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Abstract

In this paper, a numerical method for solving fuzzy Fred-
holm integral equations of the second kind is introduced. We
apply the trapezoidal rule to compute the Riemann integrals.This
kind of integral equations convert to a linear system. Then, by
solving the linear system , unknowns are determined. Finally,
an algorithm is presented to solve the fuzzy integral equation
by using the trapezoidal rule. This algorithm is implemented
on some numerical examples by using software MATLAB.
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1 Introduction

The topic of fuzzy integral equations ( FIE ) has been developed in recent
years. In the first step often including applicable definitions of the fuzzy inte-
grals was followed by introducing FIE and stablishing sufficient conditions for
the existence of unique solutions to these equations. Finally, numerical algo-
rithms for calculation approximates to these solutions were designed. Prior to
discussing fuzzy integral equations and their associated numerical algorithms,
it is necessary to present an appropriate brief introduction to preliminary top-
ics such as fuzzy numbers and fuzzy calculus. The concept of fuzzy sets which
was originally introduced by Zadeh [17, 18] led to the definition of the fuzzy
number and implementation in fuzzy control [2] and approximate reasoning
problems[17, 18]. The basic arithmetic structure for fuzzy numbers was later
developed by Mizumoto and Tanaka [12, 13], Nahmias [14], Dubios and Prade
[3, 4, 5] and Ralescu [16] all of which observed the fuzzy number as a location
of α− levels 0 ≤ α ≤ 1 [2].The concept of integration of fuzzy functions was
first introduced by Dubois and Prade[5]. Alternative approaches were later
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suggested by Goetschel and Voxman [8], Kaleva [9], Matloka[11], Nanda [15],
and others. While Goetschel and Voxman [8] and later Matloka[11], preferred a
Riemann integral type approach, Kaleva[9] chose to define the integral of fuzzy
function, using the Lebesgue type concept for integration. One of the first ap-
plications of fuzzy integration was given by Wu and Ma [18] who investigated
the Fuzzy Fredholm integral equation of the second kind (FF-2). In this work,
we concentrate on numerical procedures for solving FIE, whenever these equa-
tions posses unique fuzzy solutions. In section 2 we briefly present the basic
notations of fuzzy numbers, fuzzy continuous function, fuzzy derivative fuzzy
integral, and a trapezoidal rule for integration recalled. Fuzzy Frdholm inte-
gral equations is introduced, a numerical solution will present for these kind
of integral equation in section 3. Finally, an algorithm for numerical solution
is given and illustrated with examples by applying MATLAB software.

2 Preliminaries

The set of all fuzzy numbers is represented by E1. The parametric definition
of fuzzy numbers is defined in [1] as follows:

Definition 2.1 An arbitrary fuzzy number with an ordered pair of functions
(v(r), v(r)), 0 ≤ r ≤ 1, which satisfy in the following requirements.

1. v(r) is a bounded left continuous non decreasing function in r over [0, 1].

2. v(r) is a bounded left continuous non increasing function in r over [0, 1].

3. v(r) ≤ v(r), 0 ≤ r ≤ 1.

For arbitrary u = (u(r), u(r)), v = (v(r), v(r)) and k ∈ R, we define addi-
tion and multiplication by k as,

(u + v)(r) = (u(r) + v(r)),

(u + v)(r) = (u(r) + v(r)),

(ku)(r) = ku(r), (ku)(r) = ku(r), k ≥ 0

(ku)(r) = ku(r), (ku)(r) = ku(r). k < 0

Definition 2.2 The n × n linear system of equations AX = Y where the
coefficient matrix A = (aij), 1 ≤ i, j ≤ n is a crisp n × n matrix and Y =
(y1, . . . , yn)t, yi ∈ E1, 1 ≤ i ≤ n, is called a fuzzy system of linear equations
(FSLE).
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Definition 2.3 Let f : [a, b] −→ E1. For each partition p = {t0, t1, ..., tn} of
[a, b] and for arbitrary ξi : ti−1 ≤ ξi ≤ ti, 1 ≤ i ≤ n if

Rp =
∑

f(ξi)(ti − ti−1). (1)

Then, the definite integral of f(t) over [a, b] is defined as follows:

∫ b
a f(t)dt = lim Rp max |ti − ti−1| −→ 0, 1 ≤ i ≤ n,

provided that this limit exists in the metric D [1, 3].

Definition 2.4 Let f : [a, b] → E1 be continuous in the metric D, then its
definite integral over [a, b] exists [?]. Furthermore,

(
∫ b

a
f(t; r)dt) =

∫ b

a
f(t, r)dt,

(
∫ b

a
f(t; r)dt) =

∫ b

a
f(t, r)dt. (2)

2.1 The Numerical Method for Integration

To calculate the Riemann integrals in (2) of f(t; r) and f(t; r) we can apply
the trapezoidal rule. In this case the interval [a, b] is partitioned by equally
spaced points a = t0 < t1 < ... < tn−1 < tn = b where ti = a + ih,
ti − ti−1 = b−a

n
= h,1 ≤ i ≤ n:

Let:

sn(r) = h[f(a; r) + f(b; r) +
n−1∑
i=1

f(ti; r)],

sn(r) = h[f(a; r) + f(b; r) +
n−1∑
i=1

f(ti; r)].

Then, for an arbitrary fixed r we have[7]:

lim
n−→∞

sn(r) = F (r) =
∫ b

a
f(t; r)dt.

lim
n−→∞

sn(r) = F (r) =
∫ b

a
f(t; r)dt. (3)
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Theorem 2.1 If f is continuous in metric D, sn(r), sn(r) uniformly converge
to , F (r), F (r), respectively, [7].

3 Fuzzy Fredholm Integral Equation

In this section, the fuzzy integral equations of the second kind are introduced.
The Fredholm integral equation of the second kind is [7]

f (s) = y(s) + λ
∫ b

a
k(s, t)f (t)dt, (4)

Where λ > 0, k(s,t) is an arbitrary kernel function over the square a ≤ s, t ≤ b
and f , y are fuzzy functions on [a,b]. If f (t) is a crisp function then the solu-
tions of Eqs. (3.3) is crisp .However, if y is a fuzzy function then this equation
may only possess fuzzy solutions. Sufficient conditions for the existence of a
unique solution to the fuzzy Fredholm integral equations of the second kind,
i.e. Eqs. (3.3)where y(t)is fuzzy function, have been given in [7].
In order to design a numerical scheme for solving Eq. (3.3) we first replace it
by the system,

f(s, r) = y(s, r) + λ
∫ b

a
U(t, r)dt,

f(s, r) = y(s, r) + λ
∫ b

a
U(t, r)dt,

where,

U(t, r) =


k(s, t)f(t, r) k(s, t) ≥ 0,

k(s, t)f(t, r) k(s, t) < 0.
(5)

and

U(t, r) =


k(s, t)f(t, r) k(s, t) ≥ 0,

k(s, t)f(t, r) k(s, t) < 0.
(6)

Without loss of generality, we suppose that k(s, t) ≥ 0 , thus:

U(t, r) = k(s, t)f(t, r),

U(t, r) = k(s, t)f(t, r)
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The other case is similar. Let {hi(s)}∞i=1 be a sequence of independent and
complete functions. We consider

f(s, r) ' Gn(s, r) =
n∑

i=1

ai(r)hi(s),

f(s, r) ' Fn(s, r) =
n∑

i=1

ai(r)hi(s).

rn(s, r) = y(s, r)−
n∑

i=1

bi(r)li(s), (7)

rn(s, r) = y(s, r)−
n∑

i=1

ci(r)li(s), (8)

where,
li(s) = hi(s)− ki(s), 1 ≤ i ≤ n

ki(s) = λ
∫ b

a
k(s, t)hi(t)dt. (9)

ck(r) =


ak(r) lk(s) ≥ 0,

ak(r) lk(s) < 0.
(10)

and

bk(r) =


ak(r) lk(s) ≥ 0,

ak(r) lk(s) < 0.
(11)

Now, by applying the least square method, (3.6) and (3.7) can be trans-
formed to the following system [6]:

SA=Y, L = [li,j], li,j =
∫ b
a li(s)lj(s)ds i, j = 1, ..., n , det(L) 6= 0,

S =

 L 0

0 L

 , A =

 b(r)

c(r)

 , Y =

 y(r)

y(r)

,

where,

b(r) =



b1(r)

b2(r)
.
.
.

bn(r)


, c(r) =



c1(r)

c2(r)
.
.
.

cn(r)


, y(r) =



y
1
(r)

y
2
(r)

.

.

.

y
n
(r)


, y(r) =



y1(r)

y2(r)
.
.
.

yn(r)


.
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Such that:

compute li(s) by using the selection (3.8)

y
i
(r) =

∫ b

a
c(s, r)li(s)ds,

yi(r) =
∫ b

a
c(s, r)li(s)ds. (12)

where

c(s, r) =


y(s, r) li(s) ≥ 0,

y(s, r) lk(s) < 0.
(13)

and

c(s, r) =


y(s, r) li(s) ≥ 0,

y(s, r) li(s) < 0.
(14)

The following algorithm evaluate the fuzzy integral equation(3.3):

3.1 Algorithm of The Numerical Procedure

1. Read a, b, λ, n, y(s, r), y(s, r), k(s, t), {hi(s)}n
i=1

2. For i = 1 to n, compute li(s),yi
(r),yi(r) by using the selections (3.8)

and (3.11)

where compute c(s, r), c(s, r) by using the relation (3.12) and (3.13)

2-1. For j = 1 to n compute li,j

3. Denote L = [li,j], i, j = 1, ..., n,

y(r) = [y
i
(r)], i = 1, ..., n,

y(r) = [yi(r)], i = 1, ..., n,
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4. Solve the following linear system:

SA = Y →

 L 0

0 L

  b(r)

c(r)

 =

 y(r)

y(r)

 . (15)

A =

 b(r)

c(r)

 , Y =

 y(r)

y(r)

.

b(r) =



b1(r)

b2(r)
.
.
.

bn(r)


, c(r) =



c1(r)

c2(r)
.
.
.

cn(r)


, y(r) =



y
1
(r)

y
2
(r)

.

.

.

y
n
(r)


, y(r) =



y1(r)

y2(r)
.
.
.

yn(r)


.

5. Estimate f(s, r), f(s, r) by computing
∑n

i=1 ai(r)hi(s),
∑n

i=1 ai(r)hi(s).

6. Write f(s, r), f(s, r) and then stop.

We use the algorithm trapezoidal rule which evaluate the integral

4 Numerical Example

Example1. Consider the following fuzzy Fredholm equation [7]

y(t, r) = sin(
t

2
)[

13

15
(r2 + r) +

2

15
(4− r3 − r)],

y(t, r) = sin(
t

2
)[

2

15
(r2 + r) +

13

15
(4− r3 − r)]

and kernel

k(s, t) = 0.1 sin(s) sin(
t

2
), 0 ≤ s, t ≤ π

and a = 0, b = 2π. The exact solution is given by

F (t, r) = (r2 + r)sin(
t

2
)

F (t, r) = (4− r3 − r)sin(
t

2
).

By using the mentioned algorithm and MATLAB package, we obtain the fol-
lowing results :
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k1(s) =
∫ 2π
0 0.1 sin(s) sin( t

2
)dt = 0.4 sin(s)

k2(s) =
∫ 2π
0 0.1t sin(s) sin( t

2
)dt = 0.4π sin(s)

l1(s) = h1(s)− k1(s) = 1− 0.4 sin(s)

l2(s) = h2(s)− k2(s) = s− 0.4π sin(s)

y
1
(r) =

∫ 2π
0 c(s, r)l1(s)ds = 4(13

15
(r2 + r) + 2

15
(4− r3 − r))

y1(r) =
∫ 2π
0 c(s, r)l1(s)ds = 4( 2

15
(r2 + r) + 13

15
(4− r3 − r))

y
2
(r) =

∫ 2π
0 c(s, r)l2(s)ds = −0.027306229r3+12.53906438r2+12.51175815r+

0.109224918

y2(r) =
∫ 2π
0 c(s, r)l2(s)ds = −12.53906438r3+0.027306229r2−12.51175815r+

50.15625752

l11(s) =
∫ 2π
0 l1(s)l1(s)ds = 6.785840132

l22(s) =
∫ 2π
0 l2(s)l2(s)ds = 103.4357758

l21(s) =
∫ 2π
0 l2(s)l1(s)ds = 23.83161963

l12(s) =
∫ 2π
0 l1(s)l2(s)ds = 23.83161963

The approximate and exact solutions are compared at t = π in table 1. In
this example, the kernel k(s, t) is nonnegative for 0 ≤ s ≤ π and negative for
π < s < 2π.

r f f F F
0.0 0.5332 3.4663 0.5333 3.4667
0.1 0.6150 3.3935 0.6152 3.3938
0.2 0.7137 3.3180 0.7136 3.3184
0.3 0.8279 3.2350 0.8278 3.2353
0.4 0.0954 3.1390 0.0957 3.1392
0.5 1.0997 3.0248 1.1000 3.0250
0.6 1.2562 2.8774 1.2565 2.8775
0.7 1.4255 2.7212 1.4256 2.7214
0.8 1.6063 2.5214 1.6064 2.5216
0.9 1.7982 2.2828 1.7981 2.2829
1.0 1.9998 1.9998 2.0000 2.0000

Table1.
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Example2. Consider the following fuzzy Fredholm equation

f(t, r) = rt +
3

26
− 3r

26
− 1

13
t2 − 1

13
t2r,

f(t, r) = 2t− rt +
3

26
r +

1

13
t2r − 3

26
− 3

13
t2

and kernel

k(s, t) =
s2 + t2 − 2

13
, 0 ≤ s, t ≤ 2

and a = 0, b = 2. The exact solution in this case is given by

F (t, r) = rt

F (t, r) = (2− r)t.

By using the mentioned algorithm and MATLAB package, we obtain the fol-
lowing results:
The approximate and exact solution are compared at t = 1 in table 2.

r f f F F
0.0 0.0001 1.9998 0.0000 2.0000
0.1 0.1001 1.9002 0.1000 1.9000
0.2 0.2002 1.8002 0.2000 1.8000
0.3 0.2999 1.6999 0.3000 1.7000
0.4 0.4001 1.6001 0.4000 1.6000
0.5 0.4998 1.4998 0.5000 1.5000
0.6 0.6001 1.3999 0.6000 1.4000
0.7 0.6998 1.3003 0.7000 1.3000
0.8 0.7997 1.1999 0.8000 1.2000
0.9 0.9001 1.1001 0.9000 1.1000
1.0 0.9998 0.9998 1.0000 1.0000

Table(2).

5 Conclusion

In this work, we present a numerical method for solving the fuzzy Fredholm
integral equation of second kind. The integrals are computed by using the
trapezoidal rule. Finally, The stability and precise of the method is illustrated
by comparing the results with the exact solutions.
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