2

∂D

〈
F̂ σ`

m , F σ`
m

〉
∂D

using Lemma 3.3 we obtain :

gσ1
m = ( (−1)σ cm (0)) .

(
− (−1)σ d̂m (0)

)
−
(
a1

m (0)
)

.
(
â1

m (0)
)
+O (ε) = gσ1

m (0)+O (ε)

and

g(3−σ)2
m = ( (−1)σ cm (0)) . (− (−1)σ ĉm (0))−

(
a2

m (0)
)

.
(
â2

m (0)
)
+O (ε) = g(3−σ)2

m (0)+O (ε)

On the other hand :

hσ`
m = − β

σ`

m

〈
F̂ (3−σ)(3−`)

m , F (3−σ)(3−`)
m

〉
∂D
− ασ`

m

〈
F̂ σ`

m , F (3−σ)(3−`)
m

〉
∂D

= −
〈

F (3−σ)(3−`)
m , F σ`

m

〉
∂D

〈
F̂ (3−σ)(3−`)

m , F (3−σ)(3−`)
m

〉
∂D
−
∥∥∥F σ`

m

∥∥∥2

∂D

〈
F̂ σ`

m , F (3−σ)(3−`)
m

〉
∂D

Using Lemma 3.3, we obtain :

hσ1
m = ( (−1)σ cm (0) ) .

(
â2

m (0)
)
−
(
a1

m (0)
)

. (− (−1)σ ĉm (0))+O (ε) = hσ1
m (0)+O (ε)

and

h(3−σ)2
m = ( (−1)σ cm (0)) .

(
â1

m (0)
)
−
(
a2

m (0)
)

.
(
− (−1)σ d̂m (0)

)
+O (ε) = h(3−σ)2

m (0)+O (ε)

so the expressions of the coefficients aσ`
m and bm will be given by (3.22) to

(3.26)



Optimal choice of multipole coefficients ... 175

Lemma 3.5 (Calculation of the modified Green’s function)
If the boundary of the domain D is a slightly distorted circle, then ‖K1‖ =

O (ε)

Proof.
We have:

G1(p, q) = G0(p, q)+
i

4µK2

∞∑
m=0

2∑
σ=1

2∑
`=1

[
aσ`

m .F σ`
m (p)⊗ F σ`

m (q)
+(−1)σ+`.bmF σ`

m (p)⊗ F (3−σ)(3−`)
m (q)

]
.

Replacing the expressions of multipole coefficients obtained above, we ob-
tain :

G1(p, q) = G0(p, q) (0) + O (ε)

+
i

4µK2

∞∑
m=0



(cm .̂cm−â1
m.a2

m)(0)+O(ε)

∆m, a+O(ε)
.F 11

m (p)⊗ F 11
m (q)

+
(

(a2
m.d̂m−â2

m.cm)
∆m

+ O (ε)
)

F 11
m (p)⊗ F 22

m (q)

+
(cm.d̂m−a1

m .̂a2
m)(0)+O(ε)

∆m, a+O(ε)
.F 12

m (p)⊗ F 12
m (q)

−
(

(a2
m.d̂m−â2

m.cm)
∆m

+ O (ε)
)

F 12
m (p)⊗ F 21

m (q)

+
(cm .̂cm−â1

m.a2
m)(0)+O(ε)

∆m, a+O(ε)
.F 21

m (p)⊗ F 21
m (q)

−
(

(a2
m.d̂m−â2

m.cm)
∆m

+ O (ε)
)

F 21
m (p)⊗ F 12

m (q)

+
(cm.d̂m−a1

m .̂a2
m)(0)+O(ε)

∆m, a+O(ε)
.F 22

m (p)⊗ F 22
m (q)

+
(

(a2
m.d̂m−â2

m.cm)
∆m

+ O (ε)
)

F 22
m (p)⊗ F 11

m (q)



. (3.27)

Or:

G1(p, q) = G1(p, q) (0) + O (ε) . (3.28)

But from the development of the modified Green’s function G1 established
in [7], the result (3.28) implies that the norm of the modified integral operator
K1 is of order ε. In other words,

G1 (p, q) = G1(p, q) (0) + O (ε) =⇒ ‖K1‖ = O (ε) .

The interest of this result, is that, in the case of a slightly deformed circular
border, the method of successive approximations to be used for solving our
integral equation, will have a large radius of convergence (spectrum of values
of the frequency waves ω2), as the form :
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0 < ω2 <
1

‖K1‖
=⇒ 0 < ω2 <

1

O(ε)

4 Conclusion

The work presented in this paper, aims at testing the expressions of the optimal
choice of the multipole coeffcients found for the general case in [8]. For this, we
consider the case where the boundary ∂D is a circle of radius ′a′. in this case, a
relatively simple form for the simple and cross multipole coeffcients, has been
achieved. Moreover, our optimal choice led us to the exact Green’s function,
where the norm of the modified integral operator ‖K1‖ becomes void, which
will lead to the direct solution of the boundary problem without resorting to
solving an integral equation . It is noted that in this case, the large condition
(1.7) imposed on the multipole coefficients need not to be satisfied from the
moment that we have no integral equation to solve. ( we recall here that
the origin of the large condition (1.7), which is a sufficient condition but not
necessary, is the inversibility of the operator I −K∗

1 (1.2)).

In the second part of this work, we consider the case where the boundary
∂D is a slightly distorted circle, where we show that the expression of the mul-
tipole coefficients is relative to that found in the circular border, and moreover
the norm of our modified integral operator will be very small or of order of ε,
that enlarges us the radius of convergence of the numerical method to be used
for the resolution of our integral equation defined on ∂D.

5 Open problems

The modified Green’s function techniques which use the multipole coefficients
has many open problems which deserve to be treated. In this way we can
mentioned the following:

1- Checking the large condition (1.7) for the general case where the border
take any form.

2- Consider the cases of other simple geometric forms, such as square, rectangle,
triangle, ellipse, ...

3- Treat the same subject by changing the criterion of optimality and consider
for example the minimization of the condition number of the integral operator
associated with our boundary problem, (in the case of three dimensions, see
[12] for acoustic waves and [13] for elastic waves).

4- Establish the numerical applications for the results obtained in this paper
(some numerical applications given in [14] and [15]).
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